2,673 research outputs found

    Semantic-driven matchmaking of web services using case-based reasoning

    Get PDF
    With the rapid proliferation of Web services as the medium of choice to securely publish application services beyond the firewall, the importance of accurate, yet flexible matchmaking of similar services gains importance both for the human user and for dynamic composition engines. In this paper, we present a novel approach that utilizes the case based reasoning methodology for modelling dynamic Web service discovery and matchmaking. Our framework considers Web services execution experiences in the decision making process and is highly adaptable to the service requester constraints. The framework also utilises OWL semantic descriptions extensively for implementing both the components of the CBR engine and the matchmaking profile of the Web services

    Semantic Matchmaking as Non-Monotonic Reasoning: A Description Logic Approach

    Full text link
    Matchmaking arises when supply and demand meet in an electronic marketplace, or when agents search for a web service to perform some task, or even when recruiting agencies match curricula and job profiles. In such open environments, the objective of a matchmaking process is to discover best available offers to a given request. We address the problem of matchmaking from a knowledge representation perspective, with a formalization based on Description Logics. We devise Concept Abduction and Concept Contraction as non-monotonic inferences in Description Logics suitable for modeling matchmaking in a logical framework, and prove some related complexity results. We also present reasonable algorithms for semantic matchmaking based on the devised inferences, and prove that they obey to some commonsense properties. Finally, we report on the implementation of the proposed matchmaking framework, which has been used both as a mediator in e-marketplaces and for semantic web services discovery

    A Framework for Dynamic Web Services Composition

    Get PDF
    Dynamic composition of web services is a promising approach and at the same time a challenging research area for the dissemination of service-oriented applications. It is widely recognised that service semantics is a key element for the dynamic composition of Web services, since it allows the unambiguous descriptions of a service's capabilities and parameters. This paper introduces a framework for performing dynamic service composition by exploiting the semantic matchmaking between service parameters (i.e., outputs and inputs) to enable their interconnection and interaction. The basic assumption of the framework is that matchmaking enables finding semantic compatibilities among independently defined service descriptions. We also developed a composition algorithm that follows a semantic graph-based approach, in which a graph represents service compositions and the nodes of this graph represent semantic connections between services. Moreover, functional and non-functional properties of services are considered, to enable the computation of relevant and most suitable service compositions for some service request. The suggested end-to-end functional level service composition framework is illustrated with a realistic application scenario from the IST SPICE project

    Model-driven semantic Web service composition

    Full text link
    As the number of available Web services increases there is a growing demand to realise complex business processes by combining and reusing available Web services. The reuse and combination of services results in a composition of Web services that may also involve services provided in the Internet. With semantically described Web services, an automated matchmaking of capabilities can help identify suitable services. To address the need for semantically de-fined Web services, OWL-S and WSML have been proposed as competing semantic Web service languages. We show how the proposed semantic Web service languages can be utilized within a model-driven methodology for build-ing composite Web services. In addition we combine the semantic-based discovery with the support for processing QoS requirements to apply a ranking or a selection of the candidates. The methodology describes a process which guides the developer through four phases, starting with the initial modelling, and ending with a new composite service that can be deployed and published to be consumed by other users.

    Autonomous matchmaking web services

    Get PDF
    Current Semantic Web Services research investigates how to dynamically discover assemble and invoke Web services. Despite many research efforts, Semantic Web Services are still not fully recognized in industry. One important reason is the dissevered description layers of syntax and semantics. In other words, semantics is only useful for a service broker to discover services whereas service requesters still need to invoke services based on syntactic descriptions. In this paper, we view semantics from another angle to reform the Web service framework completely (even for input messages and output messages during invocation) by using only RDF and Linked Open Data. We introduce Autonomous Matchmaking Web Services in which Web services are brokering themselves to notify the service registry whether they are suitable to the requesters. This framework is designated to more efficiently work for dynamically assembling services at run time in a massively distributed environment

    Enhanced matching engine for improving the performance of semantic web service discovery

    Get PDF
    Web services are the means to realize the Service Oriented Architecture (SOA) paradigm. One of the key tasks of the Web services is discovery also known as matchmaking. This is the act of locating suitable Web services to fulfill a specific goal and adding semantic descriptions to the Web services is the key to enabling an automated, intelligent discovery process. Current Semantic Web service discovery approaches are primarily classified into logic-based, non-logic-based and hybrid categories. An important challenge yet to be addressed by the current approaches is the use of the available constructs in Web service descriptions to achieve a better performance in matchmaking. Performance is defined in terms of precision and recall as well-known metrics in the information retrieval field. Moreover, when matchmaking a large number of Web services, maintaining a reasonable execution time becomes a crucial challenge. In this research, to address these challenges, a matching engine is proposed. The engine comprises a new logic-based and nonlogic- based matchmaker to improve the performance of Semantic Web service discovery. The proposed logic-based and non-logic-based matchmakers are also combined as a hybrid matchmaker for further improvement of performance. In addition, a pre-matching filter is used in the matching engine to enhance the execution time of matchmaking. The components of the matching engine were developed as prototypes and evaluated by benchmarking the results against data from the standard repository of Web services. The comparative evaluations in terms of performance and execution time highlighted the superiority of the proposed matching engine over the existing and prominent matchmakers. The proposed matching engine has been proven to enhance both the performance and execution time of the Semantic Web service discovery

    Combining SAWSDL, OWL-DL and UDDI for Semantically Enhanced Web Service Discovery

    Get PDF
    UDDI registries are included as a standard offering within the product suite of any major SOA vendor, serving as the foundation for establishing design-time and run-time SOA governance. Despite the success of the UDDI specification and its rapid uptake by the industry, the capabilities of its offered service discovery facilities are rather limited. The lack of machine-understandable semantics in the technical specifications and classification schemes used for retrieving services, prevent UDDI registries from supporting fully automated and thus truly effective service discovery. This paper presents the implementation of a semantically-enhanced registry that builds on the UDDI specification and augments its service publication and discovery facilities to overcome the aforementioned limitations. The proposed solution combines the use of SAWSDL for creating semantically annotated descriptions of service interfaces and the use of OWL-DL for modelling service capabilities and for performing matchmaking via DL reasoning
    corecore