135 research outputs found

    An Overview on Evaluation of E-Learning/Training Response Time Considering Artificial Neural Networks Modeling

    Get PDF
    The objective of this piece of research is to interpret and investigate systematically an observed brain functional phenomenon which associated with proceeding of e-learning processes. More specifically, this work addresses an interesting and challenging educational issue concerned with dynamical evaluation of e-learning performance considering convergence (response) time. That's based on an interdisciplinary recent approach named as Artificial Neural Networks (ANNs) modeling. Which incorporate Nero-physiology, educational psychology, cognitive, and learning sciences. Herein, adopted application of neural modeling results in realistic dynamical measurements of e-learners' response time performance parameter. Initially, it considers time evolution of learners' experienced acquired intelligence level during proceeding of learning / training process. In the context of neurobiological details, the state of synaptic connectivity pattern (weight vector) inside e-learner's brain-at any time instant-supposed to be presented as timely varying dependent parameter. The varying modified synaptic state expected to lead to obtain stored experience spontaneously as learner's output (answer). Obviously, obtained responsive learner's output is a resulting action to any arbitrary external input stimulus (question). So, as the initial brain state of synaptic connectivity pattern (vector) considered as pre-intelligence level measured parameter. Actually, obtained e-learner’s answer is compatibly consistent with modified state of internal / stored experienced level of intelligence. In other words, dynamical changes of brain synaptic pattern (weight vector) modify adaptively convergence time of learning processes, so as to reach desired answer. Additionally, introduced research work is motivated by some obtained results for performance evaluation of some neural system models concerned with convergence time of learning process. Moreover, this paper considers interpretation of interrelations among some other interesting results obtained by a set of previously published educational models. The interpretational evaluation and analysis for introduced models results in some applicable studies at educational field as well as medically promising treatment of learning disabilities. Finally, an interesting comparative analogy between performances of ANNs modeling versus Ant Colony System (ACS) optimization presented at the end of this paper

    Utilizing Online Activity Data to Improve Face-to-Face Collaborative Learning in Technology-Enhanced Learning Environments

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 융합과학기술대학원 융합과학부(디지털정보융합전공), 2019. 2. Rhee, Wonjong .We live in a flood of information and face more and more complex problems that are difficult to be solved by a single individual. Collaboration with others is necessary to solve these problems. In educational practice, this leads to more attention on collaborative learning. Collaborative learning is a problem-solving process where students learn and work together with other peers to accomplish shared tasks. Through this group-based learning, students can develop collaborative problem-solving skills and improve the core competencies such as communication skills. However, there are many issues for collaborative learning to succeed, especially in a face-to-face learning environment. For example, group formation, the first step to design successful collaborative learning, requires a lot of time and effort. In addition, it is difficult for a small number of instructors to manage a large number of student groups when trying to monitor and support their learning process. These issues can amount hindrance to the effectiveness of face-to-face collaborative learning. The purpose of this dissertation is to enhance the effectiveness of face-to-face collaborative learning with online activity data. First, online activity data is explored to find whether it can capture relevant student characteristics for group formation. If meaningful characteristics can be captured from the data, the entire group formation process can be performed more efficiently because the task can be automated. Second, learning analytics dashboards are implemented to provide adaptive support during a class. The dashboards system would monitor each group's collaboration status by utilizing online activity data that is collected during class in real-time, and provide adaptive feedback according to the status. Lastly, a predictive model is built to detect at-risk groups by utilizing the online activity data. The model is trained based on various features that represent important learning behaviors of a collaboration group. The results reveal that online activity data can be utilized to address some of the issues we have in face-to-face collaborative learning. Student characteristics captured from the online activity data determined important group characteristics that significantly influenced group achievement. This indicates that student groups can be formed efficiently by utilizing the online activity data. In addition, the adaptive support provided by learning analytics dashboards significantly improved group process as well as achievement. Because the data allowed the dashboards system to monitor current learning status, appropriate feedback could be provided accordingly. This led to an improvement of both learning process and outcome. Finally, the predictive model could detect at-risk groups with high accuracy during the class. The random forest algorithm revealed important learning behaviors of a collaboration group that instructors should pay more attention to. The findings indicate that the online activity data can be utilized to address practical issues of face-to-face collaborative learning and to improve the group-based learning where the data is available. Based on the investigation results, this dissertation makes contributions to learning analytics research and face-to-face collaborative learning in technology-enhanced learning environments. First, it can provide a concrete case study and a guide for future research that may take a learning analytics approach and utilize student activity data. Second, it adds a research endeavor to address challenges in face-to-face collaborative learning, which can lead to substantial enhancement of learning in educational practice. Third, it suggests interdisciplinary problem-solving approaches that can be applied to the real classroom context where online activity data is increasingly available with advanced technologies.Abstract i Chapter 1. Introduction 1 1.1. Motivation 1 1.2. Research questions 4 1.3. Organization 6 Chapter 2. Background 8 2.1. Learning analytics 8 2.2. Collaborative learning 22 2.3. Technology-enhanced learning environment 27 Chapter 3. Heterogeneous group formation with online activity data 35 3.1. Student characteristics for heterogeneous group formation 36 3.2. Method 41 3.3. Results 51 3.4. Discussion 59 3.5. Summary 64 Chapter 4. Real-time dashboard for adaptive feedback in face-to-face CSCL 67 4.1. Theoretical background 70 4.2. Dashboard characteristics 81 4.3. Evaluation of the dashboard 94 4.4. Discussion 107 4.5. Summary 114 Chapter 5. Real-time detection of at-risk groups in face-to-face CSCL 118 5.1. Important learning behaviors of group in collaborative argumentation 118 5.2. Method 120 5.3. Model performance and influential features 125 5.4. Discussion 129 5.5. Summary 132 Chapter 6. Conclusion 134 Bibliography 140Docto

    A soft computing decision support framework for e-learning

    Get PDF
    Tesi per compendi de publicacions.Supported by technological development and its impact on everyday activities, e-Learning and b-Learning (Blended Learning) have experienced rapid growth mainly in higher education and training. Its inherent ability to break both physical and cultural distances, to disseminate knowledge and decrease the costs of the teaching-learning process allows it to reach anywhere and anyone. The educational community is divided as to its role in the future. It is believed that by 2019 half of the world's higher education courses will be delivered through e-Learning. While supporters say that this will be the educational mode of the future, its detractors point out that it is a fashion, that there are huge rates of abandonment and that their massification and potential low quality, will cause its fall, assigning it a major role of accompanying traditional education. There are, however, two interrelated features where there seems to be consensus. On the one hand, the enormous amount of information and evidence that Learning Management Systems (LMS) generate during the e-Learning process and which is the basis of the part of the process that can be automated. In contrast, there is the fundamental role of e-tutors and etrainers who are guarantors of educational quality. These are continually overwhelmed by the need to provide timely and effective feedback to students, manage endless particular situations and casuistics that require decision making and process stored information. In this sense, the tools that e-Learning platforms currently provide to obtain reports and a certain level of follow-up are not sufficient or too adequate. It is in this point of convergence Information-Trainer, where the current developments of the LMS are centered and it is here where the proposed thesis tries to innovate. This research proposes and develops a platform focused on decision support in e-Learning environments. Using soft computing and data mining techniques, it extracts knowledge from the data produced and stored by e-Learning systems, allowing the classification, analysis and generalization of the extracted knowledge. It includes tools to identify models of students' learning behavior and, from them, predict their future performance and enable trainers to provide adequate feedback. Likewise, students can self-assess, avoid those ineffective behavior patterns, and obtain real clues about how to improve their performance in the course, through appropriate routes and strategies based on the behavioral model of successful students. The methodological basis of the mentioned functionalities is the Fuzzy Inductive Reasoning (FIR), which is particularly useful in the modeling of dynamic systems. During the development of the research, the FIR methodology has been improved and empowered by the inclusion of several algorithms. First, an algorithm called CR-FIR, which allows determining the Causal Relevance that have the variables involved in the modeling of learning and assessment of students. In the present thesis, CR-FIR has been tested on a comprehensive set of classical test data, as well as real data sets, belonging to different areas of knowledge. Secondly, the detection of atypical behaviors in virtual campuses was approached using the Generative Topographic Mapping (GTM) methodology, which is a probabilistic alternative to the well-known Self-Organizing Maps. GTM was used simultaneously for clustering, visualization and detection of atypical data. The core of the platform has been the development of an algorithm for extracting linguistic rules in a language understandable to educational experts, which helps them to obtain patterns of student learning behavior. In order to achieve this functionality, the LR-FIR algorithm (Extraction of Linguistic Rules in FIR) was designed and developed as an extension of FIR that allows both to characterize general behavior and to identify interesting patterns. In the case of the application of the platform to several real e-Learning courses, the results obtained demonstrate its feasibility and originality. The teachers' perception about the usability of the tool is very good, and they consider that it could be a valuable resource to mitigate the time requirements of the trainer that the e-Learning courses demand. The identification of student behavior models and prediction processes have been validated as to their usefulness by expert trainers. LR-FIR has been applied and evaluated in a wide set of real problems, not all of them in the educational field, obtaining good results. The structure of the platform makes it possible to assume that its use is potentially valuable in those domains where knowledge management plays a preponderant role, or where decision-making processes are a key element, e.g. ebusiness, e-marketing, customer management, to mention just a few. The Soft Computing tools used and developed in this research: FIR, CR-FIR, LR-FIR and GTM, have been applied successfully in other real domains, such as music, medicine, weather behaviors, etc.Soportado por el desarrollo tecnológico y su impacto en las diferentes actividades cotidianas, el e-Learning (o aprendizaje electrónico) y el b-Learning (Blended Learning o aprendizaje mixto), han experimentado un crecimiento vertiginoso principalmente en la educación superior y la capacitación. Su habilidad inherente para romper distancias tanto físicas como culturales, para diseminar conocimiento y disminuir los costes del proceso enseñanza aprendizaje le permite llegar a cualquier sitio y a cualquier persona. La comunidad educativa se encuentra dividida en cuanto a su papel en el futuro. Se cree que para el año 2019 la mitad de los cursos de educación superior del mundo se impartirá a través del e-Learning. Mientras que los partidarios aseguran que ésta será la modalidad educativa del futuro, sus detractores señalan que es una moda, que hay enormes índices de abandono y que su masificación y potencial baja calidad, provocará su caída, reservándole un importante papel de acompañamiento a la educación tradicional. Hay, sin embargo, dos características interrelacionadas donde parece haber consenso. Por un lado, la enorme generación de información y evidencias que los sistemas de gestión del aprendizaje o LMS (Learning Management System) generan durante el proceso educativo electrónico y que son la base de la parte del proceso que se puede automatizar. En contraste, está el papel fundamental de los e-tutores y e-formadores que son los garantes de la calidad educativa. Éstos se ven continuamente desbordados por la necesidad de proporcionar retroalimentación oportuna y eficaz a los alumnos, gestionar un sin fin de situaciones particulares y casuísticas que requieren toma de decisiones y procesar la información almacenada. En este sentido, las herramientas que las plataformas de e-Learning proporcionan actualmente para obtener reportes y cierto nivel de seguimiento no son suficientes ni demasiado adecuadas. Es en este punto de convergencia Información-Formador, donde están centrados los actuales desarrollos de los LMS y es aquí donde la tesis que se propone pretende innovar. La presente investigación propone y desarrolla una plataforma enfocada al apoyo en la toma de decisiones en ambientes e-Learning. Utilizando técnicas de Soft Computing y de minería de datos, extrae conocimiento de los datos producidos y almacenados por los sistemas e-Learning permitiendo clasificar, analizar y generalizar el conocimiento extraído. Incluye herramientas para identificar modelos del comportamiento de aprendizaje de los estudiantes y, a partir de ellos, predecir su desempeño futuro y permitir a los formadores proporcionar una retroalimentación adecuada. Así mismo, los estudiantes pueden autoevaluarse, evitar aquellos patrones de comportamiento poco efectivos y obtener pistas reales acerca de cómo mejorar su desempeño en el curso, mediante rutas y estrategias adecuadas a partir del modelo de comportamiento de los estudiantes exitosos. La base metodológica de las funcionalidades mencionadas es el Razonamiento Inductivo Difuso (FIR, por sus siglas en inglés), que es particularmente útil en el modelado de sistemas dinámicos. Durante el desarrollo de la investigación, la metodología FIR ha sido mejorada y potenciada mediante la inclusión de varios algoritmos. En primer lugar un algoritmo denominado CR-FIR, que permite determinar la Relevancia Causal que tienen las variables involucradas en el modelado del aprendizaje y la evaluación de los estudiantes. En la presente tesis, CR-FIR se ha probado en un conjunto amplio de datos de prueba clásicos, así como conjuntos de datos reales, pertenecientes a diferentes áreas de conocimiento. En segundo lugar, la detección de comportamientos atípicos en campus virtuales se abordó mediante el enfoque de Mapeo Topográfico Generativo (GTM), que es una alternativa probabilística a los bien conocidos Mapas Auto-organizativos. GTM se utilizó simultáneamente para agrupamiento, visualización y detección de datos atípicos. La parte medular de la plataforma ha sido el desarrollo de un algoritmo de extracción de reglas lingüísticas en un lenguaje entendible para los expertos educativos, que les ayude a obtener los patrones del comportamiento de aprendizaje de los estudiantes. Para lograr dicha funcionalidad, se diseñó y desarrolló el algoritmo LR-FIR, (extracción de Reglas Lingüísticas en FIR, por sus siglas en inglés) como una extensión de FIR que permite tanto caracterizar el comportamiento general, como identificar patrones interesantes. En el caso de la aplicación de la plataforma a varios cursos e-Learning reales, los resultados obtenidos demuestran su factibilidad y originalidad. La percepción de los profesores acerca de la usabilidad de la herramienta es muy buena, y consideran que podría ser un valioso recurso para mitigar los requerimientos de tiempo del formador que los cursos e-Learning exigen. La identificación de los modelos de comportamiento de los estudiantes y los procesos de predicción han sido validados en cuanto a su utilidad por los formadores expertos. LR-FIR se ha aplicado y evaluado en un amplio conjunto de problemas reales, no todos ellos del ámbito educativo, obteniendo buenos resultados. La estructura de la plataforma permite suponer que su utilización es potencialmente valiosa en aquellos dominios donde la administración del conocimiento juegue un papel preponderante, o donde los procesos de toma de decisiones sean una pieza clave, por ejemplo, e-business, e-marketing, administración de clientes, por mencionar sólo algunos. Las herramientas de Soft Computing utilizadas y desarrolladas en esta investigación: FIR, CR-FIR, LR-FIR y GTM, ha sido aplicadas con éxito en otros dominios reales, como música, medicina, comportamientos climáticos, etc.Postprint (published version

    Roulette Wheel Selection Algorithm (RWSA) and Reinforcement Learning (RL) for personalizing and improving e-learning system

    Get PDF
    Thesis submitted in total fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Science at Strathmore UniversityVarious mechanisms to improve the learning process with the main objective of maximizing learning and dynamically selecting the best teaching operation to achieve learning goals have been done in the field of personalized learning. Despite recommending a personalized learning sequence, e-learning instructional strategists have failed to perform or address the necessary corrective measures to remediate immediately learning misconceptions or difficulties. As e-learning materials continue to evolve, it is necessary that an alternative, dynamic, and real time multi-performance be developed and implemented in e-learning systems. Two major contributions in the field of e-learning have been asserted by this study: it personalizes the learning sequence using reversed roulette wheel selection algorithm blended with linear ranking based on real time, dynamic multi-based performance matrix; and implements the reinforcement and mastery learning to motivate students and improve their learning output. Based on experiments, personalized learning sequence (PLS) were dynamic and heuristic and simultaneously considers the curriculum difficulty level and the curriculum continuity of successive curriculum while implementing personalized learning process. From 34%, the passing rate of the students is increased by 54% making the overall passing rate to 88%. The increase can be attributed to the reinforcement process and mastery learning where various control mechanism are implemented to guarantee learning process. Digital transcripts based on students’ perceptions and experiences positively correlate with the result of document sentiment of +.321 while theme analysis revealed a positive attitude with the extracted words in the documents such as: very happy, friends, motivate, improve, understanding, knowledge and good. Overall, the e-learning prototype were able to show an improved academic performance of the student and address different academics and social problems and allow students to study anywhere, at their own convenience whenever online learning is possible and accessible

    A Comprehensive Exploration of Personalized Learning in Smart Education: From Student Modeling to Personalized Recommendations

    Full text link
    With the development of artificial intelligence, personalized learning has attracted much attention as an integral part of intelligent education. China, the United States, the European Union, and others have put forward the importance of personalized learning in recent years, emphasizing the realization of the organic combination of large-scale education and personalized training. The development of a personalized learning system oriented to learners' preferences and suited to learners' needs should be accelerated. This review provides a comprehensive analysis of the current situation of personalized learning and its key role in education. It discusses the research on personalized learning from multiple perspectives, combining definitions, goals, and related educational theories to provide an in-depth understanding of personalized learning from an educational perspective, analyzing the implications of different theories on personalized learning, and highlighting the potential of personalized learning to meet the needs of individuals and to enhance their abilities. Data applications and assessment indicators in personalized learning are described in detail, providing a solid data foundation and evaluation system for subsequent research. Meanwhile, we start from both student modeling and recommendation algorithms and deeply analyze the cognitive and non-cognitive perspectives and the contribution of personalized recommendations to personalized learning. Finally, we explore the challenges and future trajectories of personalized learning. This review provides a multidimensional analysis of personalized learning through a more comprehensive study, providing academics and practitioners with cutting-edge explorations to promote continuous progress in the field of personalized learning.Comment: 82 pages,5 figure

    A Novel Adaptation Model for E-Learning Recommender Systems Based on Student’s Learning Style

    Get PDF
    In recent years, a substantial increase has been witnessed in the use of online learning resources by learn- ers. However, owing to an information overload, many find it difficult to retrieve appropriate learning resources for meeting learning requirements. Most of the existing systems for e-learning make use of a “one-size-fits-all” approach, thus providing all learners with the same content. Whilst recommender systems have scored notable success in the e-commerce domain, they still suffer from drawbacks in terms of making the right recommendations for learning resources. This can be attributed to the differences among learners’ preferences such as varying learning styles, knowledge levels and sequential learning patterns. Hence, to identify the needs of an individual student, e-learning systems that can build profiles of student preferences are required. In addition, changing students’ preferences and multidimensional attributes of the course content are not fully considered simultaneously. It is by failing to review these issues that existing recommendation algorithms often give inaccurate recommendations. This thesis focuses on student learning styles, with the aim of dynamically tailoring the learning process and course content to meet individual needs. The proposed Ubiquitous LEARNing (ULEARN) system is an adaptive e-learning recommender system geared towards providing a personalised learning environ- ment, which ensures that course learning objects are in line with the learner’s adaptive profile. This thesis delivers four main contributions: First, an innovative algorithm which dynamically reduces the number of questions in the Felder-Silverman Learning Styles (FSLSM) questionnaire for the purpose of initialising student profiles has been proposed. The second contribution comprises examining the accuracy of various similarity metrics so as to select the most suitable similarity measurements for learning objects recommendation algorithm. The third contribution includes an Enhanced Collaboration Filtering (ECF) algorithm and an Enhanced Content-Based Filtering (ECBF) algorithm, which solves the issues of cold-start and data sparsity in- herent to the traditional Collaborative Filtering (CF) and the traditional Content-based Filtering (CBF), respectively. Moreover, these two new algorithms have been combined to create a new Enhanced Hybrid Filtering (EHF) algorithm that recommends highly accurate personalised learning objects on the basis of the stu- dents’ learning styles. The fourth contribution is a new algorithm that tracks patterns of student learning behaviours and dynam- ically adapts the student learning style accordingly. The ULEARN recommendation system was implemented with Visual Studio in C++ and Windows Pre- sentation Foundation (WPF) for the development of the Graphical User Interface (GUI). The experimental results revealed that the proposed algorithms have achieved significant improvements in student’s profile adaptation and learning objects recommendation in contrast with strong benchmark models. Further find- ings from experiments indicated that ULEARN can provide relevant learning object recommendations based on students’ learning styles with the overall students’ satisfaction at almost 90%. Furthermore, the results showed that the proposed system is capable of mitigating the problems data sparsity and cold-start, thereby improving the accuracy and reliability of recommendation of the learning object. All in all, the ULEARN system is competent enough to support educational institutions in recommending personalised course content, improving students’ performance as well as promoting student engagement.Arab academy for science technology & maritime transpor

    Socio-Cognitive and Affective Computing

    Get PDF
    Social cognition focuses on how people process, store, and apply information about other people and social situations. It focuses on the role that cognitive processes play in social interactions. On the other hand, the term cognitive computing is generally used to refer to new hardware and/or software that mimics the functioning of the human brain and helps to improve human decision-making. In this sense, it is a type of computing with the goal of discovering more accurate models of how the human brain/mind senses, reasons, and responds to stimuli. Socio-Cognitive Computing should be understood as a set of theoretical interdisciplinary frameworks, methodologies, methods and hardware/software tools to model how the human brain mediates social interactions. In addition, Affective Computing is the study and development of systems and devices that can recognize, interpret, process, and simulate human affects, a fundamental aspect of socio-cognitive neuroscience. It is an interdisciplinary field spanning computer science, electrical engineering, psychology, and cognitive science. Physiological Computing is a category of technology in which electrophysiological data recorded directly from human activity are used to interface with a computing device. This technology becomes even more relevant when computing can be integrated pervasively in everyday life environments. Thus, Socio-Cognitive and Affective Computing systems should be able to adapt their behavior according to the Physiological Computing paradigm. This book integrates proposals from researchers who use signals from the brain and/or body to infer people's intentions and psychological state in smart computing systems. The design of this kind of systems combines knowledge and methods of ubiquitous and pervasive computing, as well as physiological data measurement and processing, with those of socio-cognitive and affective computing

    Adapting Collaborative Learning Tools to Support Group Peer Mentorship

    Get PDF
    Group peer mentorship is a relatively new addition to the area of collaborative learning. We see an untapped potential in supporting this model of mentorship with the existing collaborative learning tools like peer review and wiki. Therefore, we proposed to use a modified peer review system and a modified wiki system. From our preliminary studies using both peer review and wiki systems, we found that participants preferred the peer-review system to the wiki system in supporting them for mentorship. Therefore, this dissertation specifically addresses how to adapt the peer review system to support group peer mentorship. We proposed a modified peer review system, which comprises seven stages – initial submission of the first draft of the paper by the author, the review of author’s paper by peer reviewers, release of review feedback to the author, back-evaluation of their reviews by the authors, modification of the paper by the author, submission of the final paper and the final stage where both authors and reviewers provide an evaluation of the peer review process with respect to their learning, their perception of the helpfulness of the process, and their satisfaction with the process. We also proposed to use our group matching algorithm, based on some constraints and the principles of the Hungarian algorithm, to achieve a diversified grouping of peers for each peer review session. With these, we conducted six peer review studies with the graduate and undergraduate students at the University of Saskatchewan and teachers in Chile. This dissertation reports on the findings from these studies. We found that peer review, with some modifications, is a good tool to facilitate group peer mentorship. An evaluation of the performance of our group matching algorithm showed an improvement over three other algorithms, with respect to three metrics – knowledge gain of peers, time and space consumption of the algorithm. Finally, this dissertation also shows that wiki has the potential to support group peer mentorship, but needs further research

    Multi-Agent Systems

    Get PDF
    A multi-agent system (MAS) is a system composed of multiple interacting intelligent agents. Multi-agent systems can be used to solve problems which are difficult or impossible for an individual agent or monolithic system to solve. Agent systems are open and extensible systems that allow for the deployment of autonomous and proactive software components. Multi-agent systems have been brought up and used in several application domains
    corecore