15,180 research outputs found

    How are Statistical Journals linked? A Network Analysis

    Get PDF
    The exploratory analysis developed in this paper relies on the hypothesis that each editor possesses some power in the definition of the editorial policy of her journal. Consequently if the same scholar sits on the board of two journals, those journals could have some common elements in their editorial policies. The proximity of the editorial policies of two scientific journals can be assessed by the number of common editors sitting on their boards. A database of all editors of the journals classified as “Statistics & Probability” in the Journal of Citation Report by ISI-Thomson is used. The structure of the network generated by the interlocking editorship is explored applying the instruments of network analysis. Evidences are found of a very compact network. This is interpreted as the result of a common perspective about the appropriate methods for investigating the problems and constructing the theories in the domain of statisticsNetworks; Journals; Editorial boards; Interlocking editorship; Statisticians

    What is Computational Intelligence and where is it going?

    Get PDF
    What is Computational Intelligence (CI) and what are its relations with Artificial Intelligence (AI)? A brief survey of the scope of CI journals and books with ``computational intelligence'' in their title shows that at present it is an umbrella for three core technologies (neural, fuzzy and evolutionary), their applications, and selected fashionable pattern recognition methods. At present CI has no comprehensive foundations and is more a bag of tricks than a solid branch of science. The change of focus from methods to challenging problems is advocated, with CI defined as a part of computer and engineering sciences devoted to solution of non-algoritmizable problems. In this view AI is a part of CI focused on problems related to higher cognitive functions, while the rest of the CI community works on problems related to perception and control, or lower cognitive functions. Grand challenges on both sides of this spectrum are addressed

    Complex Systems: A Survey

    Full text link
    A complex system is a system composed of many interacting parts, often called agents, which displays collective behavior that does not follow trivially from the behaviors of the individual parts. Examples include condensed matter systems, ecosystems, stock markets and economies, biological evolution, and indeed the whole of human society. Substantial progress has been made in the quantitative understanding of complex systems, particularly since the 1980s, using a combination of basic theory, much of it derived from physics, and computer simulation. The subject is a broad one, drawing on techniques and ideas from a wide range of areas. Here I give a survey of the main themes and methods of complex systems science and an annotated bibliography of resources, ranging from classic papers to recent books and reviews.Comment: 10 page

    Stochastic ordinary differential equations in applied and computational mathematics

    Get PDF
    Using concrete examples, we discuss the current and potential use of stochastic ordinary differential equations (SDEs) from the perspective of applied and computational mathematics. Assuming only a minimal background knowledge in probability and stochastic processes, we focus on aspects that distinguish SDEs from their deterministic counterparts. To illustrate a multiscale modelling framework, we explain how SDEs arise naturally as diffusion limits in the type of discrete-valued stochastic models used in chemical kinetics, population dynamics, and, most topically, systems biology. We outline some key issues in existence, uniqueness and stability that arise when SDEs are used as physical models, and point out possible pitfalls. We also discuss the use of numerical methods to simulate trajectories of an SDE and explain how both weak and strong convergence properties are relevant for highly-efficient multilevel Monte Carlo simulations. We flag up what we believe to be key topics for future research, focussing especially on nonlinear models, parameter estimation, model comparison and multiscale simulation

    What Economists can learn from physics and finance

    Get PDF
    Some economists (Mirowski, 2002) have asserted that the neoclassical economic model was motivated by Newtonian mechanics. This viewpoint encourages confusion. Theoretical mechanics is firmly grounded in reproducible empirical observations and experiments, and provides a very accurate description of macroscopic motions to within high decimal precision. In stark contrast, neo-classical economics, or ‘rational expectations’ (ratex), is a merely postulated model that cannot be used to describe any real market or economy, even to zeroth order in perturbation theory. In mechanics we study both chaotic and complex dynamics whereas ratex restricts itself to equilibrium. Wigner (1967) has isolated the reasons for what he called ‘the unreasonable effectiveness of mathematics in physics’. In this article we isolate the reason for what Velupillai (2005), who was motivated by Wigner (1960), has called the ineffectiveness of mathematics in economics. I propose a remedy, namely, that economic theory should strive for the same degree of empirical success in modeling markets and economies as is exhibited by finance theory.Nonequilibrium; empirically based modelling; stochastic processes; complexity

    Self-Evaluation Applied Mathematics 2003-2008 University of Twente

    Get PDF
    This report contains the self-study for the research assessment of the Department of Applied Mathematics (AM) of the Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) at the University of Twente (UT). The report provides the information for the Research Assessment Committee for Applied Mathematics, dealing with mathematical sciences at the three universities of technology in the Netherlands. It describes the state of affairs pertaining to the period 1 January 2003 to 31 December 2008

    Credit information in emerging markets: the rating agencies and credit risk reports, Peruvian experience

    Get PDF
    This paper seeks to develop a literature review within the main aspects of credit information in emerging markets, important aspect considering that several companies, including the small enterprises, are looking forward to “go” to capital markets. Thus, we will analyze the role of rating agencies and credit bureaus (credit risk report) in the Peruvian market, considering the current state of economic growth that comes through and, the potential of capital market that comes with MILA (Integrated Latin American Market). Besides, this information will become relevant in the following months, because the actual financial crisis in several countries all over the world (focus in Europe, but it could move to some BRICS – Brazil, Russia, India, China and South Africa – or Latam Countries) has generated a new map in “rating scores” (Note 1) so the questions that we tried to answer is if this unique change is relevant? Or it should be complemented in order to have a significant impact in the market and for the investors

    Marcus versus Stratonovich for Systems with Jump Noise

    Full text link
    The famous It\^o-Stratonovich dilemma arises when one examines a dynamical system with a multiplicative white noise. In physics literature, this dilemma is often resolved in favour of the Stratonovich prescription because of its two characteristic properties valid for systems driven by Brownian motion: (i) it allows physicists to treat stochastic integrals in the same way as conventional integrals, and (ii) it appears naturally as a result of a small correlation time limit procedure. On the other hand, the Marcus prescription [IEEE Trans. Inform. Theory 24, 164 (1978); Stochastics 4, 223 (1981)] should be used to retain (i) and (ii) for systems driven by a Poisson process, L\'evy flights or more general jump processes. In present communication we present an in-depth comparison of the It\^o, Stratonovich, and Marcus equations for systems with multiplicative jump noise. By the examples of areal-valued linear system and a complex oscillator with noisy frequency (the Kubo-Anderson oscillator) we compare solutions obtained with the three prescriptions.Comment: 14 pages, 4 figure
    • 

    corecore