
Open Research Online
The Open University’s repository of research publications
and other research outputs

Autonomous matchmaking web services
Conference or Workshop Item
How to cite:

Yu, Hong Qing; Dietze, Stefan and Benn, Neil (2010). Autonomous matchmaking web services. In: 2010
International Conference on Computer Information Systems and Industrial Management Applications (CISIM), pp.
420–425.

For guidance on citations see FAQs.

c© 2010 IEEE

Version: Version of Record

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1109/CISIM.2010.5643504

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Research Online

https://core.ac.uk/display/82958477?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1109/CISIM.2010.5643504
http://oro.open.ac.uk/policies.html

Autonomous Matchmaking Web Services

Hong Qing Yu, Stefan Dietze and Neil Benn

Knowledge Media Institute

The Open University

Milton Keynes, United Kingdom

{h.q.yu, s.dietze, n.j.l.benn@open.ac.uk}

Abstract—Current Semantic Web Services research investigates

how to dynamically discover assemble and invoke Web services.

Despite many research efforts, Semantic Web Services are still

not fully recognized in industry. One important reason is the

dissevered description layers of syntax and semantics. In other

words, semantics is only useful for a service broker to discover

services whereas service requesters still need to invoke services

based on syntactic descriptions. In this paper, we view semantics

from another angle to reform the Web service framework

completely (even for input messages and output messages during

invocation) by using only RDF and Linked Open Data. We

introduce Autonomous Matchmaking Web Services in which

Web services are brokering themselves to notify the service

registry whether they are suitable to the requesters. This

framework is designated to more efficiently work for dynamically

assembling services at run time in a massively distributed

environment.

Keywords: Web services; Autonomous Matchmaking; Semantic

Web; RDF; Linked Open Data

I. INTRODUCTION

Dynamically assembling services at run-time for
developing massively distributed and interoperable systems [1]
is an ultimate goal of Web services. Using XML via HTTP as
the communication standard to exchange data between client
applications and remote functionalities is the current standard
of Web services, which is built around WSDL, SOAP and
UDDI for completing the lifecycle of service description,
publication and invocation. In the past decade, many research
efforts have been made to realize the ultimate goal by adding
value to the current standards. However, most of today’s Web
service applications are still developed in static and

RPC/Document style [2].

These standards only represent the functional data structure
and the syntax of a service [3], which ask service requesters to
do most of the work manually. As a result, the automation level
of communications among service requesters, broker and
services is low. For example, clients find it difficult to
automatically invoke services at run time because they need to
manually build invocation SOAP messages based on the
parameter orders described in the WSDL file although the
invocation skeleton may be generated on the fly. Moreover,
clients require prerequisite knowledge of each parameter’s
meaning by reading the service release document in order to
correctly assign the parameters. Communication between
broker and service requesters is even worse as no service

request protocol has been defined as yet, which makes dynamic
service discovery impossible. Furthermore, UDDI has nearly
disappeared from the literature defined in Web service lifecycle
and most application developers directly use Web services
based on their own knowledge. In order to solve these issues,
Semantic Web technologies have been deployed to equip Web
services. However, can Semantic Web Service (SWS)

technology alone solve the dynamic problem?

The most recent SWS technologies can be divided into two
different processes: (1) top-down process is defined by using
domain ontologies, such as WSMO [4] and OWL-S [5]; (2)
bottom-up process uses light-weight service annotations, such
as WSMO-lite [7] and SAWSDL [3]. Both processes just move
the hard discovery work from requester’s side to the broker’s
side. In SWS environments, services need to publish either
semantic description files or annotations into brokers in order
to be discovered and invoked by requesters. Thus, brokers have

to take a very heavy workload acting as a central point.

In spite of all these research efforts, the automation level
has not dramatically increased. One main reason is the
dissevered description layers of syntax and semantics.
Syntactic descriptions such as WSDL and SOAP are still
important for service invocation. Meanwhile, semantic
descriptions or annotations only represent the syntax with
semantics but they are nothing to do with services themselves
to affect service behavior and invocation. In other words,
current SWS approaches merely focus on enriching semantics
for syntax without considering the actual data structure
definitions that are very important for applications at run-time.
Thus, semantic brokers can facilitate automatic service
discovery, but run-time service invocation is still a big issue to

prevent achieving the initial goal of Web services.

When the idea of Web services was born, the Semantic
Web concept was not there yet. Why can we not go back to see
whether we could re-think about Web services standards from
the perspective of Semantic Web at the start? Most recent
development of Linked Open Data (LOD) [6] gives us a new
opportunity to link services together and specify services in a
global unified semantics. In this paper, we view Web services
with semantics from a different angle and introduce
Autonomous Matchmaking Web Services (AMWS) based on
RDF and Linked Open Data. In AMWS, all the communication
protocols in the lifecycle are RDF messages. Most importantly,
Web services, requesters and registry share equal workload,

420978-1-4244-7818-7/10/$26.00 c©2010 IEEE

which makes dynamically discovering, assembling and

invoking more efficient and realistic to be achievable.

The following summarizes the roles of Web services,

requesters and registry in AMWS:

• The requester needs to semantically describe the
desired requirements about the requested Web services

and send these requirements to the registry.

• The registry needs to pass the semantic requirements to
all Web services that are registered with it and select or
orchestrate services based on Web services’ semantic
responses about whether they are qualified to the

requirements.

• Web services need to be aware the semantic
requirements to notify the registry whether they satisfy

the requirements.

The key contribution of this paper is to start use Semantic
Web technologies throughout the whole Web services
development, brokerage and consumption lifecycle and all
three parts of Web services, service requester and service

broker are semantic-aware.

The remainder of this paper is organized into three sections.
Section II discusses the background and related work. Section
III introduces the motivations. Section IV explains the
Autonomous Matchmaking Web service framework in all
details. Section V finally draws the conclusion and outlines the

future work.

II. BACKGROUND AND RELATED WORK

A. Big Web Services vs. RestFul Services

 W3C defines Web services 1 as "a software system
designed to support interoperable machine-to-machine
interaction over a network. It has an interface described in a
machine-processable format (specifically Web Services
Description Language WSDL). Other systems interact with the
Web services in a manner prescribed by its description using
SOAP messages, typically conveyed using HTTP with an
XML serialization in conjunction with other web-related
standards." The Web services implemented in this definition
are usually called Big Web services. Critics argue that Big
Web services are too complex and based upon large software
vendors or integrators, rather than typical open source
implementation. Moreover, with an XML-based language it is
difficult to identify the right construct to express a data model
in a way that is fully supported by all SOAP/WSDL

implementations [10].

With the popularity of Web 2.0, software functionalities
accessible via HTTP (i.e. "Web services") are becoming the
main underlying feature, which facilitates easy data exchange
across the Web. Therefore, in contrast to Big Web Services,
RestFul services implemented by using the PUT, GET and
DELETE HTTP methods alongside POST become more
popular. RestFul services are often better integrated with HTTP
and web browsers than SOAP-based services. They do not
require XML messages or WSDL-like service definitions.

1 http://en.wikipedia.org/wiki/Web_service

However, the major limitation of RestFul services is lacking of
basic standards to support service discovery and dynamic

output parsing.

B. Light-weight Service Annotations and LOD

The main conceptual frameworks and specifications for
semantically describing services (e.g. WSMO, OWL-S and
SAWSDL which derive from WSDL-S [11]) are very
comprehensive. Most SWS initiatives were built upon the
enrichment of WSDL Web services with semantics. Moreover,
these comprehensive semantic standards are too heavy to show
the usability to the industry. It is only most recently that light-
weight services (e.g. Web APIs and RESTful services) and
service annotations have been researched. The main results of
these recent studies are SA-REST [11], WSMO-Lite and
MicroWSMO [12]. However, these changes are still focusing
on service annotations for implementing a big middle broker
layer rather than thinking of adding semantic values inside

services.

Over the last few years, a significant portion of research on
the Semantic Web has been devoted to create what is referred
as LOD. LOD is a way to publish data on the Web in order for
machines to understand the explicit meaning of the data. The
data is linked to other external data sets, and can in turn be
linked from external data sets. Meanwhile, LOD is based upon
a set of principles, including the usage of HTTP URIs to
provide information and allowing access based on RDF and
SPARQL. Since these principles were outlined, there has been
a large uptake, most notably through DBpedia2 to produce a

vast amount of linked datasets on the Web.

With the potential of LOD, service-oriented architecture
can use the dataset directly to develop semantic services rather
than to add semantic value later. In fact, LOD has been
proposed as an approach for publishing and describing
services, namely linked services [13] and Linked Open
Services3. As a result, the service annotations are part of the

LOD cloud.

C. Context-aware Web services

Service’s performance adapting to dynamic changes
influenced by meaningful inputs is a new Web services
movement introduced in [14] and [15]. The basic principle is to
enable services to understand the context of a service request,
(e.g. input parameters and non-functional properties) and to
provide the corresponded results. However, this process is only
suitable for a limited scale of applications because the context-
aware ontology is only specified at the domain level.
Moreover, it is very unrealistic to match all possible
performance to all possible contexts in one service and specific
domain, excepting a manually negotiate process is required
before the service invocation. For example, the different inputs
will affect the speed of the service responding. However, the
idea of Context-aware Web services gives an illumination of
meaningful inputs can enhance the understandability between

services and requesters at run-time.

2 http://dbpedia.org/About

3 http://www.linkedopenservices.org/

2010 International Conference on Computer Information Systems and Industrial Management Applications (CISIM) 421

III. MOTIVATION

In this section, we give two scenarios that have two basic
requirements of dynamic service discovery and runtime service

invocations.

a) Context-aware applications in a ubiquitous

environment.

 Context is defined as “meta-information to characterize the
specific situation of an entity, to describe a group of conceptual
entities, and to partition a knowledge base into manageable sets

or as a logical construct to facilitate reasoning services” [8].

Based on this context definition, we introduced a typical
context-aware application scenario [9] for Personalized

Semantic News in the EU-funded NoTube project4 as follows:

A NoTube platform user acquires news items from generic
broadcast streams and obtains additional enriched news
information by using a set of personalized news related
services. The platform should enable the use of user profile
information and preferences to match the available news
services. For example a user demands interesting news when
he/she is using an iPhone and travelling by bus. His/Her profile
describes that he/she prefers to use English and is generally
interested in sports. The application should enable the user to
get the interesting news data by discovering, selecting and
invoking the suitable news services that match the user’s

context.

b) E-Learning applications for learning content sharing

and exchanging.

In most e-Learning applications, sharing and exchanging
learning objects in a multiplicity of distributed environment are
the important requirement. In the EU-funded mEducator
project5, there is a scenario about searching, publishing and
creating learning contents for different topics and languages
from/to multiple and different medical Learning Object
Management Services (LOMS). In the meantime, each LOMS
has its own input and output specifications. Moreover, the
LOMSs can be added into the environment at any time when
more education institutes joined. The application should enable
dynamically invoking the suitable services to perform the

functions.

IV. AUTONOMOUS MATCHMAKING WEB SERVICE

FRAMEWORK

A. The Principles

The implementation and consumption of Autonomous
Matchmaking Web services must follow four basic principles

and the overall run-time lifecycle is represented in Figure 1.

1) One service includes two layers, namely the

autonomous matchmaking layer and the functionality layer,

and two invocation endpoints for each layer respectively. The

autonomous matchmaking layer receives service searching

message (SSM) from the registry and sends back “yes” or

“no” confirmation response message (CRM) to the SSM

4 http://www.notube.tv/

5 http://www.meducator.net/

sender. The functionality layer receives service invocation

input message (SIIM) and sends back a matched output

message (MOM) which was defined inside the previous SSM.

2) The service registers a service semantic annotations

(SSA) as RDF into service registry and has the ability of

identifying the function capability. The SSA includes at least

the ground information about the two invocation endpoints

and non-functional properties, such as response time, license

type and fees. Since the service itself will identify the function

capability when receiving SSM, then publishing the functional

semantic is not necessary.

3) The service registry is able to indentify the right

service(s) and send back the Invocation Endpoint Message

(IEM) to the service requester.

4) All messages are RDF with semantic annotations on

each entity and the semantics are referenced by LOD. For

example, a FOAF ID defined in LOD Cloud can be used to

annotate a userId entity which is one parameter of a input

message (a clearer example will be illustrated later).

Figure 1. Run-time lifecycle of Smantic-aware Web services

B. Message Definitions

• Service Searching Message (SSM)

SSM is designed to specify the requirement of the
desired service(s) from the service requester’s point of
view. The ultimate goal of SSM is to allow the service
autonomous matchmaking layer to understand what the
requester needs. There are two major advantages: (1)
SSM is a message (not service annotation) protocol
that is purely defined by the needs of application
developments at design time and is searching the
desired service at run time when communicating to
services through Registry via the message. (2) SSM
aims to use global understandable semantic references
of LOD, although a domain specific ontology is also
allowed. In this way, the service autonomous
matchmaking layer can decide whether the service
functionality is suitable according to the SSM. The

first-draft RDF schema of SSM is defined in Figure 2.

Each SSM includes at least functional requirements of
the desired service and the brokerage mode attribute.
The specification of non-functional requirements is an

422 2010 International Conference on Computer Information Systems and Industrial Management Applications (CISIM)

optional part to enhance the brokerage process for

selecting service(s).

The hasMode property is an enum data type defining
two elements: “single” and “set”. The “single”
indicates only one best suitable service is requested
and the “set” means that all suitable services are
required. Because hasMode is only useful for the
registry, it will not pass to Web services and SSM’s (in
Figure 1.) are the SSM messages without hasMode

property.

The FunctionalRequirement class consists of
InputMessage, OutputMessage and ServiceCategory.
InputMessage and OutputMessage include Parameters
what are composed by one Element or more.
ServiceCategory indicates service domain. The most
important part of the SSM schema is to use global
recognizable RDF entities to semantically reference the
Element and ServiceCategory. Based on current
semantic web standards, LOD is most suitable resource
to be applied. For example, the Service Finder RDFs6

can be one of the ServiceCategory references.

The NonFunctionalRequirement class includes
nonfunctional parameters that can be semantically
referenced to specify the properties like response-time,

fee and language.

Figure 2. First-draft of SSM RDF schema

• Confirmation Response Message (CRM)

CRM is a simple message to confirm whether the
service is suitable by sending to the SSM sender. The

first-draft RDF schema of CRM is defined in Figure 3.

The hasRegistrationID property is a unique identifier
that is registered and links to other service information
in the service registry, for instance, non-functional

properties and request endpoint.

6 http://www.service-finder.eu/ontologies/ServiceCategories

Figure 3. First-draft of CRM RDF schema

• Invocation Endpoint Message (IEM)

An instant message of IEM is sent from the service
registry to service requester for supporting the
invocation endpoint(s). Based on the service requested
hasMode property defined in SSM, the registry will
decide whether a set of service endpoints or single
service endpoint should be included in the message.
The first-draft of the IEM RDF schema shows in

Figure 4.

Figure 4. First-draft of IEM RDF schema

• Service Invocation Input Message (SIIM)

When the service requester gets the invocation
endpoint(s), (an) instant SIIM(s) will be sent to these
endpoint(s) for service invocation. The first-draft of

SIIM RDF schema is illustrated in Figure 5.

As defined in SSM, the Element included in Parameter
of InputMessage is semantically referenced to enable

service side to correctly retrieve the input data.

Figure 5. First-draft of SIIM RDF schema

• Matched Output Message (MOM)

All response messages from invoked services follow
MOM RDF schema. MOM is very similar to SIIM but
change the Element input value to the Element output
value as displayed in Figure 6. This time, the
semantics of Element is used by the service requester

to finally pickup the correct response data.

2010 International Conference on Computer Information Systems and Industrial Management Applications (CISIM) 423

Figure 6. First-draft of MOM RDF schema

C. Benefits

There are two major benefits of applying the AMWS

framework.

1) All information and communication messages are

semantically understandable by using unified RDF data

structure and LOD semantics. As result, all three parts can

know the data structure and semantics at the same time, which

is a fundamental requirement to enable services to be

dynamically assembled and invoked.

2) The workload among Web services, Service registry

and service requester to achieve dynamically assembling and

invoking services are trade-off. Each part of the three takes

their own responsibilities to efficiently finish the service

consumption life-cycle. Therefore, AMWS framework is

suitable for large scale distributed applications.

D. Service development suggestions for the scenarios

To implement the AMWS in both context-aware and e-

Learning scenarios requires four steps:

Step 1. Describing and storing service properties with

semantics.
For example, the news service from the context-aware

scenario takes topic and keywords as input parameters and
produces title description and stream URIs as output
parameters. The service providers should have their own
service specification to enable comparing it to the SSM. The
document in Figure 7 shows an example of storing the input

message specification as RDF.

The hasSemanticReference properties being highlighted is
the key elements in the document. In the similar way, the
output message can be specified as a RDF document as well.
When receiving SSM, the service first responds to the registry
whether it is suitable. When the service is invoked, it retrieves
the semantic matched input parameters to produce the semantic

matched outputs.

��������	�

� �������
�������
�����������������
�������
���������������
�����

� �������
�������
�����������������
�������
��������
�
�������� �

� �������
�������
�����������������
�������
��������!��������� �

� ����������� ����� �������� ������������������� ��������� ��������� � � � ��� �

������� ������ � ������������������������������� ��������� �������!��������� �

������� ��������� ������������������������������ ��������� ������� � � ��������� �

� ������������ ����� ��� �

� ����������� ����� ���

����� ������������������� ��������� ���������� � � � ������ � � ��� "�

� ������� �� ���� ����� ���

����� ������������������� ��������� ���������� �#����� "�

� ������� �� ���� ����� ���

����� ������������������� ��������� ���������� ����� ������������� �

������ ��������� ������������������������������ ��������� ��������!��������� �

������ ������ � ����������������������$�%������ ���� ������ �

� �������� �� ���� ����� ��� �

� !������������ �������������������� ��	��������	��������� �

���� �� �� ���������� �� ����������	�%������ ���� ����� �

������������ ��� �� ���� �

��� �� ����� ������������������ �� ����������	�%������ ���� ����� �

� �� ����� ������������������ �� ������"��	�%������ ���� ����� �

������������� �������� ��������&�� �� ���������������������������������������

� ��� ����� ������������ �

� �!������� �

��� � � ������ ������ �������������������� ��	����������� �

��� ���������� �������� �������������������� ��	������ �

����� �� � � � ������ � � �� �

������� � � ������ ������ �������������������� ��	������� �

��������� �� � � � �� �

����������� !������������ �������������������� ��	�����	��������� �

������������� �� ����� ������������������ �� ����������	�%������ ���� ����� �

������������� �������� ��������&�� �� �����������������������������������

� ��� ����� ������������ �

������������� �� �� ���������� �� ����������	�%������ ���� �����

������������� ������ ������� �� ���� �

"

Figure 7. An example of a RDF document provided by service providers for

describing and storing service properties with semantics

1) Step 2. Implementing services.
Services should be implemented according to the described

service properties (in our case, the RDF descriptions) and

grounded with an invocation endpoint.

2) Step 3. Developing SSM comparing mechanism with

a Autonomous Matchmaking endpoint.

424 2010 International Conference on Computer Information Systems and Industrial Management Applications (CISIM)

The comparing mechanism should define the rules of
acceptable SSMs. For example, if the input_service ⊇

input_requirement and output_service ⊆ output_requirement,

then the SSM is acceptable and the service will send a “yes”
response to the registry. Otherwise, a “no” response is sent. If
the SSM includes non-functional properties, then the non-
functional property comparing mechanism should be defined or

leave it to the registry to decide.

3) Step 4. Publishing endpoints to the registry.
The two endpoints of Autonomous Matchmaking and

invocation should be published into the registry. The non-
functional properties are optional to be published based on

whether services desire to be brokered.

V. CONCLUSION AND FURTHER DISCUSSIONS

In this paper we introduced a new Web services framework
namely AMWS: Autonomous Matchmaking Web services.
The AMWS is based on the most recent Semantic Web and
Web services research results aiming to achieve dynamic
service discovery, assembling and invocation in a large-scale,
distributed environment. The main ideas are (1) the AMWS
uses RDF messages as a communication protocol among
services, requesters and the registry; (2) the RDF entities are
referenced by LOD dataset for giving the semantics and for
filling the knowledge gap between requesters and services; (3)
the AMWS uses Autonomous Matchmaking to notify the
suitableness to the registry, which better fits into the distributed

environment than typical WS standards and SWS frameworks.

The AMWS is a first attempt to refine the WS or SWS
discovery, assembling and invocation lifecycle by just using
Semantic Web technology to develop services rather than
adding semantic layers to the syntax based WS blocks.
However, the AMWS approach is still at the very early stage
and it has many open questions that need to be answered. For
instance, is autonomous matchmaking necessary when a broker
is there? One answer could be “yes”, because it distributes the
discovery workloads from the centralized broker. Moreover,
Autonomous matchmaking can reduce the fault rates at runtime
if a service changes its behavior or takes different service
requirements to modify its own behavior like context-aware
services. The other answer could be “no”, if the centralized
broker is allocated in a powerful machine or has powerful
distributed calculation mechanism such as Grid computing and
services are very stable. The other issue may be related to using
RDF not OWL or other semantic standards. We have to say
that this is just based on current industry practice on RESTFul
Web services that produce mainly RDF results and one reason
could be RDF is easier to be grounded than OWL and other

standards.

This paper aims to start to reconsider Web services using
Semantic Web eyes in order to resolve current Web services
and SWS problems when dynamically discovering, assembling
and invocating services. Our future work will involve industry
partners to investigate the Autonomous Matchmaking
mechanism, usability and practicability to improve the AMWS

framework. Furthermore, a more comprehensive Autonomous

Matchmaking mechanism will be studied.

ACKNOWLEDGMENT

The work is supported in part by the European Commission
under Grant ECP2008EDU418006 for mEducator poject and

FP7-ICT-231761 for NoTube project.

REFERENCES

[1] Papazoglou, M. P., Traverso, P., Dustdar, S. and Leymann, F., Service-
Oriented Computing: A Research Roadmap, International Journal of
Cooperative Information Systems, Vol. 17, No. 02. (2008), 223.

[2] Gunzer, H and Engineer, S., Introduction to Web Services,
Borland Developer Network (2002),
DOI=http://bdn.borland.com/article/images/28818/webservices.pdf.

[3] Kopecký, J., Vitvar, T., Bournez, C. and Farrell, J., "SAWSDL:
Semantic Annotations for WSDL and XML Schema," IEEE Internet
Computing, vol. 11, no. 6, pp. 60-67, Nov./Dec. 2007,
doi:10.1109/MIC.2007.134

[4] WSMO Working Group (2004), D2v1.0: Web service Modeling
Ontology (WSMO). WSMO Working Draft, (2004).
(http://www.wsmo.org/2004/d2/v1.0/).

[5] Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D.,
McIlraith, S., Narayanan, S., Paolucci, M., Parsia, B., Payne, T., Sirin,
E., Srinivasan, N., and Sycara, K. (2004). OWL-S: Semantic Markup for
Web Services. Member submission, W3C. W3C Member Submission 22
November 2004.

[6] Bizer, C., Heath, T, Berners-Lee, T., Linked data - The Story So Far,
Special Issue on Linked data, International Journal on Semantic Web
and Information Systems (IJSWIS), 2009.

[7] WSMO-lite, DOI= http://cms-wg.sti2.org/TR/d11/v0.2/.

[8] Boukadi, K., et al. CWSC4EC: How to Employ Context, Web Service,
and Community in Enterprise Collaboration. NOTERE '08: Proceedings
of the 8th int conference on New technologies in distributed systems,
2008.

[9] Yu, H. Q., Benn, N., Dietze, S., Siebes, R., Pedrinaci, C., Liu, D.,
Lambert, D., and Domingue, J., (2010) Two-staged approach for
semantically annotating and brokering TV-related services, The IEEE
International Conference on Web Services (ICWS), Miami, Florida.

[10] Pautasso, C., Zimmermann, O., and Leymann, F., 2008. Restful web
services vs. "big"' web services: making the right architectural decision.
In Proceeding of the 17th international Conference on World Wide Web
(Beijing, China, April 21 - 25, 2008). WWW '08. ACM, New York, NY,
805-814. DOI= http://doi.acm.org/10.1145/1367497.1367606.

[11] Sheth, A. P., Gomadam, K., and Ranabahu, A., 2008. Semantics
enhanced services: Meteor-s, SAWSDL and SA-REST. IEEE Data Eng.
Bul l., 31(3):8–12.

[12] Maleshkova, M., Pedrinaci, C., and Domingue, J. 2009. Supporting the
creation of semantic restful service descriptions. In Workshop: Service
Matchmaking and Resource Retrieval in the Semantic Web (SMR2) at
8th International Semantic Web Conference.

[13] Pedrinaci, C., Domingue, J., and Krummenacher, R. 2010 Services and
the Web of Data: An Unexploited Symbiosis, Workshop: Linked AI:
AAAI Spring Symposium "Linked data Meets Artificial Intelligence".

[14] Yu, H. Q., Reiff-Marganiec, S., "A Method for Automated Web Service
Selection", services, pp. 513-520, 2008 IEEE Congress on Services -
Part I, 2008.

[15] Truong, H. and Dustdar, S., A Survey on Context-aware Web Service
Systems, International Journal of Web Information Systems, 5(1):5 - 31,
(c) Emerald, 2009.

2010 International Conference on Computer Information Systems and Industrial Management Applications (CISIM) 425

