7,977 research outputs found

    Coarse-grained simulations of flow-induced nucleation in semi-crystalline polymers

    Full text link
    We perform kinetic Monte Carlo simulations of flow-induced nucleation in polymer melts with an algorithm that is tractable even at low undercooling. The configuration of the non-crystallized chains under flow is computed with a recent non-linear tube model. Our simulations predict both enhanced nucleation and the growth of shish-like elongated nuclei for sufficiently fast flows. The simulations predict several experimental phenomena and theoretically justify a previously empirical result for the flow-enhanced nucleation rate. The simulations are highly pertinent to both the fundamental understanding and process modeling of flow-induced crystallization in polymer melts.Comment: 17 pages, 6 eps figure

    Phase separation processes in polymer solutions in relation to membrane formation

    Get PDF
    This review covers new experimental and theoretical physical research related to the formation of polymeric membranes by phase separation of a polymer solution, and to the morphology of these membranes. Two main phase separation processes for polymeric membrane formation are discussed: thermally induced phase separation and immersion precipitation. Special attention is paid to phase transitions like liquid-liquid demixing, crystallization, gelation, and vitrification, and their relation to membrane morphology. In addition, the mass transfer processes involved in immersion precipitation, and their influence on membrane morphology are discussed

    Shaping of molecular weight distribution by iterative learning probability density function control strategies

    Get PDF
    A mathematical model is developed for the molecular weight distribution (MWD) of free-radical styrene polymerization in a simulated semi-batch reactor system. The generation function technique and moment method are employed to establish the MWD model in the form of Schultz-Zimmdistribution. Both static and dynamic models are described in detail. In order to achieve the closed-loop MWD shaping by output probability density function (PDF) control, the dynamic MWD model is further developed by a linear B-spline approximation. Based on the general form of the B-spline MWD model, iterative learning PDF control strategies have been investigated in order to improve the MWD control performance. Discussions on the simulation studies show the advantages and limitations of the methodology

    The materials processing research base of the Materials Processing Center

    Get PDF
    The goals and activities of the center are discussed. The center activities encompass all engineering materials including metals, ceramics, polymers, electronic materials, composites, superconductors, and thin films. Processes include crystallization, solidification, nucleation, and polymer synthesis

    Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive time scales: an overview

    Get PDF
    Here, we review the basic concepts and applications of the phase-field-crystal (PFC) method, which is one of the latest simulation methodologies in materials science for problems, where atomic- and microscales are tightly coupled. The PFC method operates on atomic length and diffusive time scales, and thus constitutes a computationally efficient alternative to molecular simulation methods. Its intense development in materials science started fairly recently following the work by Elder et al. [Phys. Rev. Lett. 88 (2002), p. 245701]. Since these initial studies, dynamical density functional theory and thermodynamic concepts have been linked to the PFC approach to serve as further theoretical fundaments for the latter. In this review, we summarize these methodological development steps as well as the most important applications of the PFC method with a special focus on the interaction of development steps taken in hard and soft matter physics, respectively. Doing so, we hope to present today's state of the art in PFC modelling as well as the potential, which might still arise from this method in physics and materials science in the nearby future.Comment: 95 pages, 48 figure

    Thermal transfer simulation regarding the rotational moulding of polyamide 11

    Get PDF
    Simulation of thermal phenomena in rotational moulding is very important to follow the evolution of the temperature in various zones of this process. It was a question of modelling heat gradients developing in rota-tional moulding part. Thermal model tested take into account the temperature change (thermal transfer mecha-nism) of melting and crystallization pseudo-stages (enthalpy method). Series of tests in polyamide 11 (PA11) were carried out by means of rotational moulding STP LAB, and non-isothermal crystallization kinetics of rota-tional moulding PA11 grade are measured and analysed by DSC technique type TAQ20. A result of non-isothermal crystallization of the studied polyamide was confronted with Ozawa model. In order to test the validity degree of enthalpy method (layer to layer), another approach based on Ozawa model has also been used in the case of cooling pseudo-stage. As results, the rotational moulding of PA11 was successfully carried out. The simulation of the fusion and crystallization stages, by application of Ozawa model coupled with enthalpy method gave a good representation of experimental data

    Multiscale modeling for the heterogeneous strength of biodegradable polyesters

    Get PDF
    A heterogeneous method of coupled multiscale strength model is presented in this paper for calculating the strength of medical polyesters such as polylactide (PLA), polyglycolide (PGA) and their copolymers during degradation by bulk erosion. The macroscopic device is discretized into an array of mesoscopic cells. A polymer chain is assumed to stay in one cell. With the polymer chain scission, it is found that the molecular weight, chain recrystallization induced by polymer chain scissions, and the cavities formation due to polymer cell collapse play different roles in the composition of mechanical strength of the polymer. Therefore, three types of strength phases were proposed to display the heterogeneous strength structures and to represent different strength contribution to polymers, which are amorphous phase, crystallinity phase and strength vacancy phase, respectively. The strength of the amorphous phase is related to the molecular weight; strength of the crystallinity phase is related to molecular weight and degree of crystallization; and the strength vacancy phase has negligible strength. The vacancy strength phase includes not only the cells with cavity status but also those with an amorphous status, but a molecular weight value below a threshold molecular weight. This heterogeneous strength model is coupled with micro chain scission, chain recrystallization and a macro oligomer diffusion equation to form a multiscale strength model which can simulate the strength phase evolution, cells status evolution, molecular weight, degree of crystallinity, weight loss and device strength during degradation. Different example cases are used to verify this model. The results demonstrate a good fit to experimental data

    Monte Carlo Simulation for the Morphology and Kinetics of Spherulites and Shish-Kebabs in Isothermal Polymer Crystallization

    Get PDF
    Monte Carlo method is used to capture the evolution of spherulites and shish-kebabs and to predict the crystallization kinetics in isothermal polymer crystallization. Effects of nucleation density and growth rate of spherulites, nucleation density, and length growth rate of shish-kebabs, respectively, on crystallization are investigated. Results show that nucleation densities of both spherulites and shish-kebabs strongly affect crystallization rate as well as morphology. An increase in nucleation density of either spherulites or shish-kebabs leads to a quicker crystallization rate and a smaller average spherulite size. It is also shown that nucleation density of shish-kebabs has a stronger impact on crystallization rate. Growth rate of spherulites and length growth rate of shish-kebabs also have significant effect on crystallization rate and morphology. An increase in growth rate of spherulites or length growth rate of shish-kebabs also speeds up the crystallization rate; additionally, a decrease in growth rate of spherulites or an increase in length growth rate of shish-kebabs results in a more highly anisotropic shish-kebab structure and a smaller average size of spherulites. Results also show that the effect of growth rate of spherulites is more important than the effect of length growth rate of shish-kebabs on crystallization
    corecore