5 research outputs found

    Matching patient and physician preferences in designing a primary care facility network

    Get PDF
    Cataloged from PDF version of article.This paper introduces an integer programming model for planning primary care facility networks, which accounts for the interests of different stakeholders while maximizing access to health care. Physician allocation to health-care facilities is explicitly modelled, which allows consideration of physician incentives in the planning phase. An illustrative case study in the Turkish primary care system is presented to show the implications of focusing on patient or physician preferences in the planning phase. A discussion of trade-offs between the different stakeholder preferences and some recommendations for modelling choices to match these preferences are provided. In the context of this case, we found that using an access measure that decays with distance, and incorporating nearest allocation constraints improves performance for all stakeholders. We also show that increasing the number of physicians may have adverse affects on access measures when physician preferences are addressed

    Smart Diagnosing System Design To Accelerating Early Detection Of Postpartum Blues

    Get PDF
    Background: Untreated mothers with postpartum blues are at greater risk of severe mental health disorders. At the same time, early detection tools are manually provided and paper-based, and they cannot offer accessible access to center-compiled data despite their lack of priority in mental health services. Methods: Using a mixed-methods study design, the researcher used semi-structured interviews, while the quantitative approach was conducted using demographic questionnaires and a survey resulting from the interviews. A total of 16 participants were chosen for the qualitative study, and 60 respondents participated in the quantitative study. The sample for the study was screened by using the Edinburgh Postnatal Depression Scale (EPDS) within the area of Sibela Healthcare Center in Surakarta. Data collection used instrument tests and observation sheets and was analyzed by the Chi-Square statistical test. Results: Quantitative data analyses identified a relationship between age and the incidence of postpartum blues in mothers (p-value of 0.004; OR 0.053). This study showed that mothers aged < 21 and > 35 years old have a 0.067 times higher development of postpartum blues than mothers aged 21-35. Conclusion: Both qualitative and quantitative data suggest that postpartum mothers need support from husbands in overcoming the blues. Mothers and husbands need a comprehensive digital mobile phone service that involves professional health workers, health service providers, and referral systems

    Matching patient and physician preferences in designing a primary care facility network

    No full text
    This paper introduces an integer programming model for planning primary care facility networks, which accounts for the interests of different stakeholders while maximizing access to health care. Physician allocation to health-care facilities is explicitly modelled, which allows consideration of physician incentives in the planning phase. An illustrative case study in the Turkish primary care system is presented to show the implications of focusing on patient or physician preferences in the planning phase. A discussion of trade-offs between the different stakeholder preferences and some recommendations for modelling choices to match these preferences are provided. In the context of this case, we found that using an access measure that decays with distance, and incorporating nearest allocation constraints improves performance for all stakeholders. We also show that increasing the number of physicians may have adverse affects on access measures when physician preferences are addressed. © 2014 Operational Research Society Ltd

    Models and algorithms for trauma network design.

    Get PDF
    Trauma continues to be the leading cause of death and disability in the US for people aged 44 and under, making it a major public health problem. The geographical maldistribution of Trauma Centers (TCs), and the resulting higher access time to the nearest TC, has been shown to impact trauma patient safety and increase disability or mortality. State governments often design a trauma network to provide prompt and definitive care to their citizens. However, this process is mainly manual and experience-based and often leads to a suboptimal network in terms of patient safety and resource utilization. This dissertation fills important voids in this domain and adds much-needed realism to develop insights that trauma decision-makers can use to design their trauma network. In this dissertation, we develop multiple optimization-based trauma network design approaches focusing minimizing mistriages and, in some cases, ensuring equity in care among regions. To mimic trauma care in practice, several realistic features are considered in our approach, which include the consideration of: (i) both severely and non-severely injured trauma patients and associated mistriages, (ii) intermediate trauma centers (ITCs) along with major trauma centers (MTCs), (iii) three dominant criteria for destination determination, and (iv) mistriages in on-scene clinical assessment of injuries. Our first contribution (Chapter 2) proposes the Trauma Center Location Problem (TCLP) that determines the optimal number and location of major trauma centers (MTCs) to improve patient safety. The bi-objective optimization model for TCLP explicitly considers both types of patients (severe and non-severe) and associated mistriages (specifically, system-related under- and over-triages) as a surrogate for patient safety. These mistriages are estimated using our proposed notional tasking algorithm that attempts to mimic the EMS on-scene decision of destination hospital and transportation mode. We develop a heuristic based on Particle Swarm Optimization framework to efficiently solve realistic problem sizes. We illustrate our approach using 2012 data from the state of OH and show that an optimized network for the state could achieve 31.5% improvement in patient safety compared to the 2012 network with the addition of just one MTC; redistribution of the 21 MTCs in the 2012 network led to a 30.4% improvement. Our second contribution (Chapter 3) introduces a Nested Trauma Network Design Problem (NTNDP), which is a nested multi-level, multi-customer, multi-transportation, multi-criteria, capacitated model. The NTNDP model has a bi-objective of maximizing the weighted sum of equity and effectiveness in patient safety. The proposed model includes intermediate trauma centers (TCs) that have been established in many US states to serve as feeder centers to major TCs. The model also incorporates three criteria used by EMS for destination determination; i.e., patient/family choice, closest facility, and protocol. Our proposed ‘3-phase’ approach efficiently solves the resulting MIP model by first solving a relaxed version of the model, then a Constraint Satisfaction Problem, and a modified version of the original optimization problem (if needed). A comprehensive experimental study is conducted to determine the sensitivity of the solutions to various system parameters. A case study is presented using 2019 data from the state of OH that shows more than 30% improvement in the patient safety objective. In our third contribution (Chapter 4), we introduce Trauma Network Design Problem considering Assessment-related Mistriages (TNDP-AM), where we explicitly consider mistriages in on-scene assessment of patient injuries by the EMS. The TNDP-AM model determines the number and location of major trauma centers to maximize patient safety. We model assessment-related mistriages using the Bernoulli random variable and propose a Simheuristic approach that integrates Monte Carlo Simulation with a genetic algorithm (GA) to solve the problem efficiently. Our findings indicate that the trauma network is susceptible to assessment-related mistriages; specifically, higher mistriages in assessing severe patients may lead to a 799% decrease in patient safety and potential clustering of MTCs near high trauma incidence rates. There are several implications of our findings to practice. State trauma decision-makers can use our approaches to not only better manage limited financial resources, but also understand the impact of changes in operational parameters on network performance. The design of training programs for EMS providers to build standardization in decision-making is another advantage
    corecore