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Abstract: A mathematical model is developed for the molecular weight distribution (MWD) of
free-radical styrene polymerization in a simulated semi-batch reactor system. The generation
function technique and moment method are employed to establish the MWD model in the form
of Schultz–Zimm distribution. Both static and dynamic models are described in detail. In order to
achieve the closed-loop MWD shaping by output probability density function (PDF) control, the
dynamic MWD model is further developed by a linear B-spline approximation. Based on the
general form of the B-spline MWD model, iterative learning PDF control strategies have been
investigated in order to improve the MWD control performance. Discussions on the simulation
studies show the advantages and limitations of the methodology.

Keywords: molecular weight distribution (MWD), B-spline model, probability density
function (PDF), iterative learning control (ILC)

1 INTRODUCTION

It is widely recognized that the molecular weight

distribution (MWD) of a polymer is one of the most

important variables to be controlled in industrial

polymerization processes because it directly affects

many of the polymer’s end-use properties such as

thermal properties, stress–strain properties, impact

resistance, strength, and hardness [1, 2]. There has

been much incentive to control MWD accurately

during polymerization. The research into the mod-

elling and control of MWD in polymerization has

constituted an important area in process control for

more than a decade, where the aim is to investigate

proper control strategies that can effectively control

the shape of MWD following the quality require-

ments of the end-use polymer.

MWD control and process optimization require

on-line MWD information. With the development of

hardware and software sensors for on-line monitor-

ing of the polymerization reactions, some polymer

properties can be measured continuously or semi-

continuously during operations [3]. However, infor-

mation on MWD is still largely provided by mathe-

matical models during control since the on-line

MWD measurement is an unsolved issue in poly-

merization processes. Mechanistic MWD models can

be developed under the framework of population

balance, which include a set of differential equations

describing the dynamics of the reaction species such

as initiator, monomer, radicals, and polymers of

different chain length. These equations are functions

of kinetic mechanism and reaction operation con-

ditions of the polymerization process [4]. As the

polymer chain length of interest is usually a huge

number up to maybe millions, direct solution of

these hundreds of thousands of differential equa-

tions is infeasible in most real situations and there-

fore various numerical techniques have been devised

to address this issue. Computational methods

include the adaptive orthogonal collocation algo-

rithm [5, 6] and the method of finite molecular

weight moments [7]. Some parameterized or statis-

tical methods are also developed for MWD descrip-

tion, such as Markov chain [8–10], Flory distribution
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[11–13], Stockmayer distribution [14], Weibull dis-

tribution [15, 16], and Schultz–Zimm distribution

[17, 18]. For many practical problems of linear

polymerization under steady state or quasi-steady

state conditions, the MWD of polymer chains can be

described satisfactorily by the Schulz–Flory distribu-

tion [4, 19, 20]. The general way to develop this type

of parameterized distribution model consists of

three steps. Firstly, set up the differential equation

models for reaction species. Secondly, use the

generation function technique to establish the

leading moments with respect to the distribution.

Thirdly, obtain the parameters of the distribution

function from the leading moments by optimization.

A number of control strategies have been devel-

oped to realize MWD control in batch and semi-

batch processes (see reviews in references [21] and

[22]). These methods can generally be divided into

task level control and execution level control [1]. In

the task level control (first step), the optimal time

profiles of process operations are determined off-

line aiming to attain the desired MWD at the end of

the control cycle. The time profiles will be used as

set point trajectories of manipulated variables, for

instance reaction temperature, initiator concentra-

tion, feed rate of the monomer or chain transfer

agent, etc. In order to track the optimal trajectory

during operations, regulatory control is implemen-

ted in the execution level (second step), in which on-

line techniques, such as state estimation with

extended Kalman filter, are developed to update

the MWD information or the manipulated control

profiles [1, 21, 23, 24]. Controllers from propor-

tional-integral-derivative (PID) to model-based non-

linear control such as multivariable predictive con-

trol have been attempted in the execution level.

MWD control following these two steps can be found

in many examples [1, 2, 21, 24–32].

The control efforts in the above discussions should

be regarded as open-loop control in terms of the

MWD property because the optimal profiles relating

to the desired MWD are determined in an off-line

manner. To realize closed-loop control of dynamic

MWD, the idea of output probability density function

(PDF) control allows a unique solution. Here the

controller is designed to make the output PDF follow a

desired PDF [33]. The development of output PDF

control was inspired by requirements from real

industries, of which the system output relates to space

distribution. In addition to MWD systems, examples

also include particle size distribution (PSD) control in

polymerization processes, [34–36] PSD control in

crystallization and powder industries [37–40], fibre

length distribution control in paper industries [41],

flame temperature distribution control in combustion

processes [42], etc. Unlike the mean and variance

control in Gaussian processes, the output PDF is a

function not only of time but also of a space variable.

The dynamics of the output PDF can thus be generally

described by a partial differential equation (PDE) in

terms of both the time and space variables, which

defines the PDF shape at each time instant. However,

direct use of PDE models is difficult in practice in that

either such a model is difficult to establish due to the

complicated nature of processes or the obtained

control algorithms are too complicated to be applied

in real-time situations. The output PDF control

strategies were proposed to solve this type of problem

[33, 43, 44], in which the main technique is the use of

a set of fixed basis functions together with a group of

time-varying weights to approximate the output PDF

at each time instant.

Using function approximations in PDF modelling, a

large number of basis functions are required when the

PDF dynamics is complicated. Since the PDF of a

process output can vary widely over operations, it may

be unrealistic to capture the output behaviour with

fixed basis functions. As a result, it would be ideal to be

able to update the basis functions during the control

process. This is especially suitable for systems that

have a nature of repetitive closed-loop operations such

as the batch-to-batch processes in chemical engineer-

ing. These batches are iterative by nature and in

practice it is expected that the closed-loop perfor-

mance becomes improved from batch to batch. In this

context, the iterative learning control (ILC) could be

very well applied [45, 46]. The important aspect in ILC

is to update the control input in the kth batch from the

control in the (k–1)th batch plus a correction term that

is related to the closed-loop performance of the kth

batch. This strategy has the advantage of improving

the closed-loop system performance along with the

progress of the operation [47, 48].

For those continuous processes that do not

operate in a batch mode, the ILC principle can

also be applied by dividing the control horizon into

several time-domain intervals, where each interval

is regarded as a pseudo batch. The main difference

in the latter case is that, for the pseudo-batches in a

continuous process, the initial conditions of the

system states are taken from the final states in the

previous batch rather than keeping the same initial

conditions for all the batches. In recent years, some

iterative learning PDF control strategies have been

developed using B-spline basis functions [49, 50]

and radial basis functions [51, 52] respectively.
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In this work, two iterative learning PDF control

methods have been attempted in the closed-loop

MWD control of a simulated semi-batch polymer-

ization process. The paper is structured as follows.

In section 2, development of the static and dynamic

MWD models is presented. The first-principle

model is then approximated by a linear B-spline

model in an iterative form in section 3. In the

fourth section, the methodology of iterative learn-

ing PDF control is outlined. The simulated case

study of MWD shaping by iterative learning PDF

control is presented in section 5. Conclusions are

given in the final section.

2 MWD MODEL DEVELOPMENT

2.1 The styrene polymerization process

The process of interest is a simulated styrene

polymerization system in a semi-batch reactor.

Styrene is the monomer for polymerization and

azobisisobutyronitrile is the initiator. These two

flows are injected into the reactor with a ratio

between them that can be adjusted. The reaction

temperature is assumed to be kept constant during

the reaction process. The total flowrate to the

system, F, is composed of the monomer flow, FM,

and the initiator flow, FI, i.e. F 5 FM + FI. The

monomer input ratio is defined as

c~
FM

FIzFM
ð1Þ

The output MWD will be changed when the ratio c is

changed. In this presented work, the monomer input

ratio c is selected as the control input. When the

flowrate of the initiator is fixed, the change in c

corresponds to the change in the monomer flowrate.

It is a common practice to use the flowrate of the

monomer as a manipulated variable in batch or

semi-batch MWD control systems [28]. The poly-

merization system is shown in Fig. 1.

The following free radical polymerization mechan-

isms are considered in the modelling:

(a) Initiation

I �?Kd
2R

1

R
1
zM �?Ki

R1

(b) Chain propagation

RjzM �?K p
Rjz1

(c) Chain transfer to monomer

RjzM �?Ktrm
PjzR1

(d) Termination by combination

RjzRi �?
Kt

Pjzi

where I is the initiator, M is the monomer, R* is the

primary radical, Rj is the live polymer radical with

chain length j, Pj is the dead polymer with chain

length j, and Kd, Ki, Kp, Ktrm, and Kt are reaction rate

constants. The following mass balance equations are

derived to describe the concentrations of the reac-

tion species

dI

dt
~

I0{I

h
{KdI ð2Þ

dM

dt
~

M0{M

h
{2KiI{ KpzKtrm

� �
MR ð3Þ

dR1

dt
~{

R1

h
z2KiI{KpMR1

zKtrmM R{R1ð Þ{KtR1R ð4Þ

dRj

dt
~{

Rj

h
{KpM Rj{Rj{1

� �
{KtrmMRj

{KtRjR jo2ð Þ ð5Þ

Fig. 1 Simulated semi-batch MWD control system

DA

DA

DA
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dP2

dt
~KtrmR2MzKtR

2
1{

P2

h
ð6Þ

dPj

dt
~KtrmRjMz

Kt

2

Xj{1

l~1

RlRj{l{
Pj

h
jo3ð Þ ð7Þ

where h 5 V/F ( V is the volume of the reactor) is the

average residential time of the reactants in the

reactor and

R~
X?
j~1

Rj ð8Þ

is the total concentration of the radicals. To use the

generation function technique, denoting

P~
X?
j~2

Pj ð9Þ

as the total concentration of the dead polymers, the

following formulation can be obtained from equa-

tions (4) to (9) to give

dR

dt
~{

R

h
z2KiI{KtR

2 ð10Þ

dP

dt
~{

P

h
zKtrmM R{R1ð Þz Kt

2
R2 ð11Þ

R1 in equation (11) can be ignored compared with R

because of its low concentration, i.e.

dP

dt
~{

P

h
zKtrmMRz

Kt

2
R2 ð12Þ

2.2 Static MWD model

The static solutions to the concentrations of the

reaction species can be derived from their dynamic

equations. Denote

a~1z
Ktrm

Kp
z

KtR

KpM
z

1

KpMh
ð13Þ

By taking equations (2), (3), (10), and (12) to be zero,

then

I~
I0

1zKdh
ð14Þ

R~

{1

�
hz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
�

h2z8KtKiI
q

2Kt
ð15Þ

M~
M0

1z KpzKtrm

� �
Rh

ð16Þ

P~h KtrmMRz
Kt

2
R2

� �
ð17Þ

Similarly, from equations (4), (5), (6), and (7), the

static concentrations of radicals and polymers are

R1~
2KiIzKtrmMR

KpMa
ð18Þ

Rj~a{1Rj{1~a{ j{1ð ÞR1 jo2ð Þ ð19Þ

P2~h KtrmMR2zKtR
2
1

� �
ð20Þ

Pj~h KtrmMRjz
Kt

2

Xj{1

l~1

RlRj{l

 !
jo3ð Þ ð21Þ

Substituting equation (19) into (20) and (21) and

divided by P, the normalized MWD at static state can

be obtained to be

Pj~

h

P
a{1KtrmMR1zKtR

2
1

� �
j~2

h

P
a{ j{1ð ÞKtrmMR1

�
z

j{1

2
a{ j{2ð ÞKtR

2
1

�
jo3

8>>>>>><
>>>>>>:

ð22Þ

It can be seen from equation (22) that

X?
j~2

Pj~1 ð23Þ

Therefore, the static MWD can be taken as a discrete

PDF of the chain length j.

2.3 Dynamic MWD model

For the dynamic MWD model, the distribution of Pj

is not only a function of the chain length but also a

642 H Yue, H Wang, and J Zhang
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function of time. At each time instance, the moment

method is used for the MWD description.

The moments of the number chain-length dis-

tributions of radicals and polymers are defined as

Uk~
Xz?

j~1

jkRj, k~0, 1, 2, . . . ð24Þ

Zk~
Xz?

j~2

jkPj, k~0, 1, 2, . . . ð25Þ

It can be seen from equations (8) and (9) that U0 5 R

and Z0 5 P. For the radicals, the differential equa-

tions of the leading moments are derived using the

generation function technique as follows

dU0

dt
~{

U0

h
z2KiI{KtU

2
0 ð26Þ

dU1

dt
~{

U1

h
z2KiIzKpU0M{KtU0U1

zKtrmM U0{U1ð Þ ð27Þ

dU2

dt
~{

U2

h
z2KiIzKpM 2U1zU0ð Þ

{KtU0U2zKtrmM U0{U2ð Þ ð28Þ

Similarly, the three leading moments of the poly-

mers are derived to be

dZ0

dt
~{

Z0

h
zKtrmMU0z

Kt

2
U2

0 ð29Þ

dZ1

dt
~{

Z1

h
zKtrmMU1zKtU0U1 ð30Þ

dZ2

dt
~{

Z2

h
zKtrmMU2zKtU0U2zKtU

2
1 ð31Þ

The mean and variance of the MWD are related to

the moments by

m~

Pz?
j~2 jPjPz?
j~2 Pj

~
Z1

Z0
ð32Þ

s2~

Pz?
j~2 j{mð Þ2PjPz?

j~2 Pj

~
Z2

Z0
{

Z2
1

Z2
0

ð33Þ

Theoretically, an exact formulation of MWD requires

countless number of moments, which is infeasible in

practical computation. An alternative method is to

choose a distribution function to approximate the real

MWD. For the polymer discussed in this work, the

well-known Schultz–Zimm distribution is considered

to be suitable for the MWD description. With this

function, a simple analytical expression for the scat-

tering from the distribution is available. The normal-

ized Schultz–Zimm distribution is defined as [53]

f nð Þ~ hhnh{1 exp {hn=Mnð Þ
Mh

n C hð Þ no1ð Þ ð34Þ

where n is the chain length, h is a parameter

indicating the distribution breadth, Mn is the

number average chain length which is defined as

Mn 5 Z1/Z0, and C is the gamma function defined as

C hð Þ~
Ð?

0 nh{1e{ndn. When h 5 1, the Schultz–

Zimm distribution reduces to the exponential Flory

distribution, which is another commonly used

distribution for MWD. The mean and variance of

the Schultz–Zimm distribution are

m~

ð?
0

nf nð Þ dn~

ð?
0

hhnh exp {hn=Mn)ð Þ
Mh

n C hð Þ dn

~Mn ð35Þ

s2~

ð?
0

n{mð Þ2f nð Þ dn~
hz1

h
M2

n{m2 ð36Þ

By comparing equations (32) and (33) with (35) and

(36), the two parameters of the Schultz–Zimm

distribution are found to be

h~
Z2

1

Z0Z2{Z2
1

ð37Þ

Mn~Z1=Z0 ð38Þ

The first-principle model describes the entire MWD

by a Schultz–Zimm distribution. From the model

development process, it can be seen that the

parameters of the distribution function are linked

to the dynamic process via moments of polymers

and concentrations of reaction species.

The calculation of the dynamic MWD can be

summarized in the following three steps:

1. Obtain Z0, Z1, Z2 from equations (2), (3), and (26)

to (31).

2. Obtain h and Mn from equations (37) and (38).
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3. Formulate the MWD by equation (34).

3 B-SPLINE APPROXIMATION FOR ITERATIVE
LEARNING CONTROL

Though the first-principle model has the ability of

predicting MWD dynamically, it will not be used

directly in MWD control. Instead, a B-spline approx-

imation model is established from the data produced

by the first-principle model. The reason for doing so

is that rather than taking the MWD control as a

specific problem, it is more general to treat it as a

problem with the output being a function of time

and space variables. Also, when using a general B-

spline model, even if the first-principle model is not

available, the PDF control strategy can still be

applied with the measurement of MWD if online

techniques permit. Here the well-established B-

spline PDF model is redeveloped to suit the purpose

of iterative learning PDF control in the MWD system.

3.1 Output PDF model with fixed B-spline
functions

Consider a continuous PDF ci(y) defined on the [a, b]

interval. The linear B-spline neural network can be

used to give an approximation of ci(y) [33]

ci yð Þ~
Xn

l~1

vl uið ÞBl yð Þze0 ð39Þ

where the subscript i indicates the ith sample time.

Throughout the paper, ci(y) is assumed to be

measurable, ui is the control input at time i(i 5 1,

2, …, m), m is the total sample number along the

time axis, Bl(y)(l 5 1, …, n) are the pre-specified basis

functions defined on the interval of y [ [a, b], n is the

total number of the basis functions used for

the approximation to ci(y), vl(ui)(l 5 1, …, n) are

the expansion weights, and e0 represents the

approximation error which satisfies |e| , d1 (d1 is a

known small positive number). To simplify the

expression, e0 is neglected in the following. Due to

the fact that the integration of a PDF over its

definition domain should be 1, there are only n – 1

independent weights out of the original n weights

[44]. Using this B-spline approximation and con-

sidering linear dynamics in the weights vector, the

following discrete output PDF model is formulated

V i~�AAV i{1z�BBui{1 ð40Þ

ci yð Þ~C yð ÞV izL yð Þ ð41Þ

where Vi 5 [v1(ui), v2(ui), …, vn–1(ui)]T is the weights

vector of the B-spline model at time i. Ā and B̄ are

the system parameter matrices of proper dimen-

sions. C(y) and L(y) are related to the B-spline

functions by

Ql~

ðb

a

Bl yð Þ dy, l~1, . . . , n

L yð Þ~Bn yð Þ=Qn

cr yð Þ~Br yð Þ{L yð ÞQr , r~1, . . . , n{1

C yð Þ~ c1 yð Þ, c2 yð Þ, . . . , cn{1 yð Þ½ �

3.2 B-spline model in iterative form

In order to formulate the ILC law for batch-to-batch

PDF control, the system model is written as

V k,i~�AAkV k,i{1z�BBkuk,i{1 ð42Þ

ck,i yð Þ~Ck yð ÞV k,izLk yð Þ ð43Þ

where the added subscript k indicates the kth batch

and ck, i(y), Vk,i, and uk,i are the output PDF, weights

vector, and control input respectively at the ith

sample time in the kth batch. For the kth batch, Ck(y)

and Lk(y) are formulated to be

Qk,l~

ðb

a

Bk,l yð Þ dy, l~1, . . . , n ð44Þ

Lk yð Þ~Bk,n yð Þ
�

Qk,n ð45Þ

ck,r yð Þ~Bk,r yð Þ{Lk yð ÞQk,r , r~1, . . . , n{1 ð46Þ

Ck yð Þ~ ck,1 yð Þ, ck,2 yð Þ, . . . , ck,n{1 yð Þ
� 	

ð47Þ

The input–output expansion of (42) and (43) is as

follows

fk,i yð Þ~ck,i yð Þ{Lk yð Þ

~
Xn{1

p~1

ak,pfk,i{p yð Þz
Xn{2

q~0

Ck yð ÞDk,quk,i{1{q ð48Þ

644 H Yue, H Wang, and J Zhang
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with Dk,q 5 [dk,q,1, dk,q,2, …, dk,q,n–1]T, which are

directly related to matrices Āk and B̄k.

Denoting

hk~ ak,1, . . . , ak,n{1, dk,0,1, . . . , dk,0,n{1, . . . ,
�
dk,n{2,1, . . . , dk,n{2,n{1

	
wk,i yð Þ~ fk{1,i{1 yð Þ, . . . , fk{1,i{nz1 yð Þ,

�
ck,1 yð Þuk{1,i{1, . . . , ck,n{1 yð Þuk{1,i{1, . . . ,

ck,1 yð Þuk{1,i{nz1, . . . , ck,n{1 yð Þuk{1,i{nz1

	

equation (48) can be further expressed by

fk,i yð Þ~wk,i yð ÞhT
k ð49Þ

This is similar to the standard form of a linear system

whose parameters in hk can be estimated by least-

squares identification methods.

Within each batch, such a PDF model has been fully

explained in some previous work [33, 43, 44].

However, different from the model with fixed B-

splines, the iterative model features different basis

functions for each batch, which means that the B-

spline functions for the PDF approximation can be

updated iteratively from batch to batch in order to

improve the modelling accuracy. This is important for

real systems modelling where the process is normally

in a time-varying and uncertain environment. For the

linear weights model used in this work, the iterative

update of the B-spline model also helps to address the

system’s non-linear nature to some extent.

3.3 Parameter re-estimation for the updated
B-spline functions

In the iterative learning PDF control cycle, the B-

spline basis functions are updated from batch to

batch (this will be further explained in the next

section). In each batch, when the updated basis

functions are taken for PDF approximation, the

model parameters in (49) need to be re-estimated.

At each sample time i in the kth batch, fk,i(y) is a

continuous function of y defined on [a, b]. Assume

that fk,i(y) can be represented by N sample points;

then for each sample point j there is

fk,i yj

� �
~wk,i yj

� �
hT

k , j~1, . . . , N ð50Þ

As a result, with respect to the new index j, the

following least-squares algorithm can be used to

estimate hk based on the measured output PDFs, the

control inputs in the (k–1)th batch, and the adjusted

B-spline functions

ĥhk jz1ð Þ~ĥhk jð Þz
P jð ÞwT

k,i yj

� �
ek jð Þ

1zwk,i yj

� �
P jð ÞwT

k,i yj

� � ð51Þ

ek jð Þ~fk,i yj

� �
{wk,i yj

� �
ĥhk jð Þ ð52Þ

P jz1ð Þ~ I{
P jð ÞwT

k,i yj

� �
wk,i yj

� �
1zwk,i yj

� �
P jð ÞwT

k,i yj

� �
 !

P jð Þ ð53Þ

where P̄(1) 5 103–6I(n–1)6n. The recursive loops of the

identification algorithm is shown in Fig. 2, in which

the inner loop operation is called ‘scanning’ because

the variable yj goes through the whole definition

interval of [a, b] by j 5 1, …, N.

4 ITERATIVE LEARNING PDF CONTROL

4.1 Iterative learning algorithm I

4.1.1 Iterative update of the B-spline model

The sketch of the iterative learning PDF control is

shown in Fig. 3, in which u is the control input, c(y, u)

is the output PDF, g(y) is the target PDF, d(y) measures

the distance between the output PDF and the target

PDF. This algorithm consists of three steps:

Fig. 2 The algorithm of scanning parameter identifi-
cation
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1. Update the B-spline basis functions from the PDF

control error in the previous batch.

2. Re-estimate the parameters of the B-spline model

with the updated basis functions.

3. Design the PDF controller using the updated

B-spline model and apply it to the current batch.

In this paper, the following polynomial B-spline is

used to approximate the output PDF

Bk,l yð Þ~

{
4hk,l

w2
k,l

y{yl0{
wk,l

2


 �2

zhk,l, y[ yl0, yl0zwk,l

� 	
0, otherwise

8><
>:

ð54Þ

for l 5 1, …, n. Here hk,l and wk,l stand for the height
and width of each B-spline basis function with
Bk,l(y) > 0, hk,l > 0 and wk,l > 0, and [yl0, yl0 + wk,l] is
the lth subinterval within [a, b]. As the width of the
basis functions are tuned between batches, the
subinterval [yl0, yl0 + wk,l] will shift within [a, b] batch
by batch. It can be seen that hk,l and wk,l determine
the shape of the basis functions.

Substituting (54) into equations (44), (45), and (46)

gives

Qk,l~

ðb

a

Bk,l yð Þ dy

~

ðbk,l

ak,l

{
4hk,l

w2
k,l

y{yl0{
wk,l

2


 �2

zhk,l

" #
dy

for l~1, . . . , n

ð55Þ

Lk yð Þ~
{ 4hk,n

.
w2

k,n


 �
y{yn0{wk,n

�
2

� �2
zhk,n

Qk,n

ð56Þ

ck,r yð Þ~{
4hk,r

w2
k,r

y{yr0{
wk,r

2


 �2

zhk,r

{Lk yð ÞQk,r , r~1, . . . , n{1 ð57Þ

where ak,l and bk,l are the lower and upper bounds

for the lth B-spline basis function in the kth batch

and ak,l 5 yl0, bk,l 5 min(yl0 + wk,l, b). When y [ [ak,l,

bk,l], the inequality Bk,l(y) > 0 is assured.

The iterative update of the basis functions are

based on all the PDF tracking errors collected at each

sample time from the previous batch. Denote the 2-

norm PDF tracking error at sample time i in the (k–

1)th batch as

dk{1,i~

ðb

a

ck{1,i yð Þ{g yð Þ
� 	2

dy ð58Þ

where g(y) is the target PDF. It can be seen that dk–1,i

> 0. The error vector that groups all the m sampling

errors in the (k–1)th batch can be represented by

Ek{1~ dk{1,1, dk{1,2, . . . , dk{1,m

� 	T ð59Þ

For the B-spline basis functions defined in (54), the

following P-type iterative learning law is adopted to

adjust the parameters hk,l and wk,l so as to tune the

shape of the functions

Hk~Hk{1zQH Ek{1 ð60Þ

W k~W k{1zQW Ek{1 ð61Þ

where Hk 5 [hk,1, …, hk,n]T and Wk 5 [wk,1, …, wk,n]T

are the vectors composed of the height and the

width of each B-spline basis function in the kth

(k > 2) batch. QH and QW are the learning rate

matrices to be determined.

Algorithm (58) to (61) shows that at each tuning

interval, the basis functions are updated using the

PDF tracking errors collected from the previous

batch. In addition, it can be seen from equations (58)

and (59) that all the variables in Ek–1 are always non-

negative. This shows that the learning rates QH and

QW can be either positive or negative, which allows

the height and the width of the B-spline basis

Fig. 3 Iterative learning PDF control scheme

646 H Yue, H Wang, and J Zhang

Proc. IMechE Vol. 222 Part I: J. Systems and Control Engineering JSCE584 F IMechE 2008



functions to either increase or decrease after the

tuning via equations (60) and (61). Once the basis

functions are updated, the parameters of the B-

spline model will be re-estimated, as presented in

section 3.3.

The PDF controller is designed with the updated

model by optimizing the following quadratic perfor-

mance function

Jk,i~

ðb

a

ck,i yð Þ{g yð Þ
� 	2

dyzuk,iRuT
k,i ð62Þ

where R . 0 is a pre-specified weighting factor.

Taking qJk,i/quk,i 5 0, the control input is developed

to be

uk,i~

Ð b
a Ck yð ÞDk,0~ggk,i yð ÞdyÐ b

a Ck yð ÞDk,0)
� 	2

dyzR
ð63Þ

where

~ggk,i yð Þ~{
Xn{1

p~2

ak,pfk,i{pz1 yð ÞzCk yð ÞDk,p{1uk,i{pz1

� 	
{Lk yð Þzg yð Þ{ak,1fk,i yð Þ

is a known term at the ith time instance in the kth

batch.

4.1.2 Convergence analysis

In order to guarantee the convergence of the proposed

iterative learning algorithn for PDF control, appro-

priate learning rates in equations (60) and (61) should

be chosen to tune the B-spline basis functions so that

the controller can progressively improve the tracking

performance batch by batch, which eventually leads

to a satisfactory output PDF tracking with respect to

the desired PDF. For this purpose, the following two

aspects are considered to formulate some guidelines

to the selection of the learning rates:

1. The weight and height of all the basis functions

should always be kept non-negative, i.e. hk,l > 0 and

wk,l > 0, l 5 1, …, n. This constraint comes from the

definition of the B-spline functions in (54).

2. For a gradually improved iterative learning algo-

rithm, the sum of the tracking errors should be

reduced batch by batch, i.e.

0v

Pm
i~1 dkz1,iPm

i~1 dk,i

¡1 ð64Þ

Denoting

Dk~
Xm

i~1

dk,i ð65Þ

the inequality (64) can be expressed as

0v

Dkz1

Dk
¡1 ð66Þ

The above sufficient conditions guarantee that the

iterative leaning rules (60) and (61) are convergent

and that the PDF tracking error decreases batch by

batch. Assuming that the learning increments QHEk

and QWEk are small, the following first-order

approximation can be made

Dkz1&Dkz
LD

LH H~Hk , W ~W k

���� �T

:QH Ek

z
LD

LW
H~Hk , W ~W k

��� �T

:QW Ek ð67Þ

This leads to

Dkz1

Dk
&1z

LD=LH H~Hk , W ~W k

��� �T:QH Ek

Dk

z
LD=LW H~Hk , W ~W k

��� �T:QW Ek

Dk

ð68Þ

Taking (68) into (66) yields

0v1z
LD=LH H~Hk , W ~W k

��� �T:QH Ek

Dk

z
LD=LW H~Hk , W ~W k

��� �T:QW Ek

Dk
¡1 ð69Þ

It is known that Dk . 0 from (65); therefore

{Dkv
LD

LH
H~Hk , W ~W k

��� �T

:QH Ek

z
LD

LW
H~Hk , W ~W k

��� �T

:QW Ek¡0 ð70Þ

When the selection of the learning rates QH and QW

satisfy (70), a convergent ILC law will be guaranteed.

4.2 Iterative learning algorithm II

In the previous iterative learning algorithm, the basis

functions in the B-spline model are adjusted from
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batch to batch, which increases modelling accuracy

progressively but also increases the computational

load. To overcome this problem, an alternative way

is to update the control sequence in the current

batch from the PDF control errors in the previous

batch without changing the model.

Again, taking the performance function in equa-

tion (62), the tracking error vector for the kth

iteration is defined as in equation (59). Following

the iterative learning rule, the control input at the ith

time in the current batch should be updated based

on the control input and tracking errors in the

previous batch, i.e.

ukz1,i~uk,izykz1 i, ið ÞEk ið Þ ð71Þ

where yk + 1 is the diagonal learning rate matrix for

the (k + 1)th batch. The learning rates should be

chosen to guarantee the asymptotical convergence

of the algorithm, i.e.

Xm

i~1

dk,i¡

Xm

i~1

dk{1,i ð72Þ

Denoting the compensation term in (71) as

Duk,i~ykz1 i,ið ÞEk ið Þ ð73Þ

condition (72) can be satisfied equivalently when

Xm

i~1

Ldk,i

LDuk{1,i{1
v0 ð74Þ

Taking the PDF model (42) and (43) into dk,i, the

following equation can be derived

Ldk,i

LDuk{1,i{1
~2

ðb

a

�FF k yð ÞDuk{1,i{1
�FF k yð Þ dy

z2

ðb

a

�EEk yð ÞVk,i{1z�FF k yð Þuk{1,i{1

�
z�ggk yð Þ�|�FF k yð Þ dy io2ð Þ ð75Þ

where Ēk(y) 5 Ck(y)Āk, F̄k(y) 5 Ck(y)B̄k, ḡk(y) 5 Lk(y)–

g(y). Therefore, (74) turns out to be

Xm
i~1

ðb

a

�FFk yð ÞDuk{1,i{1
�FFk yð Þ dy

v{
Xm

i~1

ðb

a

�EEk yð ÞV k,i{1z�FFk yð Þuk{1,i{1z�ggk yð Þ
� 	

|�FFk yð Þ dy io1ð Þ ð76Þ

Taking (73) into (76) gives

Xm
i~1

ðb

a

�FFk yð Þyk i{1,i{1ð Þ�EEk{1 i{1ð Þ�FFk yð Þ dy

v{
Xm

i~1

ðb

a

�EEk yð ÞV k,i{1z�FFk yð Þuk{1,i{1z�ggk yð Þ
� 	

|�FFk yð Þ dy ð77Þ

The learning matrix yk should be designed to satisfy

the condition in (77) for the asymptotical conver-

gence of the closed-loop system.

5 CASE STUDY OF MWD CONTROL

The case for study is the semi-batch polystyrene

process presented in section 2.1. To start with, the

first-principle MWD model is developed to produce

the dynamic MWD data and then the MWD data are

used to set up the B-spline approximation model.

The PDF control strategies are developed and

implemented based on the B-spline model. The

simulation conditions for the MWD system are given

in Table 1. Comparisons are made between the two

iterative learning PDF control strategies and the

standard PDF control. In all the simulations, the

initial MWD corresponds to the MWD under the

monomer input ratio of c 5 0.4, and the target MWD

is the one corresponding to c 5 0.6. A physical

constraint of 0.4 ( c ( 0.8 is considered for the

monomer input ratio.

5.1 MWD control by standard PDF control

For a standard PDF control based on the fixed B-

spline model, the control law is

ui~

Ð b

a C yð ÞD0~ggi yð Þ dyÐ b

a C yð ÞD0ð Þ2 dyzR
ð78Þ

In order to obtain the necessary modelling accuracy,

10 third-order B-spline functions are selected for the

MWD approximation. The standard PDF control was

performed with R 5 661026. The selection of R is a

trade-off: a larger value of R increases the steady

state MWD tracking error and a smaller R causes

more oscillations in the control input. The control

input is shown in Fig. 4. The output MWDs are

displayed in Fig. 5. The initial, final, and target

MWDs are illustrated in Fig. 6. It can be seen that

with the standard PDF control, the output MWD is
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moved towards the target MWD, but the steady state

tracking error remains when the control action is

convergent.

5.2 MWD control by iterative learning algorithm I

In this ILC-PDF control simulation, five third-order

B-spline functions are used in the MWD approxima-

tion. The interval in each batch is set to be 600

minutes. The simulation results are shown in Figs 7

to 10. It is observed from the simulation process that

this control algorithm is computationally extensive

since the B-splines need to be updated from batch to

batch. Also, in order to satisfy the convergent

condition in (70), the learning factors have to be

adjusted several times in each batch, which further

increases the computational effort. The results show

that the distance between the output MWD and the

target MWD can be reduced from batch to batch by

the ILC strategy (see Fig. 8) with the reduced

number of B-splines. However, the tuning ability is

Table 1 MWD system parameters

Kd 9.4861016 exp(230798.5/rT
Ki 0.6Kd

Kp 6.3066108 exp(27067.8/rT)
Ktrm 1.3866108 exp(212671.1/rT)
Kt 3.76561010 exp(21680/rT)
V 3.927
F 0.0286
T 353
I0 0.0106
M0 4.81
r 1.987
c [0.4, 0.8]

Fig. 4 Control input with standard PDF control

Fig. 5 MWD evolutions with standard PDF control

Fig. 6 Initial, target and final MWDs with standard
PDF control

Fig. 7 Control input with the ILC-PDF algorithm I

Fig. 8 Cumulative errors in each batch with the ILC-
PDF algorithm I
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saturated after several batches. This leaves the MWD

tracking error at the end of the iterative learning

cycle.

5.3 MWD control by iterative learning algorithm
II

In this simulation, 10 third-order B-spline functions

are selected for the MWD approximation. The

interval length in each batch is set to be 400 minutes.

The standard PDF control was implemented in the

first batch with R 5 661026 and then the iterative

learning algorithm II was applied. Results are

displayed in Figs 11 to 14. Although the steady state

tracking errors remained in the first batch, the

algorithm achieves a perfect tracking after another

several batches. The cumulative error is decreasing

from batch to batch.

Comparing the ILC-PDF controllers with the

standard PDF controller, the ILC algorithm I uses a

lower number of B-splines in modelling and it can

achieve the decreasing tracking errors progressively.

However, this algorithm is computationally expen-

sive and, at least to this example, it could not

eliminate the MWD tracking errors at the end of the

control cycle. In the second algorithm, the model is

updated in each batch and then the standard PDF

control strategy is applied based on the updated

model. The convergence condition is given to

guarantee the decrease of MWD tracking errors from

batch to batch. Nevertheless, the improvement of

Fig. 9 Initial, target, and final MWDs with the ILC-
PDF algorithm I

Fig. 10 Batch-to-batch MWD evolutions with the ILC-
PDF algorithm I

Fig. 11 Control input with the ILC-PDF algorithm II

Fig. 12 Cumulative errors in each batch with the ILC-
PDF algorithm II

Fig. 13 Initial, target, and final MWDs with the ILC-
PDF algorithm II
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the modelling accuracy cannot be guaranteed by the

current tuning principle and therefore the tracking

errors may still remain after the tuning is conver-

gent. By employing the second iterative learning

algorithm, the B-spline model does not need to be

updated during the process and the control input in

the current batch is adjusted according to the MWD

tracking errors in the previous batch. This is a simple

solution compared with the first ILC-PDF control

algorithm, but it can achieve perfect MWD tracking

after several batches. The function of batch-to-batch

tuning based on the previous tracking errors is

equivalent to the integral efforts in feedback control

and is therefore capable of eliminating tracking

errors. This means that the fundamental principle

of iterative learning control enables performance

improvement in output PDF control.

6 CONCLUSIONS

The challenging problem of feedback MWD control

has been studied in this work. It is different from

most of the current control strategies on MWD

shaping because the complete MWD is controlled as

a closed-loop variable under the framework of

output PDF control. Iterative learning strategies

have been attempted to improve the control quality.

It can be seen from the case study that even for a

simulated MWD system, the model is highly com-

plex and it is difficult to achieve the perfect PDF

tracking when using linear B-spline models and

employing the standard output PDF control strategy.

Introducing the idea of iterative learning control into

output PDF control does improve the control

performance in that it can reduce the PDF control

errors from batch to batch. The present methods are

developed based on B-spline models which becomes

computationally challenging when the system is

complicated. It is worth further efforts in exploring

different modelling methodology that would be

more convenient for online iterative learning con-

trol. To provide more benefit from the ILC’s

advantages, investigations on developing efficient

learning algorithms in both modelling and control

are required in future work.
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APPENDIX

Notation

c monomer input ratio

F total input flowrate (L.min21)

FI initiator input flowrate (L.min21)

FM monomer input flowrate (L.min21)

h parameter of the Schultz–Zimm

distribution

I initiator and its concentration

(mol.L21)

I0 initial concentration of the initiator

in the input flow (mol.L21)

Kd initiator decomposition rate constant

(min21)

Ki initiation reaction constant

(L.mol21.min21)

Kp propagation rate constant

(L.mol21.min21)

Kt termination rate constant

(L.mol21.min21)

Ktrm chain transfer rate constant

(L.mol21.min21)

M monomer and its concentration

(mol.L21)

M0 initial concentration of the initiator

in the input flow (mol.L21)

Mn number average chain length

n chain length

P total concentration of the dead

polymers (mol.L21)

Pj dead polymer with chain length j or

its concentration (mol.L21)

R total concentration of the radicals

(mol.L21)

R* primary radical

Rj active polymer radical with chain

length j or its concentration

(mol.L21)

Uk moments of radicals

V volume of reaction mixture (L)

Zk moments of polymers

C Gamma function

h average residential time of reactants

in the reactor (min)

m mean of the distribution

s2 variance of the distribution
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