105,209 research outputs found

    High-Dimensional Stochastic Design Optimization by Adaptive-Sparse Polynomial Dimensional Decomposition

    Full text link
    This paper presents a novel adaptive-sparse polynomial dimensional decomposition (PDD) method for stochastic design optimization of complex systems. The method entails an adaptive-sparse PDD approximation of a high-dimensional stochastic response for statistical moment and reliability analyses; a novel integration of the adaptive-sparse PDD approximation and score functions for estimating the first-order design sensitivities of the statistical moments and failure probability; and standard gradient-based optimization algorithms. New analytical formulae are presented for the design sensitivities that are simultaneously determined along with the moments or the failure probability. Numerical results stemming from mathematical functions indicate that the new method provides more computationally efficient design solutions than the existing methods. Finally, stochastic shape optimization of a jet engine bracket with 79 variables was performed, demonstrating the power of the new method to tackle practical engineering problems.Comment: 18 pages, 2 figures, to appear in Sparse Grids and Applications--Stuttgart 2014, Lecture Notes in Computational Science and Engineering 109, edited by J. Garcke and D. Pfl\"{u}ger, Springer International Publishing, 201

    Software for Exact Integration of Polynomials over Polyhedra

    Full text link
    We are interested in the fast computation of the exact value of integrals of polynomial functions over convex polyhedra. We present speed ups and extensions of the algorithms presented in previous work. We present the new software implementation and provide benchmark computations. The computation of integrals of polynomials over polyhedral regions has many applications; here we demonstrate our algorithmic tools solving a challenge from combinatorial voting theory.Comment: Major updat

    Symmetry groups, semidefinite programs, and sums of squares

    Full text link
    We investigate the representation of symmetric polynomials as a sum of squares. Since this task is solved using semidefinite programming tools we explore the geometric, algebraic, and computational implications of the presence of discrete symmetries in semidefinite programs. It is shown that symmetry exploitation allows a significant reduction in both matrix size and number of decision variables. This result is applied to semidefinite programs arising from the computation of sum of squares decompositions for multivariate polynomials. The results, reinterpreted from an invariant-theoretic viewpoint, provide a novel representation of a class of nonnegative symmetric polynomials. The main theorem states that an invariant sum of squares polynomial is a sum of inner products of pairs of matrices, whose entries are invariant polynomials. In these pairs, one of the matrices is computed based on the real irreducible representations of the group, and the other is a sum of squares matrix. The reduction techniques enable the numerical solution of large-scale instances, otherwise computationally infeasible to solve.Comment: 38 pages, submitte
    • …
    corecore