3,887 research outputs found

    Design and Development of an Integrated Mobile Robot System for Use in Simple Formations

    Get PDF
    In recent years, formation control of autonomous unmanned vehicles has become an active area of research with its many broad applications in areas such as transportation and surveillance. The work presented in this thesis involves the design and implementation of small unmanned ground vehicles to be used in leader-follower formations. This mechatronics project involves breadth in areas of mechanical, electrical, and computer engineering design. A vehicle with a unicycle-type drive mechanism is designed in 3D CAD software and manufactured using 3D printing capabilities. The vehicle is then modeled using the unicycle kinematic equations of motion and simulated in MATLAB/Simulink. Simple motion tasks are then performed onboard the vehicle utilizing the vehicle model via software, and leader-follower formations are implemented with multiple vehicles

    Master of Science

    Get PDF
    thesisThis thesis focuses on the design, modeling, fabrication, and testing of a ?ying and walking robot, called the Dynamic Underactuated Flying-Walking (DUCK) robot. The DUCK robot combines a high-mobility ?ying platform, such as a quadcopter (quadrotor helicopter), with passive-dynamic legs to create a versatile system that can ?y and walk. One of the advantages of using passive-dynamic legs for walking is that additional actuators are not needed for terrestrial locomotion, therefore simplifying the design, reducing overall weight, and decreasing power consumption. First, a mathematical model is developed for the DUCK robot, where the modeling combines the passive-dynamic walking mechanism with the swinging mass of the aerial platform. Second, simulations based on the model are used to help guide the design of two prototype robots, speci?cally to tailor the shape of the feet and the dimensions of the passive-dynamic walking mechanism. Third, an energy analysis is performed to compare the performances between ?ying and walking. More specifically, simulation results show that continuous active walking has a comparable energy efficiency to that of flying for the two prototype designs. For design Version 1, it is estimated that the robot is able to walk up to 1600 meters on a 30kJ battery (standard Li-Po battery) with a cost of transport of 1.0, while the robot can potentially fly up to 1800 meters horizontally with the weight of its legs and up to 2300 meters without the weight of its legs. Design Version 2 is estimated to be able to walk up to 4600 meters on a 30kJ battery with a cost of transport of .50, while it could fly up to 2600 meters with the weight of its legs or 4300 meters without its legs. The cost of transport of flying is estimated to be .89 in all scenarios. Finally, experimental results demonstrate the feasibility of combining an aerial platform with passive-dynamic legs to create an effective flying and walking robot. Two modes of walking are experimentally demonstrated: (1) passive walking down inclined surfaces for low-energy terrestrial locomotion and (2) active (powered) walking leveraging the capabilities of the flying platform, where thrust from the quadcopter's rotors enables the DUCK robot to walk on flat surfaces or up inclined surfaces

    New Perspectives in Fluid Dynamics

    Get PDF
    This book contains five chapters detailing significant advances in and applications of new turbulence theory and fluid dynamics modeling with a focus on wave propagation from arbitrary depths to shallow waters, computational modeling for predicting optical distortions through hypersonic flow fields, wind strokes over highway bridges, optimal crop production in a greenhouse, and technological appliance and performance concerns in wheelchair racing. We hope this book to be a useful resource to scientists and engineers who are interested in the fundamentals and applications of fluid dynamics

    Advances in Mechanical Systems Dynamics 2020

    Get PDF
    The fundamentals of mechanical system dynamics were established before the beginning of the industrial era. The 18th century was a very important time for science and was characterized by the development of classical mechanics. This development progressed in the 19th century, and new, important applications related to industrialization were found and studied. The development of computers in the 20th century revolutionized mechanical system dynamics owing to the development of numerical simulation. We are now in the presence of the fourth industrial revolution. Mechanical systems are increasingly integrated with electrical, fluidic, and electronic systems, and the industrial environment has become characterized by the cyber-physical systems of industry 4.0. Within this framework, the status-of-the-art has become represented by integrated mechanical systems and supported by accurate dynamic models able to predict their dynamic behavior. Therefore, mechanical systems dynamics will play a central role in forthcoming years. This Special Issue aims to disseminate the latest research findings and ideas in the field of mechanical systems dynamics, with particular emphasis on novel trends and applications

    Evaluation of the Roller Arrangements for the Ball-Dribbling Mechanisms Adopted by RoboCup Teams

    Get PDF
    The middle-size league soccer competition is an important RoboCup event designed to promote advancements in Artificial Intelligence (AI) and robotics. In recent years, soccer robots using a dribbling mechanism, through which the ball is controlled using two driving rollers, have been adopted by teams worldwide. A survey conducted during the 2017 World Cup in Nagoya revealed that the teams determined their roller arrangements heuristically without the use of a formal mathematical process. In this study, we focus on sphere slip speed to develop a mathematical model for sphere rotational motion, allowing for slip. Using this framework, we derived the relationship between the sphere slip and mobile speeds and evaluated the roller arrangements used by the participating teams

    Multibody Systems with Flexible Elements

    Get PDF
    Multibody systems with flexible elements represent mechanical systems composed of many elastic (and rigid) interconnected bodies meeting a functional, technical, or biological assembly. The displacement of each or some of the elements of the system is generally large and cannot be neglected in mechanical modeling. The study of these multibody systems covers many industrial fields, but also has applications in medicine, sports, and art. The systematic treatment of the dynamic behavior of interconnected bodies has led to an important number of formalisms for multibody systems within mechanics. At present, this formalism is used in large engineering fields, especially robotics and vehicle dynamics. The formalism of multibody systems offers a means of algorithmic analysis, assisted by computers, and a means of simulating and optimizing an arbitrary movement of a possibly high number of elastic bodies in the connection. The domain where researchers apply these methods are robotics, simulations of the dynamics of vehicles, biomechanics, aerospace engineering (helicopters and the behavior of cars in a gravitational field), internal combustion engines, gearboxes, transmissions, mechanisms, the cellulose industry, simulation of particle behavior (granulated particles and molecules), dynamic simulation, military applications, computer games, medicine, and rehabilitation
    • 

    corecore