51,322 research outputs found

    The materials processing research base of the Materials Processing Center

    Get PDF
    The goals and activities of the center are discussed. The center activities encompass all engineering materials including metals, ceramics, polymers, electronic materials, composites, superconductors, and thin films. Processes include crystallization, solidification, nucleation, and polymer synthesis

    Materials processing in space

    Get PDF
    The feasibility and possible advantages of processing materials in a nongravitational field are considered. Areas of investigation include biomedical applications, the processing of inorganic materials, and flight programs and funding

    Laser materials processing with diode lasers

    Get PDF
    Laser materials processing is currently dominated by CO2, Nd-YAG and Excimer lasers. Continuous advances in semiconductor laser technology over the last decade have increased the average power output of the devices annualy by two fold, resulting in the commercial availability of the diode lasers today with delivery output powers in excess of 60W in CW mode and 5kW in qasi-CW mode. The advantages of compactness, high reliability, high efficiency and potential low cost, due to the mass production capability of the diode laser, will inextricably shape its future in the field of materials processing. This papers reports on work exploring the feasibility of a range of materials processing applications using a Diomed 60W diode laser, transmitted through a 600m diameter optical fibre and coupled to a 3 axis CNC workstation. The applications studied include; marking and engraving natural stones (marble and granite), marking ceramic tiles, glazing and sealing tile grouts, marking and cutting glass, marking wood, welding metal wire and transformation hardening of tool steels. The study shows that even at the present limited power level of diode laser, many materials processing applications can be accomplished with satisfactory results. Through the study an initial understanding of interaction of diode laser beam with various materials has been gained. Also, within the paper basic beam characteristics, the state of the art of high power diode laser technology and current materials processing applications are also reviewed

    Lunar materials processing system integration

    Get PDF
    The theme of this paper is that governmental resources will not permit the simultaneous development of all viable lunar materials processing (LMP) candidates. Choices will inevitably be made, based on the results of system integration trade studies comparing candidates to each other for high-leverage applications. It is in the best long-term interest of the LMP community to lead the selection process itself, quickly and practically. The paper is in five parts. The first part explains what systems integration means and why the specialized field of LMP needs this activity now. The second part defines the integration context for LMP -- by outlining potential lunar base functions, their interrelationships and constraints. The third part establishes perspective for prioritizing the development of LMP methods, by estimating realistic scope, scale, and timing of lunar operations. The fourth part describes the use of one type of analytical tool for gaining understanding of system interactions: the input/output model. A simple example solved with linear algebra is used to illustrate. The fifth and closing part identifies specific steps needed to refine the current ability to study lunar base system integration. Research specialists have a crucial role to play now in providing the data upon which this refinement process must be based

    Telerobotic electronic materials processing experiment

    Get PDF
    The Office of Commercial Programs (OCP), working in conjunction with NASA engineers at the Goddard Space Flight Center, is supporting research efforts in robot technology and microelectronics materials processing that will provide many spinoffs for science and industry. The Telerobotic Materials Processing Experiment (TRMPX) is a Shuttle-launched materials processing test payload using a Get Away Special can. The objectives of the project are to define, develop, and demonstrate an automated materials processing capability under realistic flight conditions. TRMPX will provide the capability to test the production processes that are dependent on microgravity. The processes proposed for testing include the annealing of amorphous silicon to increase grain size for more efficient solar cells, thin film deposition to demonstrate the potential of fabricating solar cells in orbit, and the annealing of radiation damaged solar cells

    Materials processing in low gravity

    Get PDF
    The final report of the Materials Processing in Low Gravity Program in which The University of Alabama in Huntsville designed, fabricated and performed various low gravity experiments in materials processing from November 7, 1989 through November 6, 1990 is presented. The facilities used in these short duration low gravity experiments include the Drop Tube and Drop Tower at Marshall Space Flight Center (MSFC), and the KC-135 aircraft at Ellington Field. During the performance of this contract, the utilization of these ground-based low gravity facilities for materials processing experiments have been instrumental in providing the opportunity to determine the feasibility of performing a number of experiments in the microgravity of Space, without the expense of a space-based experiment. Since the KC-135 was out for repairs during the latter part of the reporting period, a number of the KC-135 activities concentrated on repair and maintenance of the equipment that normally is flown on the aircraft. A number of periodic reports were given to the TCOR during the course of this contract, hence this final report is meant only to summarize the many activities performed and not redundantly cover materials already submitted

    Early space experiments in materials processing

    Get PDF
    A comprehensive survey of the flight experiments conducted in conjunction with the United States Materials Processing in Space Program is presented. Also included are a brief description of the conditions prevailing in an orbiting spacecraft and the research implications provided by this unique environment. What was done and what was learned are summarized in order to serve as a background for future experiments. It is assumed that the reader has some knowledge of the physical sciences but no background in spaceflight experimentation or in the materials science per se

    Materials processing in space: Early experiments

    Get PDF
    The characteristics of the space environment were reviewed. Potential applications of space processing are discussed and include metallurgical processing, and processing of semiconductor materials. The behavior of fluid in low gravity is described. The evolution of apparatus for materials processing in space was reviewed

    RAW MATERIALS, PROCESSING INCENTIVES AND FOREIGN OWNERSHIP

    Get PDF
    The effect of foreign ownership on trade policy outcomes has long been a topic of interest, but only recently have the consequences of multiple levels of production been considered. We examine processing incentives in a simplified general equilibrium framework with foreign ownership of a primary factor. Second-best considerations mean non-intervention is sub-optimal, but multiple levels of production can lead to an investment terms-of-trade effect of indeterminate sign, depending critically on the production structure. We illustrate how this may change standard conclusions regarding the effect of trade restrictions where there is foreign ownership, and optimal intervention to achieve specific policy objectives.International Relations/Trade, Productivity Analysis,

    Proceedings of the third Space Processing Symposium on Skylab Results, volume 1

    Get PDF
    Results of materials processing experiments conducted on NASA's Skylab flights are presented and several related research activities for materials processing in space beyond Skylab are discussed
    corecore