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1.  INTRODUCTION

RoboCup is an international project that promotes innovation in 
Artificial Intelligence (AI), robotics, and related domains. It rep-
resents an attempt to develop AI and autonomous robotics research 
by providing a fundamental problem that can be solved by inte-
grating a wide range of technologies. In particular, the middle-size 
league soccer competition is a RoboCup event providing a dynam-
ical environment in which many robots cooperate with humans 
within the same space.

Various developments have been made in the RoboCup middle-size 
league soccer robot [1,2]. These robots generally have a mechanism 
similar to that of an omnidirectional movement mechanism using 
three-omni wheels [3] or that using four-omni wheels [4] and so on, 
and in recent years, this mechanism is involved in controlling the 
rotation of a ball. The ball holding mechanism is used.

In the past, several teams have equipped their robots such as 
arm type [5,6], bar type [7,8] and single-wheel type [9] with ball 
dribbling mechanisms for controlling the rotation of the ball. 
To be useful in soccer play, the dribbling performance of such 
mechanisms must be skillful. However, they cannot grasp a ball 
and control. Recently, dribbling devices use rollers to grasp the 
upper half of the ball to enable them to maintain a pull on it 
while driving in reverse. Friction is generated between the ball 
and rollers by a spring mounted on a supporting lever. To main-
tain dribbling, it is essential that the roller and ball rotate with 
approximately the same speed and that the ball moves in the 
same direction as the robot. Many robots, such as that deployed 

by the Turtles team [10], rely on ball handling force and use 
a roller arrangement in which there is slip between the roller 
and ball. To determine their roller arrangement, the Turtles rely 
on heuristic measures and experimental results. Although slip 
causes loss of speed in a moving sphere, the resulting friction 
can improve the ball holding power and rotational stability. 
Accordingly, slip is an important factor.

The authors conducted an investigation of the ball dribbling mech-
anisms employed by the teams at the 2017 middle-size league 
soccer competition in Nagoya, Japan. Table 1 lists our survey 
results, including team name and roller type, shape, and arrange-
ment angle. The four shapes [□○△◇] in the “Symbol” column 
indicate the roller angles used by the respective teams. Figure 1 
shows the rotational axis, ball velocity, and roller velocity in reverse 
motion of a dual-roller arrangement. The RV-Infinity [11] roller 
arrangement in Table 1 involves no slip (see Figure 1a) because the 
roller velocity corresponds to the ball velocity; i.e., the rollers’ rota-
tional axes are aligned on a plane that includes the origin of the 
ball’s sphere [12,13]. In another approach, CAMBADA [14] avoids 
slippage through the use of unconstrained rollers (omni-rollers).

Other teams, namely the Turtles [10], Falcons, Musashi150 [15], 
NuBot [16], and Water, have adopted roller arrangements that allow 
for slip to occur (see Figure 1b) through a differential between roller 
and ball velocity. Based on analysis of sphere rotational motion in 
which slip is allowed, we developed a sphere kinematics model in 
which dual-constraint rollers allow for slipping [17].

In this study, we validated the model introduced in Kimura et al. 
[17] and evaluated the roller arrangements used by the competition 
teams from the standpoint of sphere speed, efficiency, and sphere 
slip speed (ball-holding power).
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Table 1 | Survey result of roller type and angle in world teams

Team name Symbol Roller type Angle

RV-infinity [11] □ R Constraint 0°
The Turtles [10] ○ T Constraint 10°
Falcons ○ F Constraint 10°
Musashi150 [15] △ H Constraint 20°
NuBot [16] △ N Constraint 20°
Water ◇ W Constraint 30°
CAMBADA – Unconstraint 50°

Table 2 | Values calculated from n1, n2 = −0.91 (m/s)

a 0° 10° 20° 30°
||V|| (m/s) 1 0.98 0.93 0.84
j (°) −90 −90 −90 −90
r (°) 0 0 0 0

Figure 1 | The ball reverse motion by two-rollers arrangement in the 
ball-dribbling mechanism. Case of (a) is zero-roller angle and case of (b) 
is non-zero-roller angle.

The remainder of this paper is organized as follows. In Section 2, 
we introduce a sphere kinematics model that allows for slipping. In 
Section 3, we validated the model introduced in Kimura et al. [17] 
and theoretical formula of sphere slip velocity vector. In Section 4, 
we considered the distribution of slip velocity vector and the roller 
arrangement of a ball dribbling mechanism based on the results of 
a robotic experiment. Finally, in Section 5, we present a summary 
and discuss future research.

2. � THE SLIP VELOCITY VECTOR  
OF THE SPHERE

We quantify the slip between the sphere and roller.

As shown in Figure 2a, the center O of a sphere with radius r is 
fixed as the origin of the coordinate system ∑ − xyz. The i-th con-
straint roller is in point contact with the sphere at a position vector 
Pi and is arranged such that the center of mass of the roller PC, Pi 
and O are on the same line. v denotes the angular velocity vector 
of the sphere. gi denotes the unit vector along the rotational axis 
of constraint roller. νi the denotes peripheral speed of the con-
straint roller. ai (−90° ≤ ai ≤ 90°) denotes roller arrangement angle 
between gi and span{P1, P2} which has unit normal vector e. The 
great circle CG passes thorough P1 and P2 are on the sphere. Normal 
orthogonal base {Xi, e} exist on the tangent plane span{Xi, e} at the 
Pi (see Figure 2b and 2c).  i

S
i
Rand  are sphere’s rotational speed 

and roller’s rotational speed at Pi, respectively. The slip velocity of 
sphere yi can be represented as difference between   i

S
i
Rand . yi 

can be represented as SiXi + Tie (linear combination of Xi and e) and 
the coefficients Si and Ti can be represented as Equations (1)–(3).

			   Si i= y i X, � (1)

			   Ti = =y i e, ,( )0 1 2for alln n � (2)

where,

		  y vi i
S

i
R

iP e= − = × −  i in � (3)

3. � VERIFICATION OF THEORETICAL  
FORMULA

In this chapter, we verified theoretical formulas including sphere 
kinematic (Section 3.1) and sphere slip velocity vector (Section 3.2) 
in reverse motion.

As shown in Figure 3, the conditions are given as follows: q1,1 = 
215°, q1,2 = 325°, q1,2, q2,2 = 60°, r = 0.1 (m), a1 = a, a2 = −a (sym-
metry roller arrangement). Five experiments were conducted, each 
at the same four different degrees angles (a = 0°, 10°, 20°, 30°).

3.1.  Verification of Kinematics

As shown in Table 2, ||V||, j  and r are values calculated from n1, n2  
= −0.91 (m/s) by Equations (11) and (14) refer to Kimura et al. [17]. 
n1

m , n2
m  are theoretical values (controlled values which have target 

values n1, n2 = −0.91 (m/s)). ||V||m, jm and rm are theoretical values 
calculated from n1

m , n2
m  by Equations (11) and (14) refer to Kimura 

et al. [17]. ||V||e, je and re are experimental values measured from 

Figure 3 | The location of contacted rollers on sphere for experiment.  
(a) Top view. (b) Back view.

(b)(a)

Figure 2 | The existence of sphere slip velocity vector. (a) Isometric view. 
(b) Left side roller on span{X1, e}. (c) Right side roller on span{X2, e}.

(a)(b) (c)
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encoder. n1
e , n2

e  are experimental values calculated from ||V||e, je 
and re by Equation (22) refer to Kimura et al. [17].

3.1.1.  Inverse kinematics

Figures 4–7 exhibit the theoretical data n1
m , n2

m  and experimental 
data n1

e , n2
e . And, Tables 3–6 show the absolute mean error calcu-

lated in interval of 7–8 (s). We consider comparison between n1
m, 

n2
m  and n1

e , n2
e  in detail, see below.

In the evaluation case of a  = 0°, n1
e  and n2

e  are close to n1
m  and n2

m, 
respectively (see Figure 4). As shown in Table 3, n n1 1

m e−  is almost 
0.04 (m/s), n n2 2

m e−  is 0.04 (m/s).

Figure 4 | Comparison theoretical value n1
m and experimental value  

in a = 0°.

Figure 5 | Comparison theoretical value and experimental value in a = 10°.

Figure 6 | Comparison theoretical value and experimental value in a = 20°.

Figure 7 | Comparison theoretical value and experimental value in a = 30°.

Table 3 | Absolute mean error [7–8 (s)] in a = 0°

1 2 3 4 5

n n1 1
m e−  (m/s) 0.03 0.04 0.10 0.10 0.03

n n2 2
m e−  (m/s) 0.03 0.04 0.02 0.04 0.04

Table 4 | Absolute mean error [7–8 (s)] case of a  = 10°

1 2 3 4 5

n n1 1
m e−  (m/s) 0.04 0.03 0.08 0.03 0.02

n n2 2
m e−  (m/s) 0.03 0.04 0.01 0.04 0.04

Table 5 | Absolute mean error [7–8 (s)] case of a = 20°

1 2 3 4 5

n n1 1
m e−  (m/s) 0.05 0.05 0.06 0.09 0.07

n n2 2
m e−  (m/s) 0.03 0.03 0.05 0.06 0.05

Table 6 | Absolute mean error [7–8 (s)] case of a = 30°

1

n n1 1
m e−  (m/s) 0.08

n n2 2
m e−  (m/s) 0.05

In the evaluation case of a = 10°, n1
e  and n2

e  are close to n1
m  and 

n2
m , respectively (see Figure 5). As shown in Table 4, n n1 1

m e−  is 
almost 0.04 (m/s), n n2 2

m e−  is 0.04 (m/s).

In the evaluation case of a = 20°, n1
e  and n2

e  are close to n1
m  and 

n2
m , respectively (see Figure 6). As shown in Table 5, n n1 1

m e−   
is 0.09 (m/s), n n2 2

m e−  is 0.06 (m/s).

In the evaluation case of a = 30°, the limitations of the motor driv-
ers and intense dynamical friction that caused heat between the 
roller surfaces and the sphere obliged us to cease the second and 
subsequent experiments. However, ||V||e, je and re are partially 
close to ||V||m, jm and rm, respectively (see Figure 7). And, n n1 1

m e−  
is 0.08 (m/s), n n2 2

m e−  is 0.05 (m/s) (see Table 6).

Thus, inverse kinematics is validated.
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3.1.2.  Forward kinematics

Figures 8–11 exhibit the theoretical data ||V||m, jm, rm and experimen-
tal data ||V||e, je, re. And, Tables 7–10 show the absolute mean error 
calculated in interval of 7–8 (s). We consider comparison between 
||V||m, jm, rm and ||V||e, je, re, respectively in detail, see below.

Figure 10 | Comparison theoretical value and experimental value in  
a = 20°. (a) Sphere mobile speed. (b) Sphere direction and angle of  
sphere rotational axis.

In the evaluation case of a = 0°, ||V||e, je and re are close to ||V||m, 
jm and rm, respectively (see Figure 8). As shown in Table 7,  
|||V||m − ||V||e| is 0.06 (m/s), |jm − je| is 3.9 (°), and |rm − re|  
is 6.3 (°).

In the evaluation case of a = 10°, ||V||e, je and re are close to ||V||m, 
jm and rm (see Figure 9). As shown in Table 8, |||V||m − ||V||e| is  
0.04 (m/s), |jm − je| is 3.1 (°), and |rm − re| is 3.9 (°).

(a)

Figure 8 | Comparison theoretical value and experimental value in  
a = 0°. (a) Sphere mobile speed. (b) Sphere direction and angle of  
sphere rotational axis.

(a)

(b)

(b)

Figure 11 | Comparison theoretical value and experimental value in  
a = 30°. (a) Sphere mobile speed. (b) Sphere direction and angle of  
sphere rotational axis.

(a)

(b)

Figure 9 | Comparison theoretical value and experimental value in  
a = 10°. (a) Sphere mobile speed. (b) Sphere direction and angle of  
sphere rotational axis.

(a)

(b)
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Table 7 | Absolute mean error [7–8 (s)] in a = 0°

1 2 3 4 5

|||V||m − ||V||e| (m/s) 0.03 0.04 0.05 0.06 0.04
|jm − je| (°) 1.5 1.6 2.2 3.9 0.8
|rm − re| (°) 0.7 0.9 6.3 5.3 0.9

Table 8 | Absolute mean error [7–8 (s)] in a = 10°

1 2 3 4 5

|||V||m − ||V||e| (m/s) 0.03 0.04 0.04 0.03 0.03
|jm − je| (°) 1.2 1.8 3.1 2.2 2.0
|rm − re| (°) 2.1 1.0 3.9 1.2 1.2

Table 9 | Absolute mean error [7–8 (s)] in a = 20°

1 2 3 4 5

|||V||m − ||V||e| (m/s) 0.03 0.03 0.06 0.07 0.05
|jm − je| (°) 1.5 2.3 2.7 2.7 4.3
|rm − re| (°) 1.9 1.4 2.1 2.1 2.1

Table 10 | Absolute mean error [7–8 (s)] in a = 30°

1

|||V||m − ||V||e| (m/s) 0.04
|jm − je| (°) 9.7
|rm − re| (°) 5.1

Table 11 | Values calculated from n1, n2 = −0.91 (m/s)

` 0° 10° 20° 30°

S1 (m/s) 0 −0.16 −0.31 −0.45
T1 (m/s) 0 0 0 0
S2 (m/s) 0 0.16 0.31 0.45
T2 (m/s) 0 0 0 0

In the evaluation case of a = 20°, ||V||e, je and re are close to 
||V||m, jm and rm, respectively (see Figure 10). As shown in Table 9,  
|||V||m − ||V||e| is 0.07 (m/s), |jm − je| is 4.3 (°), and |rm − re|  
is 2.1 (°).

In the evaluation case of a = 30°, the data have intense behavior 
due to limitations of the motor drivers. However, ||V||e, je and re 
are partially close to ||V||m, jm and rm, respectively (see Figure 11). 
And, |||V||m − ||V||e| is 0.04 (m/s), |jm − je| is 9.7 (°), and |rm − re| is 
5.1 (°) (see Table 10).

Thus, forward kinematics is validated.

3.2.  Consideration of Slip Velocity Vector

As shown in Table 11, Si (i = 1, 2) are values calculated from n1, n2 = 
−0.91 (m/s) by Equation (1). Si

m  (i = 1, 2) are theoretical values 
calculated from n1

m  and n2
m  by Equation (1). Si

e  and Ti
e  (i = 1, 2) 

are experimental values calculated from ||V||e, je, re, n1
e  and n2

e  by 
Equations (1) and (2).

Using Equation (2) as n ni i
m i= =( ),1 2 , we give Ti

m = 0  (i = 
1, 2). And, as n ni i

e i= =( ),1 2 , we give Ti
e = 0 (i = 1, 2). Thus, 

T Ti
m

i
e− = 0  and, y1 and y2 are correspond to tangent vectors 

on a great circle CG.

Figures 12–15 exhibit the theoretical data Si
m  (i = 1, 2) and exper-

imental data Si
e  (i = 1, 2). And, Tables 12–15 show the absolute 

mean error [calculated in interval of 7–8 (s)]. We consider com-
parison between Si

m  (i = 1, 2) and Si
e  (i = 1, 2) in detail, see below.

Figure 12 | Comparison theoretical value and experimental value in a = 0°.

Figure 15 | Comparison theoretical value and experimental value in a = 30°.

Figure 13 | Comparison theoretical value and experimental value in a = 10°.

Figure 14 | Comparison theoretical value and experimental value in a = 20°.
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Table 12 | Absolute mean error [7–8 (s)] in a = 0°

1 2 3 4 5

S Sm e
1 1−  (m/s) 0.02 0.03 0.02 0.04 0.01

S Sm e
2 2−  (m/s) 0.02 0.03 0.02 0.04 0.01

Table 13 | Absolute mean error [7–8 (s)] in a = 10°

1 2 3 4 5

S Sm e
1 1−  (m/s) 0.02 0.03 0.04 0.03 0.03

S Sm e
2 2−  (m/s) 0.02 0.03 0.03 0.04 0.03

Table 14 | Absolute mean error [7–8 (s)] in a = 20°

1 2 3 4 5

S Sm e
1 1−  (m/s) 0.03 0.04 0.06 0.05 0.09

S Sm e
2 2−  (m/s) 0.02 0.03 0.02 0.03 0.05

Table 15 | Absolute mean error [7–8 (s)] in a = 30°

1

S Sm e
1 1−  (m/s) 0.13

S Sm e
2 2−  (m/s) 0.08

In the evaluation case of a = 0°, Se
1  and Se

2  are close to Sm
1  and Sm

2 ,  

respectively (see Figure 12). As shown in Table 12, S Sm e
1 1−  is 

0.04 (m/s) and S Sm e
2 2−  is 0.04 (m/s).

In the evaluation case of a = 10°, Se
1  and Se

2  are close to Sm
1  and Sm

2 ,  

respectively (see Figure 13). As shown in Table 13, S Sm e
1 1−  is 

0.04 (m/s) and S Sm e
2 2−  is 0.04 (m/s).

In the evaluation case of a = 20°, Se
1  and Se

2  are close to Sm
1  and 

Sm
2 , respectively (see Figure 14). As shown in Table 14, S Sm e

1 1−  

is 0.09 (m/s) and S Sm e
2 2−  is 0.05 (m/s).

In the evaluation case of a = 30°, the data have intense behavior due 
to limitations of the motor drivers. However, Se

1  and Se
2  are partially 

close to Sm
1  and Sm

2 , respectively (see Figure 15). And, S Sm e
1 1−  is 

0.13 (m/s) and S Sm e
2 2−  is 0.08 (m/s) (see Table 15).

Thus, Equations (1)–(3) is validated by experiment.

4. � CONSIDERATION OF WORLD TEAMS’ 
ROLLERS ARRANGEMENT

Figure 16 shows the relationship between the sphere slip speed  
and sphere mobile speed. The horizontal and vertical axes show 
Si

e  (i = 1, 2) and ||V||e, respectively.

The configurations [■•▲◆] (left-side roller) and [■•▲◆] 
(right-side roller) indicate the coordinates [ , || ]Se

e
T

1 V ||  and 
[ , || ]Se

e
T

2 V || , respectively, corresponding to the experimental mean 
values calculated over intervals of 7–8 (s).

4.1.  Vertical Coordinate (Mobile Speed)

For [■■] and [••], the sphere mobile speeds ||V||e are closely 
distributed within a range from 0.89 to 0.98 (m/s). The correspond-
ing distributions of ||V||e for [▲▲] are within the ranges from 0.86 
to 0.92 (m/s) and [◆◆] are 0.66 (m/s). Thus, [■■] and [••] 
have the highest spherical speed efficiencies.

4.2. � Horizontal Coordinate (Sphere  
Slip Speed)

For [■■], the values of Se
1  and Se

2  are generally distributed 
within the range from 0.01 to 0.03 (m/s). The corresponding dis-
tributions of Se

1  and Se
2  for [••], [▲▲], and [◆◆] are mostly 

within the ranges from 0.13 to 0.18 (m/s), 0.23 to 0.34 (m/s), and 
0.24 to 0.45 (m/s), respectively.

Under this kinematics model, it assumed that the roller and 
sphere contact at a single point. In reality, of course, they would 
contact along a surface, causing, yi to generate a frictional force Fi 
in opposition to yi. Referring to consideration, in which y1 and y2 
are aligned back-to-back along a great circle, the frictional forces 
F1 and F2 generated by y1 and y2, respectively, would be in and 
are opposite directions and face-to-face (from Section 3 refer to 
Kimura et al. [17]).

For [▲▲] and [◆◆], there is an above-moderate frictional force. 
The [■■] and [••] configurations adopted by RV-infinity, the 
Turtles, and the Falcons have the highest sphere speed effi-
ciencies. However, [■■], the RV-infinity roller configuration, 
has nearly no friction [ Se

1  and Se
2  are close to 0 (m/s)]. By 

contrast, the configuration [••] adopted by the Turtles and 

Figure 16 | Relationship between sphere slip speed and sphere mobile speed. (a) Left-side roller. (b) Right-side roller.

(a) (b)
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mechanism, in: 2016 Joint 8th International Conference on Soft 
Computing and Intelligent Systems (SCIS) and 17th International 
Symposium on Advanced Intelligent Systems (ISIS), Sapporo, 
Japan, IEEE, 2016, pp. 518–523.
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Artif. Life 4 (2017), 248–253.
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al., CAMBADA 2013: Team Description Paper, 2013.
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for RoboCup MSL, in: Proceedings of the 30th Fuzzy System 
Symposium, 2014, pp. 624–627.

[16]	 R. Junkai, X. Chenggang, X. Junhao, H. Kaihong, L. Huimin, A 
control system for active ball handling in the RoboCup middle 
size league. in: Chinese Control and Decision Conference 
(CCDC), Yinchuan, China, IEEE, 2016, pp. 4396–4402.

[17]	 K. Kimura, K. Ogata, K. Ishii, Novel mathematical modeling and 
motion analysis of a sphere considering slipping, J. Robot. Netw. 
Artif. Life 6 (2019), 27–32.

Falcons has moderate friction [ Se
1  and Se

2  closely distributed 
within a range from 0.13 to 0.18 (m/s)].

Thus, by adopting [••], the Turtles and Falcons have developed 
roller systems with the optimum arrangement at a = 10°.

5.  CONCLUSION

In this study, we verified derive the sphere kinematics that 
allows for slipping and considered sphere slip velocity vector 
and evaluated the roller arrangement used by the world teams. 
As a result, Tech United Turtles and Falcons have adopted opti-
mum roller arrangement in teams of mobile speed efficiency.

In future studies, by applying the ball-dribbling mechanism, this 
model should be verified experimentally.
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