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ABSTRACT

MODELS AND ALGORITHMS FOR TRAUMA NETWORK DESIGN 

Sagarkumar Dhirubhai Hirpara 

November 18, 2022 

Trauma continues to be the leading cause of death and disability in the US for 

people aged 44 and under, making it a major public health problem. The geographical 

maldistribution of Trauma Centers (TCs), and the resulting higher access time to the 

nearest TC, has been shown to impact trauma patient safety and increase disability or 

mortality. State governments often design a trauma network to provide prompt and 

definitive care to their citizens. However, this process is mainly manual and experience-

based and often leads to a suboptimal network in terms of patient safety and resource 

utilization.  

This dissertation fills important voids in this domain and adds much-needed realism 

to develop insights that trauma decision-makers can use to design their trauma network. In 

this dissertation, we develop multiple optimization-based trauma network design 

approaches focusing minimizing mistriages and, in some cases, ensuring equity in care 

among regions. To mimic trauma care in practice, several realistic features are considered 

in our approach, which include the consideration of: (i) both severely and non-severely 

injured trauma patients and associated mistriages, (ii) intermediate trauma centers (ITCs) 
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along with major trauma centers (MTCs), (iii) three dominant criteria for destination 

determination, and (iv) mistriages in on-scene clinical assessment of injuries. 

Our first contribution (Chapter 2) proposes the Trauma Center Location Problem 

(TCLP) that determines the optimal number and location of major trauma centers (MTCs) 

to improve patient safety. The bi-objective optimization model for TCLP explicitly 

considers both types of patients (severe and non-severe) and associated mistriages 

(specifically, system-related under- and over-triages) as a surrogate for patient safety. 

These mistriages are estimated using our proposed notional tasking algorithm that attempts 

to mimic the EMS on-scene decision of destination hospital and transportation mode. We 

develop a heuristic based on Particle Swarm Optimization framework to efficiently solve 

realistic problem sizes. We illustrate our approach using 2012 data from the state of OH 

and show that an optimized network for the state could achieve 31.5% improvement in 

patient safety compared to the 2012 network with the addition of just one MTC; 

redistribution of the 21 MTCs in the 2012 network led to a 30.4% improvement. 

Our second contribution (Chapter 3) introduces a Nested Trauma Network Design 

Problem (NTNDP), which is a nested multi-level, multi-customer, multi-transportation, 

multi-criteria, capacitated model. The NTNDP model has a bi-objective of maximizing the 

weighted sum of equity and effectiveness in patient safety. The proposed model includes 

intermediate trauma centers (TCs) that have been established in many US states to serve as 

feeder centers to major TCs. The model also incorporates three criteria used by EMS for 

destination determination; i.e., patient/family choice, closest facility, and protocol. Our 

proposed ‘3-phase’ approach efficiently solves the resulting MIP model by first solving a 

relaxed version of the model, then a Constraint Satisfaction Problem, and a modified 
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version of the original optimization problem (if needed). A comprehensive experimental 

study is conducted to determine the sensitivity of the solutions to various system 

parameters. A case study is presented using 2019 data from the state of OH that shows 

more than 30% improvement in the patient safety objective.   

In our third contribution (Chapter 4), we introduce Trauma Network Design 

Problem considering Assessment-related Mistriages (TNDP-AM), where we explicitly 

consider mistriages in on-scene assessment of patient injuries by the EMS. The TNDP-AM 

model determines the number and location of major trauma centers to maximize patient 

safety. We model assessment-related mistriages using the Bernoulli random variable and 

propose a Simheuristic approach that integrates Monte Carlo Simulation with a genetic 

algorithm (GA) to solve the problem efficiently. Our findings indicate that the trauma 

network is susceptible to assessment-related mistriages; specifically, higher mistriages in 

assessing severe patients may lead to a 799% decrease in patient safety and potential 

clustering of MTCs near high trauma incidence rates. 

There are several implications of our findings to practice. State trauma decision-

makers can use our approaches to not only better manage limited financial resources, but 

also understand the impact of changes in operational parameters on network performance. 

The design of training programs for EMS providers to build standardization in decision-

making is another advantage.
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CHAPTER 1 

1 INTRODUCTION  

Trauma is a body wound caused by sudden physical injury likely from a motor-

vehicle crash, gunshot, fall, or violence and requires immediate medical attention. 

Traumatic injury is a major public health problem worldwide, with 4.4 million deaths 

yearly, nearly 8% of all deaths (WHO, 2021). In the US, it continues to be the #1 cause of 

death, disability, and morbidity for individuals under the age of 44 (#3 across all ages), 

with almost 200,000 deaths annually (CDC, 2022). The Centre for Disease Control and 

Prevention (CDC) estimated the economic cost of injuries in 2019 as $4.2 trillion, including 

$327 billion in medical care, $69 billion in work loss, and $3.8 trillion in value of statistical 

life and quality of life losses (CDC, 2021). 

To ensure continuum of care for trauma patients, state governments often establish 

an integrated and coordinated trauma care system. There are three major phases of such a 

system: (i) prehospital, (ii) acute care, and (iii) rehabilitation. These are elaborated below. 

1.1 Elements of a Trauma Care System 

The ‘prehospital’ phase is a critical link between the occurrence of injury and the 

care provided at a hospital with the goal of ensuring prompt and definitive care. This phase 

is triggered by a 911 call seeking help for an injured victim (patient). The emergency 
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medical dispatcher coordinates with various Emergency Medical Services (EMS) and 

dispatches appropriate EMS responders to the incident location (also known as the scene). 

EMS paramedics have two key decisions to make, in sequence: (i) determine the severity 

of the injury and (ii) determine the appropriate destination hospital and transportation 

mode.  

The ‘acute care’ phase is initiated as soon as this patient arrives at the hospital’s 

emergency department. The trauma response team follows a set protocol of treating the 

patient and transferring them to either to another hospital that offers appropriate medical 

services or the current hospital’s operating room (or even) or intensive care according to 

the patient’s condition.   

The ‘rehabilitation phase’ is initiated after patient has been discharged from the 

hospital (inpatient care) and has been deemed to follow additional care at a rehabilitation 

facility (or even at home under the supervision of a provider).  

The focus of this research is on the ‘prehospital’ phase, specifically, the impact of 

different on-scene operational decisions and strategic decision of locating trauma centers 

on patient safety.    

1.2 Role of On-Scene Decision-Making 

Once the EMS arrives at the scene, subsequent decisions become vital for patient 

safety. As pointed out earlier, on-scene decision-making practice involves two 

components: (i) injury assessment and (ii) destination determination. For assessment, EMS 

providers check the patient’s vitals and perform various diagnostic tests to determine the 

underlying severity of the injury. On-scene injury assessment can be challenging and time-
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sensitive; therefore, national and state organizations have proposed guidelines to assist 

EMS paramedics during this process; these guidelines are referred to as Field Triage 

Guidelines (FTG). A correct injury assessment (severe or non-severe) is vital as assessed 

severity during this step becomes the basis for the destination determination decision. 

Based on the assessed severity of the patient, the EMS paramedics will then 

evaluate access to a variety of trauma and non-trauma hospitals in the vicinity. The access 

time may different based on ground or air transportation; air transport is limited in many 

cases, though. The ACS FTG does suggest the type of hospital based on the injury severity; 

some states also have similar guidelines for the EMS. However, not every time is the 

guideline followed by the EMS. Other criteria such as patient or family choice or closest 

facility to the scene have been reported in the literature, sometimes upwards of 60% of the 

times collectively. That is, based on the assessed injury and the chosen guideline or 

criterion, the network of trauma centers can influence what hospital is eventually selected 

by the EMS providers.  

1.3 Role of Trauma Centers 

Trauma centers are specialized hospitals equipped and operated to provide a 

designated level of care for patients suffering traumatic injuries. The American College of 

Surgeons (ACS) has verified and categorized trauma centers based on their level of care, 

from Level I (L1) to Level V (L5). Levels I and II are equipped to provide definitive care 

for patients suffering from major traumatic injuries (severely injured) and are referred to 

as major trauma centers (MTCs). Major trauma centers are capable of providing care for 

every aspect of injury, from prevention to rehabilitation. The lower-level trauma centers 
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(Levels III - V) are intermediate facilities (ITCs) that only provide a subset of services 

provided by MTCs, only part of the day, and serve as centers for initial care, resuscitation, 

and transfer to major trauma centers. All other hospitals are referred to as non-trauma 

centers (NTCs), which are the ideal destination for non-severely injured trauma patients. 

1.4 Motivation and Research Questions   

Due to the time-sensitive nature of traumatic injuries, timely access to a trauma 

center is a vital factor in patient outcome (Branas et al., 2013; Jansen et al., 2015). The 

survival of severely injured patients improves by 25% if they receive care at a major trauma 

center relative to the care delivered at an NTC (MacKenzie et al., 2006). However, 

according to CDC, nearly 45 million Americans have no access to advanced trauma centers 

within 60 minutes (known as a golden hour). The main reason for this is the geographic 

maldistribution of MTCs. Such maldistribution impacts the time to reach a trauma center 

from the scene, forcing EMS paramedics to transport a patient to an inappropriate hospital 

based on their injury severity, which is referred to as a mistriage. Such mistriages have 

negative implications on patient safety and can lead to a higher likelihood of an adverse 

outcome such as disability, morbidity, and even mortality or unnecessary higher medical 

bills and financial burden on the trauma system.  

ACS Committee on Trauma (ACS COT) has developed a Needs-Based Assessment 

of Trauma System (NBATS) tool to determine the required number of MTCs in a given 

geographical area, also known as the trauma service area (TSA). However, NBATS is 

limited in how it evaluates the need for the number of MTCs in the region; it also does not 

suggest the location of the MTCs and their impact on patient safety (ACS-NBATS, 2015). 
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Few studies have attempted to employ optimization-based approaches to design a trauma 

network; however, fundamental questions are yet to be addressed that form the basis of this 

research, which are summarized as follows:  

Q1. What is the optimal network of MTCs that maximizes patient safety? 

Q2. How sensitive is the network to changes in system parameters? 

Q3. How do intermediate TCs (ITCs) support patient safety? 

Q4. What effect do destination determination criteria have on the MTC/ITC network? 

Q5. What is the impact of focusing on equity of patient safety on a trauma network’s 

performance?  

Q6. How sensitive is the MTC/ITC network to the distribution of trauma patients? 

Q7. How do mistriages during on-scene injury assessment (operational decision) 

impact patient safety and the network of major trauma centers (strategic 

decision)? 

Q8. Do mistriages have a higher impact on patients with moderate or those with 

severe injuries? 

We address research Q1-Q2 in Chapter 2, Q3-Q6 in Chapter 3, and Q7-Q8 in 

Chapter 4. These are described below. 

1.5 Research Contributions 

In the following, we present the structure of this research and briefly outline the 

contributions of each chapter: 
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1.5.1 Trauma Center Location Problem (TCLP) – Chapter 2 

In this chapter, we introduce the TCLP that determines the optimal number and 

location of major TCs to improve patient safety. To address Q1, our proposed bi-objective 

optimization model accounts for the two types of mistriages as a surrogate for patient 

safety. A mistriage is classified as a mismatch in the injury severity of a patient and the 

destination hospital type. We propose a notional tasking algorithm that mimics EMS’s on-

scene decision-making and determines the destination hospital and transportation type for 

each patient based on their injury severity. We propose a heuristic based on the Particle 

Swarm Optimization framework to derive efficiently near-optimal solutions for realistic 

problem sizes.  

To illustrate the use of our approach, we use 2012 data from the state of Ohio to 

analyze the network’s sensitivity to changes in system parameters (Q2). We observe that 

the solutions are sensitive to the choice of weights for two mistriages in the objective, 

volume requirements at a MTC, and the two thresholds used to mimic EMS decisions. The 

optimized network for the state of Ohio using our approach results in over 31.5% 

improvement in patient safety with only 1 additional MTC; redistribution of the existing 

21 TCs led to a 30.4% improvement. 

1.5.2 Nested Trauma Network Design Problem (NTNDP) – Chapter 3 

This chapter extends the model developed in Chapter 2 and incorporates several 

essential dynamics when it comes to trauma patient care. To address Q3, we include 

intermediate trauma centers (ITCs) that are set up in many states in the US to serve as 

feeder centers to major TCs to improve patient safety. Next, we incorporate three criteria 
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to determine the destination hospital to capture the dynamics of EMS’s on-scene decision-

making (Q4). Most state trauma systems are divided into subareas known as regions or 

districts to oversight trauma care within that region. Because of the existence of such 

regions, it becomes critical to consider equity in patient safety among regions when 

designing a state-wide trauma network (Q5).  

To address Q3, Q4 and Q5, we propose a Nested Trauma Network Design Problem 

(NTNDP), which can be characterized as a nested multi-level, multi-customer, multi-

transportation, multi-criteria, capacitated model with the bi-objective of maximizing the 

weighted sum of equity and effectiveness in patient safety . In the proposed model, multi-

choice refers to the inclusion of all 3 dominant criteria for destination determination. While 

equity quantifies the similarity in patient safety across regions, effectiveness quantifies 

overall patient safety in the state. 

To solve this model, we propose a ‘3-phase’ solution approach that first solves a 

relaxed version of the model, then solves a Constraint Satisfaction Problem, and a modified 

version of the original optimization problem (if needed), all using a commercial solver. To 

address Q6, we consider a collection of counties in an existing midwestern US state and 

refer to it as a TSA. Using the data collected from several state trauma reports, we generated 

three different distributions of the patients in the TSA.  

Results indicate that substantial improvement in patient safety can be achieved by 

using only protocol criteria for destination determination as suggested by the ACS. We 

observe that clustered distribution of patients improves patient safety compared to other 

distributions. While equity among regions is essential, our results indicate that an emphasis 

on only equity (and ignoring effectiveness) in a network may lead to a decline in overall 
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patient safety. Finally, we also illustrate our approach using real data from the state of Ohio 

and delineate opportunities to improve performance by 30%.  

1.5.3 Trauma Network Design Problem Considering Assessment Mistriages 

(TNDP-AM) - Chapter 4 

While literature suggests mistriages could occur during the on-scene injury 

assessment phase, prior research and our earlier models assume 100% certainties (no 

mistriages) in designing the trauma network. To address this limitation (Q7), we propose a 

stochastic nested multi-level, multi-transportation capacitated model that explicitly 

considers mistriages in injury assessment and determines the number and locations of 

trauma centers to maximize patient safety. Because injury assessment is a binary 

classification problem (severe or non-severe), we model assessment-related mistriages in 

the ISS 9-15 (moderate injuries) and ISS>15 (severe injuries) via a Bernoulli random 

variable. To solve the model efficiently, we propose a Simheuristic approach that integrates 

Monte Carlo Simulation with a genetic algorithm (GA). We incorporate a feasibility 

algorithm in the proposed GA to convert infeasible solutions during offspring generation 

into feasible ones. 

Our findings suggest that solutions are sensitive to mistriages in assessing severe 

patients (ISS>15) and may lead to the clustering of MTCs near high trauma incidence rates. 

The trauma network is also sensitive to mistriages in assessing non-severe (ISS 9-15) and 

the resulting network tends to have a fewer and dispersed distribution of MTCs. 
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1.6 Dissertation Outline 

The remainder of this dissertation is organized as follows. Chapter 2 introduces the 

trauma center location problem. The nested trauma network design problem is summarized 

in Chapter 3. Chapter 4 proposes a trauma network design problem considering assessment 

errors. Finally, Chapter 5 summarizes this research and offers guidance for future research 

in this area.
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CHAPTER 2

2 TRAUMA CENTER LOCATION PROBLEM (TCLP) 

2.1 Introduction 

Trauma is a body wound caused by sudden physical injury likely from a motor-

vehicle crash, gunshot, fall, or violence and requires immediate medical attention (Cho et 

al., 2014). It is the #1 cause of death, disability, and morbidity for those under the age of 

44 in the United States, resulting in almost 200,000 deaths and an economic burden of over 

$670 billion annually (ACS, 2016).  

The hospitals equipped and operated to provide a designated level of care for 

patients suffering from major traumatic injuries are referred to as trauma centers, TCs (Cho 

et al., 2014). The American College of Surgeons (ACS) has verified and categorized TCs 

based on their level of care, from Level I (L1) to Level V (L5). Both L1 and L2 are 

designated major trauma centers with access to high-quality medical and nursing care, and 

highly sophisticated surgical and diagnostic equipment. They are required to have 24/7 in-

house coverage and prompt availability in surgical specialties such as orthopedic, 

neurology, radiology, and even burn. On the other hand, the lower level of trauma centers 

(L3-L5) are intermediate facilities that only provide a subset of these services, only part of 

the day, and serve as centers for initial care, resuscitation, and transfer to L1/L2 centers 

(TCs). Because L1/L2 centers are destinations for appropriate care of severely injured 
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trauma patients, we refer to them as trauma centers (TCs) in this study; all other lower-

level trauma facilities and community hospitals are referred to as non-trauma centers 

(NTCs), which are ideal destinations for the non-severely injured trauma patients.  

2.1.1 On-field EMS decision making 

When a trauma event occurs, the subsequent Emergency Medical Service (EMS) 

decision making process involves two components; (i) injury assessment and (ii) 

destination determination. In (i), the EMS providers focuses on the extent of the injury 

using various diagnostic tests and underlying clinical factors to determine if the injury is 

severe or not. In (ii), the providers use this injury severity level and the network of hospitals 

nearby to determine which hospital is reachable in a certain timeframe and using what 

transportation mode (ground or air). Both components of the EMS decision-making are 

vital for the appropriate triage of the patient. An error during any step of EMS decision-

making results in the mistriage of the patient. In (i), incorrect classification of the injury 

type (severe or non-severe) results in the ‘clinical mistriage.’ For instance, classifying a 

severely injured patient as non-severe (during the diagnosis on the scene) and subsequently 

transporting to NTC. While in (ii), if a patient is not transported to the right hospital based 

on injury severity due to any reason, then it results in ‘system-related mistriage.’ For 

example, transporting a severely injured patient to NTC is a type of ‘system-related 

mistriage.’ We included the modifier ‘system-related’ because these mistriages are due to 

system-related parameters such as network of hospitals and transportation resources that 

impact the determination of the hospital type (TC vs. NTC). 
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2.1.2 State-of-the art in trauma care 

While a number of approaches have been proposed for injury assessment (Rotondo 

et al., 2014; Parikh et al., 2017), the impact of the underlying network on destination 

determination has recently received significant attention. Because trauma is a time-

sensitive condition, timely access to an L1/L2 TC is one of the key determinants of outcome 

in a trauma care system (Branas et al., 2013; Jansen et al., 2015). If a severely injured 

trauma patient is able to receive care at a L1 trauma center, then his/her survival improves 

by 25% relative to the care delivered at an NTC (MacKenzie et al., 2006).  

However, according to the Centers for Disease Control and Prevention, “there is no 

access to an advanced trauma center for nearly 45 million Americans within the golden 

hour (60 minutes)” (ACS, 2016). The reason for this is the geographic maldistribution of 

TCs in the U.S.; in 2010, nearly 9 states had a clustered pattern, 22 had a dispersed pattern, 

and 10 had a random pattern of TC distribution in the U.S. (Brown et al., 2016). Figure 1 

shows the distribution of nearly 520 L1/L2 TCs in the U.S. with a coverage of 90.8% of 

the total 

 

Figure 1. Network of L1/L2 TCs in U.S. Dark dots=TCs, dark 

shade = 60-minute coverage 
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population in 60 minutes across 30.38% land via ambulance and helicopter; for 45 minutes 

coverage, the coverage drops substantially to 76.72% population and 14.09% land (Branas 

et al., 2005; Carr & Branas, 2010).   

2.1.3 System-related mistriages 

The geographical maldistribution of TCs affects the time to reach a TC from the 

incidence location (i.e., field) by the EMS provider, and subsequently result in either 

system-related under-triage (srUT) or system-related over-triage (srOT).  A lack of a TC 

within a prespecified time (per clinical recommendations, usually 45 minutes upon EMS 

arrival) from the field can compel the EMS providers to take a severely injured patient to 

a nearby NTC, which is referred to as system-related under-triage (srUT). Figure 2(a) 

illustrates of the case of a severely injured patient transported to a nearby NTC because the 

nearest TC is not accessible within prespecified time (45 minutes) via ground and air. Note 

that in case of severe injuries, it is vital to transport such patients to the nearest TC, and not 

just to any TC which meets the prespecified time (Chen et. al., 2019; Gauss et al., 2019).  

Similarly, an excess (or cluster per Brown et al., 2016) of TCs in the vicinity of a 

field can induce the EMS providers to take a less severely injured patient to one of those 

 

(a) srUT                                                                 (b) srOT 

Figure 2. An example of system-related mistriages 
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TCs (instead of an NTC), which is referred to system-related over-triage (srOT), the other 

form of mistriage (Newgard et al., 2016). An example of srOT is shown in Figure 2(b).  

Note that an appropriate clinical triage (severely injured patient identified as such) 

can still result in system-related under-triage because a TC is too far away, and this patient, 

therefore, has to be taken to a local NTC. In that sense, the EMS decision around 

‘destination determination’ is similar to a binary classification problem with four possible 

outcomes; true positive (severely injured patient is taken to a TC), true negative (less 

severely injured patient is taken to an NTC), false positive (a less severely patient is taken 

to a TC, leading to srOT), and false negative (a severely injured patient is taken to an NTC, 

leading to srUT). The srUT rate is then calculated as (1-sensitivity), while srOT rate is 

calculated as (1-specificity). 

Both srUT and srOT have negative implications on patient safety. srUT can cause 

a delay in providing definitive care and increase the likelihood of an adverse outcome such 

as disability, morbidity, and even mortality (Rotondo et al., 2014). In contrast, srOT can 

cause overcrowding at emergency departments (Lerner, 2006), unnecessary trauma 

activation requiring trauma providers (physicians and nurses) to suspend their care of 

admitted trauma patients in an operating room and/or trauma inpatient unit to attend the 

arriving trauma patient (who does not have major trauma injuries), and loss of other 

salvageable lives in mass casualty trauma (Frykberg, 2002; Armstrong et al., 2008).  

While the ACS has developed a guideline, Needs Based Assessment of Trauma 

Systems (NBATS), which suggests the number of TCs in a region using a score derived 

based on trauma providers’ experiences, it does not suggest the locations of these TCs and 

cannot evaluate the impact of these TCs on srUT and srOT rates. A few studies have 
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emerged that attempt to use optimization-based approaches (see Section 2), but they do not 

account for srOT and provide insights on the effect of changes in the system parameters 

(e.g., weights for srUT and srOT rates, required volume at TC, and thresholds used to 

mimic EMS decision making) on the optimal network of TCs. 

2.1.4 Focus of this work  

Our work contributes to this field by addressing the questions posed to us by our 

collaborating trauma decision-makers and researchers, but cannot be done so using existing 

approaches: (i) What is the optimal network of TCs that minimizes the weighted sum of 

mistriages (i.e., srUT and srOT)? and (ii) How sensitive is the network to changes in system 

parameters? To address these questions, we propose the Trauma Center Location Problem 

(TCLP) of determining the optimal number and locations of TCs in order to minimize the 

Weighted Sum of Mistriages (WSM) and present a bi-objective optimization model.  

The key contributions of our approach are as follows. 

• First, we present a bi-objective optimization model for TCLP that determines which 

hospitals, among candidate locations, should be TC or NTC such that the weighted sum 

of srUT and srOT rates are minimized. Essentially, our model optimizes the network’s 

performance in terms of patient safety. This model extends the multi-facility and multi-

customer location models by incorporating individual customer characteristics and 

individualized network-dependent allocation, along with multi-transportation modes.  

• Second, the patient safety surrogates (i.e., srUT and srOT rates) are estimated based on 

actual incidences; incidences are typically used in the Trauma literature to estimate 

srUT and srOT as the population may not always be a good surrogate (Røislien et al., 
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2018). This is done through our proposed high-fidelity modeling of the mistriages via 

a notional tasking algorithm that emulates the ‘destination determination’ part 

(subsequent to the injury assessment part) of the EMS decision making process. We 

consider a variety of factors including the network of TCs (xj), thresholds ( and ; see 

Appendix A for details), the severity of the injury (Si), and ambulance and helicopter 

parameters. We also use estimated driving times (using Google Distance Matrix API) 

and air times (using the Haversine formula) from the field to all the candidate hospital 

locations.  

• Third, we propose a heuristic using binary particle swarm optimization to efficiently 

solve the proposed MIP model for the TCLP for real world instances. The complexity 

of the resulting mixed integer programming model limited the use of state-of-the-art 

optimization solvers for realistic problem size (1000s of cases in a network of over 150 

hospitals).  

• Fourth, we evaluate the sensitivity of our solutions to trauma volume, choice of weights 

that dictate the emphasis on srUT vs. srOT rates, and threshold values for srUT and 

srOT estimation. In so doing, we provide quantitative guidance to state trauma policy 

makers on appropriate choices of these parameters and their impact on patient safety 

across the state. For our experiments, we use a representative sample of 6,002 de-

identified trauma patient data from 2012 available from the US state of OH. We 

illustrate the use of our approach through a case study based on the actual network of 

this US state where we derive a ‘greenfield’ design and also a ‘redistribution’ of the 

TCs existing in 2012. 
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Our findings suggest that there is a direct relationship between the number of TCs 

in the region and the corresponding srUT and srOT rates. That is, as the number of TCs 

increases, for severely injured patients the access to these TCs becomes easier, which can 

lower the srUT rate. However, a larger number of TCs in the vicinity can prompt the EMS 

providers to transport less severely injured patients to these TCs, leading to a higher srOT 

rate. While the number and location of TCs are sensitive to the choice of weights that 

dictate the contribution of srUT and srOT rates in the objective function, they are also 

sensitive to the volume requirements and the threshold values. The application of our 

approach on the real 2012 trauma network in OH demonstrated over 31.5% decrease in the 

weighted objective (51.8% decrease in srUT rate and 1% increase in srOT rate) with only 

one additional TC. Redistribution of the 21 TCs led to a 30.4% decrease in the weighted 

objective (46.6% decrease in srUT rate and 4.95% decrease in srOT rate). Essentially, our 

approach not only provides a benchmark to evaluate an existing trauma network in the 

state, but can also be used to redistribute TCs (within a region or the entire state) to unearth 

latent benefits in terms of patient safety. 

The rest of the paper is organized as follows. Section 2 summarizes relevant 

literature, Section 3 presents the mathematical model that involves the estimation of srUT 

and srOT rates based on the mathematical programming-based formalization of a notional 

tasking algorithm (that approximates the EMS decision making process). Our proposed 

Binary PSO is detailed in Section 4 and insights based on our experimental study with a 

real dataset are presented in Section 5. Section 6 presents a case study where we use our 

approach to identify greenfield and redistribution networks for OH. Finally, Section 7 

summarizes our work and offers guidance in future research in this area. 
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2.2 Literature Review 

The literature on healthcare facility location is vast and includes locating long-term 

health care facilities (Cardoso et al., 2015), blood bank locations (Çetin & Sarul, 2009), 

organ-transplant centers (Caruso & Daniele, 2018), tuberculosis testing laboratories 

(Saveh-Shemshaki et al., 2012), and mobile healthcare units (Doerner et al., 2007). See 

Reuter-Oppermann et al. (2017), Ahmadi-Javid et al. (2017), and Gunes et al. (2019) for a 

comprehensive review of healthcare facility location models. These models vary in their 

objectives, may it be cost-based or patient safety-based. Several cost-based models have 

been proposed; e.g., location-allocation of organ-transplant centers (Zahiri et al., 2014), 

design of medical service (Shishebori & Babadi, 2015), and health centers for traumatic 

brain injury (Côté et al., 2007; Syam & Côté, 2010). Because the focus of our work is on 

patient safety, we now summarize key literature below.  

Access to a facility has often been used as a surrogate for patient safety; for 

instance, (i) minimizing the total distance or time traveled across all constituents and (ii) 

maximizing the demand coverage within a fixed assess time. Objective (i) has been used 

to improve access to healthcare facilities (Cocking et al., 2012); e.g., optimizing the 

locations of organ transplant centers (Beliën et al., 2013), location and dispatching 

decisions for an ambulance system (Schmid, 2012; Toro-Díaz et al., 2013), and shelter 

location in humanitarian logistics (Bayram et al., 2015; Chen et al., 2013). Similarly, 

objective (ii) has been preferred in general healthcare facility planning (Kim & Kim, 2013; 

Shariff et al., 2012); e.g., optimizing the location of ambulances (Ingolfsson et al., 2008),  

distribution centers in a relief network (Balcik & Beamon, 2008), and emergency response 
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facility during an earthquake (Salman & Yücel, 2015), as well as the relocation of 

ambulance stations (Cheng et al., 2011).  

A few approaches have been proposed in the IE/OR literature for multi-facility and 

multi-customer problems. Marianov and Taborga (2001) presented a hierarchical p-

covering type model to locate public health centers providing non-vital services in the 

presence of competing private centers to maximize low-income coverage. Yasenovskiy 

and Hodgson (2007) proposed a hierarchical location-allocation model that allows for by-

passing to maximize patron's benefits. Teixeira and Antunes (2008) presented a 

hierarchical location model with two different types of assignment constraints: closest-

assignment constraint and path-assignment constraint. Recently, Nasrabadi et. al. (2020) 

proposed a bi-hierarchy multi-service capacitated facility location-allocation problem with 

the bi-objective of minimizing total weighted travel time, and the fixed and operating cost 

of facilities. These studies, however, do not account for the time-sensitive nature of the 

assignment and only consider ground transport mode. 

Patient safety has been an important criterion in trauma facility location literature. 

Branas et al., (2000) propose a linear programming model, namely the Trauma Resource 

Allocation Model for Ambulance and Hospitals (TRAMAH), to simultaneously locate 

trauma centers and air ambulance with an objective of maximizing coverage of severely 

injured patients using Maryland as a test region. TRAMAH, first of its kind, considers 

Rand-McNally TripMaker Version 1.0 to calculate the shortest driving time and Euclidean 

distance for air time and is solved using CPLEX Version 1.2. The model, however, uses a 

proxy for incident location, lacking geographical granularity and does not account for less 

severely injured patients. Cho et al. (2014) present a model that simultaneously locates 
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trauma centers and medical helicopters with the objective of maximizing the expected 

number of patients transported to a TC within 60 minutes. The authors not only incorporate 

busy fraction for medical helicopters, but also develop the Shifting Quadratic Envelopes 

algorithm to optimize the problem. However, the model only considers severely injured 

patients (ISS>15), employed Euclidean distance between the demand region and each TC, 

and did not consider the aspect of mistriages that occur for both severely and less severely 

injured patients. 

Jansen et al. (2015) propose a novel data-driven approach with a bi-objective of 

minimizing the total access time and the number of exceptions or system-related UT (srUT) 

for Scotland. The authors extend the model formulation in Handing et al. (2016) and solve 

the extended formulation with a multi-fidelity surrogate-management strategy via NSGA-

II. They demonstrate the viability of their approach using real data from the state of 

Colorado’s trauma system (Jansen et al., 2018). In contrast, the model is computationally 

complex requiring considerable processing time and also fails explicitly in considering the 

over-triage cases, an important factor of a patient-safety metric. The ACS Committee on 

Trauma suggested tool, Needs-Based Assessment of Trauma System (NBATS), helps 

determine the required number of TCs in a specified geographical region by allocating 

points based on population, transport time, community support, where are severely injured 

patients transported (TCs and NTCs), and the total number of TCs (ACS-NBATS, 2015). 

However, the tool does not determine the location of the TCs.  

Our review of the above literature reveals the following gaps. First, the derivation 

of OT rates, based on injury score and its on-field operational decision-making process, 

has never been explicitly considered and accounted in the optimization models. Second, 



 

21 

 

none of the prior approaches consider the fact that the determination of medically-

appropriate time to access a suitable hospital (TC or NTC) varies by the type and volume 

of the injuries. For a severely injured patient, the proposed transportation times to the TC 

are as low as 30 and as high as 60 minutes (depending on the region/state), but for a less-

severely injured patient, there is no such reasonable transport time to the NTC proposed in 

the literature. Third, the sensitivity of the ‘access’ and ‘bypass’ thresholds for a patient to 

reach their designated level of care, used for determining the srUT and srOT rates, has not 

been explored. Finally, we know of no literature that jointly considers the metrics of 

mistriages (i.e., srUT and srOT) to determine the optimal number and location of TCs. 

To fill the gap as mentioned above, we propose a bi-objective trauma facility 

location optimization model to determine the optimal number and location of trauma 

centers with the aim of minimizing the weighted sum of mistriages. The key feature of our 

model is the inclusion of patient level decision-making related to destination selection, 

which is in turn based on patient’s severity of injuries and estimated drive times to each 

candidate location (TC or NTC). Our proposed notional tasking algorithm helps to estimate 

the resulting srUT and srOT rates. Several practical insights are presented based on the 

sensitivity analysis conducted by varying minimum trauma case volume, weights of 

mistriages, and threshold values for the srUT and srOT rates. We now present our proposed 

model. 

2.3 A Bi-Objective Model for TCLP 

We define the Trauma Center Location Problem (TCLP) as determining the optimal 

location of TCs that minimizes the weighted sum of mistriages (srUT and srOT) in the 
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entire trauma care network. The model assumes that a geographically defined area, 

typically known in the trauma literature as the Trauma Service Area (TSA), is known. This 

defined region could be a county, a region in the state, or the state itself.  

Before we present the model, it is important to effectively capture the EMS decision 

making around destination determination. Based on the existing trauma literature (Jansen 

et al., 2018) and our discussions with EMS providers in our region, this process requires 

both clinical and resource considerations. To mimic this decision-making process, we 

propose two thresholds: (i) ‘access’ and (ii) ‘bypass.’ Here the ‘access’ threshold is a 

clinically-driven value that prespecifies the time to reach a hospital for a severely injured 

patient; this time is specified by the American College of Surgeons or state regulations. On 

the other hand, the ‘bypass’ threshold is a resource-driven value that prespecifies the 

maximum additional minutes (compared to a nearby TC) the EMS can dedicate towards a 

non-severely injured patient in order to transport them to an NTC. 

Further, in line with the existing trauma literature, we use Injury Severity Score 

(ISS) as a surrogate for the severity of injuries on the field; ISS is a post-hoc metric 

evaluated after the patient arrives at the hospital. For a severely injured patient (ISS>15), 

the EMS providers often first check if a TC (the appropriate hospital) is accessible within 

the ‘access’ threshold time. If yes, then the patient is transported to that TC, resulting in a 

system-related appropriate triage positive (srATP
). If no, then they check if an air 

ambulance can be called in to transport the patient to the nearest TC (srATP
 via air). 

However, if the sum of the inbound-to-field, loading, and transport-to-TC times for the air 

ambulance is higher than the ‘access’ threshold, then the EMS would most likely transport 

the patient to a nearby NTC, resulting in a srUT.  
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In contrast, the case of a srOT is a bit more complicated. A TC may be located close 

to the trauma incidence site compared to an NTC. In this case, if for a less severely injured 

patient (with ISS ≤ 15) the additional time (beyond the time to TC) to reach an NTC (the 

appropriate hospital for this patient) is within the ‘bypass’ threshold, then the EMS will 

likely take the patient to the NTC; this would be deemed as system-related appropriate 

triage negative (srATN
). Otherwise, the EMS would likely take the patient to the nearby 

TC; this would be deemed as srOT. Anecdotally, such situations may arise due to EMS 

perception of a nearby TC’s reputation to be higher (i.e., the bigger the hospital the better 

the care), patient/family choice, insurance situation, and even negotiated contracts between 

the EMS and TC.  

Both srUT and srOT are estimated based on, and as indicated earlier, the EMS 

decision making process for ‘destination determination’ which is similar to a binary 

classification problem. Accordingly, we can generate a confusion matrix with srATP (true 

positive), srATN (true negative), srUT (type-1 error), or srOT (type-2 error); see Table 1. 

The notional tasking algorithm provides a means to classify each patient into these 4 

categories in the confusion matrix; as explained above (see Appendix A for examples); 

corresponding analytical expressions are in the optimization model below. If there are 

multiple patients at the incidence site (say, during a multi-vehicle crash), then each patient 

Table 1. Confusion matrix  

 
Injury Severity Score (ISS) 

ISS>15 ISS≤15 

 

Destination 

To TC 
System-related 

Appropriate-triage (srATP) 

System-related Over-triage 

(srOT) 

To NTC 
System-related Under-

triage (srUT) 

System-related Appropriate-

triage (srATN) 
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will be evaluated individually (as suggested by the EMS providers and specified in the 

data).  

The srUT rate is then calculated as (1-sensitivity), where the true positive value is 

the count of total system-related appropriate triages (via ground or air), and the false 

negative value or type-1 error is the total number of system-related under-triage cases for 

incidents with ISS>15 and for a given configuration. Similarly, the srOT rate is calculated 

as (1-specificity), where the true negative value is the count of total system-related 

appropriate triages, and the false positive value or type-2 error is the total number of 

system-related over-triage cases for incidents with ISS≤15 and for a given configuration. 

The two rates can be determined by srUT = 1 – sensitivity = 1 −  (
𝑠𝑟𝐴𝑇𝑃

𝑠𝑟𝐴𝑇𝑃+𝑠𝑟𝑈𝑇
) and srOT 

= 1 – specificity = 1 − (
𝑠𝑟𝐴𝑇𝑁

𝑠𝑟𝐴𝑇𝑁+𝑠𝑟𝑂𝑇
) (Newgard et al., 2016). 

Given this background, we now present our model under the following 

assumptions: 

• The candidate locations for the TCs and NTCs are known and finite. 

• Injury Severity Score (ISS) is used as a surrogate to estimate a patient’s injury severity 

at the field. 

• While ground ambulance services are available without constraints, the availability of 

air ambulance was restricted to 6.6% based on historical available data. 

• In line with existing trauma literature, air ambulance is only allowed for severely 

injured patients 

Tables 2 and 3 summarize the parameters and decision variables, respectively, used 

in our model. 
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Table 2. Parameters in the model 

Notation Definition 

i Index for trauma incidence (case); i = 1, 2, …, I 

j 
IndexFigure 29: Objective and # MTCs for different % of arOT in ISS 9-15 
grouphreshold for srUT (in minutes) 

β 

‘Bypass’ time threshold for sFigure 13. TSA with counties, and region; grey 
filled areas are urban counties; ‘+’represents candidate locationsrOT in ISS 9-
15 groupm its base to field (in minutes) 

Tload Loading time of a patient to an air ambulance (in minutes) 

Z Maximum allowable air ambulance use 

𝑉𝑚𝑖𝑛, 𝑉𝑚𝑎𝑥 
Minimum and maximum volume of a severely-injured patient if TC is located 

at j 

C Maximum number of allowable TCs in the TSA 

1 and 2 Weights for the srUT and srOT terms in the objective function; 1 + 2 = 1 

TGij Travel time from the location of case i to any candidate location j via ground 

TAij Travel time from the location of case i to any candidate location j via air 

SGij {l ∈ J: TGij < TGil}, i ∈ I, j ∈ J, that is the subset of candidate locations with 

higher time from case i than candidate location j via ground  

SAij {l ∈ J: TAij < TAil}, i ∈ I, j ∈ J, that is the subset of candidate locations with 

higher time from case i than candidate location j via air 

M Big number 

 

Table 3. Decision variables in the model 

Notation Definition 

xj 1, if a candidate location j is designated to be a TC; 0, otherwise 

𝑧𝑖𝑗
1  

1, if location j is marked as TC and is the nearest TC for case i via ground; 0, 

otherwise 

𝑧𝑖𝑗
0  

1, if location j is marked as NTC and is the nearest NTC for case i via ground; 

0, otherwise 

𝑦𝑖𝑗
1  

1, if case i is transported to location j via ground transport; 0, otherwise (i.e., if 

j is a TC, then case i is srATP and if j is an NTC, then case i is srATN) 

𝑦𝑖𝑗
2  

1, if a severely injured case i is transported to location j (that is marked as TC) 

via air transport; 0, otherwise (i.e., this case is considered srATP via air) 

𝑦𝑖𝑗
3  

1, if case i is transported to location j that is marked as TC via ground transport; 

0, otherwise (i.e., this case is considered srUT)  
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Minimize: 1 (1 −
∑ ∑ (𝑦𝑖𝑗

1 +𝑦𝑖𝑗
2 )𝑗𝑖:𝑆𝑖=1

∑ 𝑆𝑖𝑖
) + 2 (1 −

∑ ∑ 𝑦𝑖𝑗
1

𝑗𝑖:𝑆𝑖=0

∑ (1−𝑆𝑖)𝑖
)    

Subject to: 

Determining the nearest TC via ground  

𝑧𝑖𝑗
1 ≤ 𝑥𝑗;  𝑖 ∈  𝐼,  𝑗 ∈  𝐽 (1) 

∑ 𝑧𝑖𝑗
1

𝑗  = 1;  𝑖 ∈  𝐼 (2) 

𝑥𝑗 + ∑ 𝑧𝑖𝑙
1

𝑙 ∈ 𝑆𝐺𝑖𝑗
≤ 1;  𝑖 ∈  𝐼,  𝑗 ∈  𝐽    (3) 

Determining the nearest NTC via ground  

𝑧𝑖𝑗
0 ≤ (1 − 𝑥𝑗);  𝑖 ∈  𝐼: 𝑆𝑖 = 0,  𝑗 ∈  𝐽 (4) 

∑ 𝑧𝑖𝑗
0

𝑗  = 1;  𝑖 ∈  𝐼: 𝑆𝑖 = 0  (5) 

(1 − 𝑥𝑗) + ∑ 𝑧𝑖𝑙
0

𝑙 ∈ 𝑆𝐺𝑖𝑗
≤ 1;  𝑖 ∈  𝐼: 𝑆𝑖 = 0,  𝑗 ∈  𝐽  (6) 

Each severely injured case is assigned to only one category (to TC via ground, to 

TC via air, or srUT) 
 

∑ (𝑦𝑖𝑗
1 + 𝑦𝑖𝑗

2 + 𝑦𝑖𝑗
3 )𝑗 = 1;  𝑖 ∈  𝐼: 𝑆𝑖 = 1 (7) 

Assign severely injured cases to nearest TC that is within ‘access’ time threshold via 

ground  

𝑦𝑖𝑗
1  =  0;  𝑖 ∈  𝐼: 𝑆𝑖 = 1 ,  𝑗 ∈  𝐽, 𝑇𝐺𝑖𝑗 > 𝛼 (8) 

𝑦𝑖𝑗
1  = 𝑧𝑖𝑗

1 ;  𝑖 ∈  𝐼: 𝑆𝑖 = 1 ,  𝑗 ∈  𝐽, 𝑇𝐺𝑖𝑗 ≤ 𝛼 (9) 

Assign severely injured cases to nearest TC that is within ‘access’ time threshold via air 

𝑦𝑖𝑗
2  = 0;  𝑖 ∈  𝐼: 𝑆𝑖 = 1 ,  𝑗 ∈  𝐽, 𝑇𝐴𝑖𝑗 + 𝑇𝑖𝑛 + 𝑇𝑙𝑜𝑎𝑑 > 𝛼  (10) 

𝑥𝑗 + ∑ 𝑦𝑖𝑙
2

𝑙 ∈𝑆𝐴𝑖𝑗
≤ 1;  𝑖 ∈  𝐼: 𝑆𝑖 = 1 ,  𝑗 ∈  𝐽  (11) 

∑ ∑ 𝑦𝑖𝑗
2

𝑗𝑖  ≤  𝑍  (12) 

Assign severely injured cases to nearest TC located outside ‘access’ time threshold via 

ground (transfer srUT cases to TC from NTC) 

𝑦𝑖𝑗
3  ≤  𝑧𝑖𝑗

1 ;  𝑖 ∈  𝐼: 𝑆𝑖 = 1 ,  𝑗 ∈  𝐽, 𝑇𝐺𝑖𝑗 > 𝛼 (13) 

Assign non-severely injured cases to nearest NTC if ‘bypass’ time criteria met  

∑ (𝑧𝑖𝑗
0  𝑇𝐺𝑖𝑗)𝑗 − ∑ (𝑧𝑖𝑗

1  𝑇𝐺𝑖𝑗)𝑗 − 𝛽 ≤  𝑀(1 − ∑ 𝑦𝑖𝑗
1

𝑗 );  𝑖 ∈  𝐼: 𝑆𝑖 = 0   (14) 

𝑦𝑖𝑗
1  ≤ 𝑧𝑖𝑗

0 ;  𝑖 ∈  𝐼: 𝑆𝑖 = 0 ,  𝑗 ∈  𝐽 (15) 

Allowable number of TCs, and their minimum and maximum volume 

∑ 𝑥𝑗 ≤𝑗  C  (16) 
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∑ (𝑦𝑖𝑗
1 + 𝑦𝑖𝑗

2 + 𝑦𝑖𝑗
3 )𝑖: 𝑆𝑖=1 ≤ 𝑥𝑗  𝑉𝑚𝑎𝑥;  𝑗 ∈  𝐽 (17) 

∑ (𝑦𝑖𝑗
1 + 𝑦𝑖𝑗

2 + 𝑦𝑖𝑗
3 )𝑖: 𝑆𝑖=1 ≥ 𝑥𝑗  𝑉𝑚𝑖𝑛;  𝑗 ∈  𝐽 (18) 

Bounds on decision variables 

𝑥𝑗 , 𝑧𝑖𝑗
1 , 𝑧𝑖𝑗

0 , 𝑦𝑖𝑗
1 , 𝑦𝑖𝑗

2 , 𝑦𝑖𝑗
3  ∈ {0, 1};  𝑖 ∈  𝐼,  𝑗 ∈  𝐽 (19) 

 

The objective of the TCLP is to minimize the weighted sum of total srUT and srOT 

rates (referred to as WSM from now on) for the TSA. In the above objective function, the 

first term in bracket represents srUT rate = 1 – sensitivity = 1 −

𝑎𝑝𝑝𝑟𝑜𝑝𝑟𝑖𝑎𝑡𝑒𝑙𝑦 𝑡𝑟𝑖𝑎𝑔𝑒𝑑 𝑡𝑜 𝑎 𝑇𝐶 𝑐𝑎𝑠𝑒𝑠

𝐶𝑎𝑠𝑒𝑠 𝑤𝑖𝑡ℎ 𝐼𝑆𝑆>15
  = 1 −

∑ ∑ (𝑦𝑖𝑗
1 +𝑦𝑖𝑗

2 )𝑗𝑖:𝑆𝑖=1

∑ 𝑆𝑖𝑖
 and the second term represents srOT 

rate = 1 – specificity = 1 −
𝑎𝑝𝑝𝑟𝑜𝑝𝑟𝑖𝑎𝑡𝑒𝑙𝑦 𝑡𝑟𝑖𝑎𝑔𝑒𝑑 𝑡𝑜 𝑎 𝑁𝑇𝐶 𝑐𝑎𝑠𝑒𝑠

𝐶𝑎𝑠𝑒𝑠 𝑤𝑖𝑡ℎ 𝐼𝑆𝑆≤15
 = 1 −

∑ ∑ 𝑦𝑖𝑗
1

𝑗𝑖:𝑆𝑖=0

∑ (1−𝑆𝑖)𝑖
.  

Note that a severely injured case i is classified as srUT if it is not accessible to any 

TC (within the ‘access’ time threshold) via air or ground (∑ (𝑦
𝑖𝑗
1 + 𝑦

𝑖𝑗
2 )𝑗  = 0). On the other 

hand, a non-severely injured case i is classified as srOT if the difference between nearest 

NTC and TC time (via ground) exceeds the ‘bypass’ time threshold (∑ 𝑦
𝑖𝑗
1

𝑗  = 0); i.e., this 

case would likely be transported to a TC via ground as the NTC (correct hospital) is much 

further from the nearest TC(which mimics the practice among EMS). The values of srUT 

and srOT rates in the above objective function are weighted by multipliers 1 and 2, 

respectively. 

Constraints (1)-(3) determine the nearest TC. While Constraints (1) ensure that 

candidate location j must be a TC to be considered as the nearest TC, Constraints (2) ensure 

that for every case i, only one TC should be considered as the nearest TC. For any pair of 

case i and candidate location j, if candidate location j is marked as TC, then Constraints (3) 

rule out the assignment of case i to candidate location(s) l that are located further (in terms 



 

28 

 

of time) than j (the nearest TC for case i). Constraints (4)-(6) serve the same purpose as 

(1)-(3), respectively, for the nearest NTC via ground.  

Constraints (7) ensure that each severely injured case is either assigned to a TC 

within the ‘access’ time threshold via air or ground (resulting in srATP) or transferred to a 

TC located outside of the ‘access’ time threshold after the case i has been stabilized at a 

nearby NTC (resulting in srUT). Constraints (8) rule out the assignment of severely injured 

cases to candidate locations that are not accessible within ‘access’ threshold via ground. 

Constraints (9) enforce the assignment to the nearest TC when a nearest TC exists within 

the ‘access’ threshold for a severely injured case i.  

Constraints (7), (10), and (11) assign the remaining severely injured patients 

(unassigned via ground) to the TC via air if the total time to the TC is within the ‘access’ 

threshold. Constraints (10) rule out an assignment of severely injured cases to candidate 

locations that require total transport time more than the ‘access’ threshold via air. 

Constraints (11) rule out an assignment of severely injured cases to further located 

candidate location(s) via air if a given candidate location j marked as TC. Constraint (12) 

makes sure that the air transport usage does not exceed their availability; Z= ⌊µ ∑ 𝑆𝐼𝑖𝑖 ⌋, 

where µ = availability of air ambulance; 0≤µ≤1.  

As mentioned earlier, every srUT case (originally transported from the scene to an 

NTC) is eventually transferred to a TC to receive definitive care. Constraints (13) capture 

such transferred srUT cases to the nearest TC (considered from the incidence location) for 

eventual volume estimation at this TC. Here we assume that the reason a severely injured 

patient is transported to a NTC (srUT case) is because there is no nearby TC (say TC-1) 

within ‘access’ threshold from the incidence. Our analysis of real data from a US 
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midwestern state (see Section 5.1) indicated that the ratio of NTC to TC was 6.57 in 2012; 

i.e., there are a lot more NTCs than TCs. That is, there is a fairly low likelihood that another 

TC (say TC-2) is closer to the NTC than TC-1 (which was the closest from the incidence, 

but outside of the ‘access’ threshold). We use this low likelihood as the basis of assigning 

the srUT case to a TC that was closer to the incidence (i.e., TC-1, which was already 

identified as part of the constraints), instead of adding new constraints to locate a nearby 

TC from the NTC.   

Further, an NTC is not designed to provide definitive care for severely injured 

patients. A srUT patient is only resuscitated/stabilized at an NTC before an eventual 

transfer to a TC. This would typically happen within 24 hours of arrival to the NTC. 

Because of that, NTCs do not have any capacity requirements associated with treating 

severely injured patients, and hence we do not need such constraints on NTC.  

For each non-severely injured case i, Constraints (14) rule out the assignment of 

non-severely injured case i to an NTC if the ‘bypass’ threshold criterion is not met for that 

case; this case is marked as srOT. That is, it captures the situation when the nearest TC is 

located closer to the incidence site than the nearest NTC. Given that we have already 

categorized such a case as srOT, we do not need to explicitly assign srOT to a TC as they 

are not counted towards trauma volume; these are non-severely injured cases and are often 

discharged from the ED of a TC (without admission to the inpatient trauma unit). For non-

severely injured cases where the ‘bypass’ time threshold is met, Constraints (15) assign 

those cases to the nearest NTC and mark them as srATN. 

Constraint (16) ensures that the total number of TCs must be less than or equal to 

the maximum allowable TC. Constraints (17) and (18) calculate the volume of severely 
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injured cases at each 

candidate location j that is 

designated as a TC location 

and ensures that the volume 

is within the allowable 

bound. As mentioned 

before, besides the srATP, 

srUT cases are also counted 

in TC volume. The 

minimum bound essentially reflects the recommendations from the American College of 

Surgeons to ensure the financial viability of a TC; each TC must be able to offset the high 

cost of trauma readiness (physician, staff, equipment, and infrastructure).  

Clearly, TCLP is a specific case of the discrete multi-facility location optimization 

problem with specific focus on patient-level safety measures. Such problem is 

combinatorial in nature and has been shown to be NP-hard (Daskin, 2013). TCLP exhibits 

the same characteristic where the decision to open TC or NTC at each of the n candidate 

locations. For n=159, this results in 2159 = 7.3x1047 solutions. A commercial solver such as 

CPLEX 12.10 and Gurobi were not able to obtain an optimal solution to our original 

problem due to the large problem size and resulting out-of-memory issues. We noticed that 

runtime increased exponentially with an increase in the number of candidate locations (xj). 

For problem sizes with more than 47 candidate locations, we encountered out-of-memory 

issues with commercial solvers; see Figure 3.  

 

Figure 3. Number of candidate locations vs runtime 

using commercial solver 
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Considering this limitation of solving TCLP exactly, we explored the use of a 

heuristic-based approach via Particle Swarm Optimization (PSO) to derive near-optimal 

solutions within a reasonable amount of time. We now discuss our proposed PSO 

algorithm.  

2.4 Binary Particle Swarm Optimization 

PSO is a nature-inspired population-based metaheuristic algorithm that optimizes 

continuous nonlinear function (Kennedy James & Eberhard Russell, 1995). The approach 

mimics the social behavior of birds flocking and fish schooling.  It is easy to implement, 

makes fewer assumptions about the problem, is flexible and robust, and can be applied in 

a parallel manner. It has been implemented in a wide range of research areas such as facility 

location (Yapicioglu et al., 2007; Latha et al., 2013), network design (Chia-Feng Juang, 

2004; Izquierdo et al., 2008), and scheduling (Liu et al., 2007; Liao et al., 2007).  

The algorithm starts with a randomly distributed set of particles (potential 

solutions). With mathematical operators, the algorithm tries to progress to a solution with 

quality measure (fitness function). As the swarm of particles searches over time, they tend 

to fly towards better search regions, resulting in the convergence to a global optimum 

solution (Clerc & Kennedy, 2002). Each particle keeps track of its position which 

associates with the best solution it has achieved so far, known as particle best (pbest). On 

the other hand, global best (gbest) keeps track of the overall best value obtained thus far 

by any particle in the swarm. 

For example, the ith particle is represented as xi= (xi1, xi2, …, xid) in a d-dimensional 

search space. The previous best position of the ith particle is represented as pbesti= (pbesti1, 
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pbesti2, …, pbestid). The location of the best particle in the swarm is designated as gbest= 

(gbest1, gbest2, …, gbestd). The rate of position change (velocity) for the particle is 

represented as vi= (vi1, vi2, …, vid). The velocity vid and particle xid used to update the dth 

dimension of the ith particle for the tth iteration are given by: 

    𝑥𝑖𝑑
𝑡 =  𝑥𝑖𝑑

𝑡−1 + 𝑣𝑖𝑑
𝑡 ,                                                                                         (20) 

   𝑣𝑖𝑑
𝑡 = 𝐾(𝑣𝑖𝑑

𝑡−1 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖𝑑 − 𝑥𝑖𝑑
𝑡−1) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡𝑑 − 𝑥𝑖𝑑

𝑡−1)),            (21) 

where c1 and c2 are acceleration constants; c1 = 2.05 (Clerc & Kennedy, 2002), 

while c2 is initially set to c1/5 and gradually increase by 0.41 for every 25 iterations to allow 

particles to move slowly toward the global best solution. Further, 𝑟1 and 𝑟2 are two 

uniformly distributed random numbers in [0,1]. Constriction coefficient, K, aids in the 

convergence of the particle swarm algorithm; K=0.7298 (Clerc & Kennedy, 2002). The 

particle velocity given in equation (21) is composed of three primary parts: velocity from 

the previous iterations, cognitive or selfish influence (which uses the particle’s personal 

best to improve the individual particle), and social influence (which represents alliance 

among the particle in the swarm using global best). 

Recall that the decision variables in the TCLP are binary. We, therefore, use the 

binary version of the PSO, referred to as the BPSO (Kennedy & Eberhart, 1997). 

Accordingly, each particle represents its position in binary values, and the velocity of a 

particle is defined as the probability that might change the particle to either zero or one. 

The behavior and meaning of the velocity clamping and the inertia weight in the BPSO 

differ considerably from the real-valued PSO (Khanesar et al., 2007). However, the 

velocity update equation (21) remains unchanged, except that now the positions are binary 

and particle update equation (20) is replaced by: 
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                  𝑖𝑓 (𝑟𝑎𝑛𝑑() < 𝑆(𝑣𝑖𝑑)), 𝑡ℎ𝑒𝑛 𝑥𝑖𝑑 = 1; 𝑒𝑙𝑠𝑒 𝑥𝑖𝑑 = 0,        (22) 

where function S(v) is a sigmoid limiting transformation function, 𝑆(𝑣𝑖𝑑) = 1/(1 +

𝑒−𝑣𝑖𝑑),  and rand()~Uniform [0,1]. 

The likelihood of a change in a bit-value depends on S(v). Furthermore, the 

probability that a bit will be 1 equals S(vid), and that a bit will be 0 equals 1 - S(vid) 

(Kennedy & Eberhart, 1997). The high-level structure of the PSO is as follows: 

Initialize a population of particle with positions and velocities 

  Do 

        For each particle: 

             Evaluate fitness function using the notional tasking algorithm 

             Evaluate constraints 

             If feasible: 

                 If the fitness value is better than the particle best: 

                     Set the current solution as particle best 

                 If the fitness value is better than the global best: 

                     Set the current solution as global best 

             Else: 

                  Reject the solution 

        End 

        For each particle: 

             Update the particle velocity 

             Update the particle position 

        End 

  Until the termination criterion is met 

 

In our proposed BPSO, we consider a swarm of 40 initial feasible particles, each 

representing a network of TCs, with the following representation: H = {0, 1, 0, 1, 1, 0, ..., 

0, 1}; where 1 represents TC and 0 represents NTC, and |H| represents the total number of 

existing hospitals. As the optimization model aims to minimize the objective function, the 

value given to an infeasible solution is set much higher. Hence, keeping them out of the 

loop. Equation (21) and (22) are applied to updating the velocity and particle, respectively. 
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We used R to implement our proposed BPSO and the notional tasking algorithm on 

a computer with 2 nodes, each node had 12 cores and each core had 2 threads (i.e., a total 

of 48 parallel processing options). Each core had a 3 gigahertz processor. The total RAM 

across all 12 cores was 256 GB. We also implemented parallel processing in R to allow for 

faster evaluation of each particle, which helped reduce the computation time to about 8 

hours. Preliminary experiments suggested that 40 particles sufficiently balanced solution 

quality and solution time. Further, we implemented a dynamic change in the value of 

acceleration constant c2, which gradually increased the attraction to the global best 

(compared to personal best). This allowed the particles sufficient time to explore the search 

space around their personal best instead of speedy attraction to the global best position. We 

used two termination criteria based on preliminary experiments: maximum iterations (set 

to 1,000) and less than 0.1% improvement in the global best solution within 100 iterations.  

2.5 Experimental Setting 

To generate managerial insights, we conducted a series of experiments using a 

sample dataset made available for Ohio state by the Ohio Department of Public Safety 

(ODPS). The Wright State University’s Institutional Review Board approved this study as 

not involving human subjects (IRB#06027). We first summarize the characteristics of this 

dataset and then present our insights. 

2.5.1 Data collection 

We considered the 2012 network of hospital locations (TCs and NTCs) made 

available to us by the ODPS. The 2012 data corresponded to a network of a total of 159 
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hospital sites; 21 TCs and 138 NTCs. We 

were able to obtain the (latitude, 

longitude) information for each of these 

sites. We were also able to derive a 

sample of 6,002 de-identified trauma 

incidences from the data provided by the 

ODPS for that year. This sample was 

about 1/11th of the typical number of 

trauma incidences occurring in the state; 

67,542 cases in 2018 (Ohio Department 

of Public Safety, 2019); the correlation of a number of cases in each county between them 

was 0.84 suggesting that the 2012 data sample is a good enough representation of the spatial 

distribution of incidences. Figure 4 illustrates the heat map of 6,002 incidents, and the 

location of TCs and NTCs in 2012.  

 We used the Google Distance Matrix API to estimate drive time based on the 

quickest route from each incident to a hospital site. We used the Haversine formula for the 

corresponding air travel time (assuming the helicopter speed of 120 mph). The resulting 

time matrix for ground and air (each 159  6002 in size) served as a look-up table to the 

notional tasking algorithm in order to estimate srUT and srOT rates. Because helipad 

locations were not available, we let the time from helicopter depot to the field be 10 

minutes; in a similar vein, the loading of the patient was set to 5 minutes. Aggregating 

these two with the airtime from field to the nearest TC calculated using the Haversine 

formula, we estimated the total air transport time.  

 

Figure 4. Trauma Care in OH for 8 

regions; stars indicate TCs and crosses 

indicate NTCs. Darker shades of grey 

indicate higher values of incidences 
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2.5.2 Experimental study and insights 

Based on preliminary experiments, we noticed that the solutions were sensitive to 

four key factors, which are summarized in Table 4 along with their levels and values. 

Further, the American College of Surgeons recommends having at least 240 trauma cases 

per year for a TC to be viable; i.e., Vmin = 240 cases with severe injuries estimated as ISS>15 

(Rotondo et al., 2014). Hence, to correspond with the sample of 6,002, we scaled Vmin to 

22 (= 240/11).  

We set our ‘base case’ with Vmin=22 and =45, and =0 to mimic the current 

protocols in most states in the US. We set (1, 2) = (0.8, 0.2) to allow for more focus on 

patient safety; again, attempting to mimic how state governments try to locate TCs. We set 

Vmax = 91 (equivalent to 1,000 cases) as the upper bound on a TC volume and C = 159 in 

all our experiments. Maximum air ambulance usage for severely injured patients was 

bounded; i.e., Z= 61 to match with sample 2012 data. Below we summarize the results and 

insights from the sensitivity analysis.  

 

 

Table 4. Summary of the parameters, levels, and values in the sensitivity analysis 

Parameter Levels Values 

Weights (1, 2) 5 (1,0), (0.8,0.2), (0.6,0.4), (0.4,0.6), 

(0.2,0.8) 

Vmin 4 0, 11, 22, 33 

Access threshold () 3 15, 30, 45 minutes 

Bypass threshold () 3 -10, 0, 10 minutes 
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Insight 1: A higher emphasis on reducing the srUT rate means a corresponding 

increase in the number of TCs, but this can lead to a higher srOT rate. 

The selection of the weights plays a vital role in determining the optimal number 

and location of TCs. We varied both weights (1, 2) between 0 and 1 in steps of 0.2 such 

that 1 + 2 = 1. Note that when 1 >> 2, the emphasis is towards reducing the srUT rate 

(likely resulting in more TCs); while for 1 << 2, the emphasis is towards reducing the 

srOT rate (likely resulting in less TCs). 

Figure 5 represents the trend in srUT and srOT rates, and WSM value over the 

weights. The figure shows that as 1 decreased the srUT rate increased and as 2 increased 

the srOT rate decreased, resulting in a drop in the number of TCs. Although a solution with 

(1.0, 0.0) may be attractive in terms of the lowest WSM, it comes at a cost. First, the 

corresponding network has the highest number of TCs, which puts a financial burden on 

the state and the hospital system. Second, a higher corresponding srOT rate (0.14) means 

 

Figure 5. Representation of the srUT rate, srOT rate and WSM value over the 

weights; TCs in parenthesis for each column 
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a higher number of less severely injured patients at a TC, which is much more expensive 

than treating such patients at an NTC. Because such costs are difficult to estimate, we 

expect that this analysis will allow the trauma decision makers to make an informed 

judgement on the most appropriate network suitable for their region. From what we have 

learnt first-hand from trauma network designers, srUT is given a much higher emphasis 

compared to srOT. We would expect trauma decision makers to use our tools and start with 

a high 1 and then gradually lower it until a tolerable srUT is achieved to effectively trade-

off srUT and srOT.  

Insight 2: An increase in the minimum required volume of severely injured patients 

at a TC reduces the number of TCs in the network, but substantially increases srUT. 

We varied Vmin between 0 and 33 in increments of 11 to evaluate the impact of the 

minimum trauma volume on the TC network.; As mentioned earlier, the 240 cases (22 in 

our scaled down version) is a suggestion by the ACS based on empirical evidences, and, 

 
Figure 6. Representation of Vmin against the total number of TCs; WSM value in the [] 
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therefore, this sensitivity analysis provided a much-needed quantitative evaluation of the 

impact of changes in this value on the TC network and resulting srUT and srOT rates. Our 

results suggest that as minimum total trauma volume requirement at TC increased, the 

WSM value also increased. For a smaller value of the Vmin, the network tends to have more 

TCs in order to minimize the srUT rate; recall, we used 1=0.8 for srUT (base case). This 

is intuitive as an increase in the number of TCs would likely allow more severely injured 

patients to reach a TC, which results in a decrease in the srUT rate. However, it also means 

that less severely injured patients may now be transported to a TC (as there is likely a TC 

as close to the field as an NTC) resulting in an increase in the srOT rate. However, as the 

Vmin increased, the number of TCs decreased in order to satisfy the Vmin constraint. As a 

result, the srUT rate and the WSM value both increased. Figure 6 illustrates this trend.  

Essentially, a lower volume requirement can result in higher TCs and better patient 

safety. The implication of this is that the trauma decision-maker must appropriately set the 

minimum volume requirement as a TC with a low volume may not be financially viable.  

Insight 3: An increase in the ‘access’ threshold reduces the number of TCs.  

For this analysis, we considered the ‘access’ threshold (α) at 15, 30, and 45 minutes 

and a constant ‘bypass’ threshold of 0 minutes. Figure 7 illustrates the trend in the srUT 

and srOT rates, the WSM, and the number of TCs. Note that as the ‘access’ threshold (α) 

increased, the WSM (objective function) decreased. This is intuitive as, for the same 

network, an increase in α would mean that there is more allowable time for the EMS to 

transport a severely injured patient to a TC further away from the field (as compared to 

lower values of α). This means that the corresponding network will need fewer TCs to 
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achieve lower levels of srUT rate. Fewer TCs also means a lower srOT rate. As both srUT 

and srOT rates decrease, the WSM will also experience a drop with an increase in α.  

 

Insight 4: An increase in the ‘bypass’ threshold has a slight impact on the number of 

TCs. 

For this analysis, we considered the ‘bypass’ threshold () at -10, 0, and 10 minutes 

and a constant ‘access’ threshold of 45 minutes. Table 5 summarizes the corresponding 

number of TCs and the resulting srUT, srOT, and WSM. Notice the increase in the number 

of TCs is only marginal. The reason is that as the ‘bypass’ threshold increases, the EMS 

providers now have more opportunities to skip the nearby TC and reach the appropriate 

NTC for a less severely injured patient. This, in turn, means that even if the number of TCs 

increases marginally (as seen in Table 5), the NTCs are still reachable from the incidence 

location, resulting in a reduction in srOT. Note that because of higher access threshold and 

  

Figure 7. Representation of trend in srUT rate, srOT rate, objective function, and 

number of TCs 
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reasonable number of TCs, srUT rates are fairly low and their effect on the WSM is 

negligible. Any further increase from 18 TCs, for the case of (45, 10), led to an increase in 

the srOT rate (as more TCs means an increased likelihood of srOT cases) causing WSM to 

increase.  

2.5.3 Performance of the derived network with respect to unseen demand 

As mentioned earlier, there is a significant cost associated with upgrading an NTC 

to a TC. Consequently, it is important to evaluate if the PSO-derived, near-optimal, TC 

network based on historical data would perform reasonably well with respect to the unseen, 

future demand. To do this, we used the Train-Test approach. Accordingly, we apportioned 

the 2012 data (6,002 cases) into Train (4,002) and Test (2,000) datasets, approximately a 

2/3:1/3 split. To ensure that the spatial distribution of trauma incidences in each of these 

      

Full Data (6002 Incidences)         Train Data (4002 Incidences)       Test Data (2000 Incidences)         

Figure 8. Heatmap of incidences (darker area indicate higher values of incidences) 

Table 5. Impact of ‘bypass’ threshold on srOT and the number of TCs 

Thresholds #TC srOT srUT WSM 

(45, -10) 16 0.492 0.002 0.100 

(45, 0) 17 0.131 0.001 0.027 

(45, 10) 18 0.018 0.000 0.004 
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two datasets is similar to the Full dataset, we conducted the apportionment at the county 

level. The GIS-generated heatmaps in Figure 8 indicate that the apportionment was 

reasonable. We ran our proposed solution approach on the ‘base case’ (i.e., access threshold 

= 45 min, bypass threshold = 0 min) and adjusted other parameters corresponding to the 

reduced train and test sets. 

The following are the key observations from this analysis; see Table 6 for a 

summary: 

• The number of TCs found through the Train data set is identical to that found when 

using the full data set; WSMs are also similar. 

• Test WSM on the same network (obtained through Train data) is very similar to Train 

WSM. 

This analysis provides evidence that a near-optimal network obtained using 2012 

(Full) data will work reasonably well with respect to unseen, future demand. 

2.6 Case Study Based on OH’s Trauma Network 

We now illustrate how we used our proposed approach using the 2012 data from 

OH to derive (i) an optimal network (greenfield problem) and (ii) an optimal redistribution 

of existing TCs within that network (redistribution problem). Due to limited data fields in 

Table 6. Comparison of performance of network for full data and train data, and 

performance of test data for the network obtained through train data 

 
Full Data 

(6002 incidences) 

Train Data 

(4002 incidences) 

Test Data 

(2000 incidences) 

W

WSM 
0.0271 0.0291 0.0299 

# 

TCs 
17 17 - 
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this data set, we used the overall UT and OT rates (that could also include clinical 

mistriages) for this case study; these were UT rate = 0.20 and OT rate = 0.515 (which we 

use as srUT and srOT rate, respectively, in our discussion below). Because we observed 

variations in EMS practice on ‘access ()’ and ‘bypass ()’ thresholds in the state, and in 

order to conduct a fair comparison, we treated both thresholds as meta-parameters that 

encompass the existing variations in EMS-practice when it came to ‘destination 

determination.’ Subsequently, we empirically derived   = 30 minutes and  = -9 minutes 

ensuring that the resulting performance of the network met the 2012 srUT and srOT rates 

(0.20 and 0.515, respectively). Note that due to limited data fields, it was difficult for us to 

tease out the clinical mistriages; we, therefore, used these values of 0.2 and 0.515 as 

surrogate estimates for srUT and srOT rates, respectively. 

Our analysis of the 2012 trauma network is shown in Figure 4, which shows the 

distribution of the 21 TCs in the state. These TCs are generally located in areas with higher 

population density, resulting in a clustered pattern (also alluded in Brown et al., 2016); the 

resulting WSM at 1=0.8 and 2=0.2 was 0.270.  Not surprisingly, Regions 7 and 8 with 

no TCs experienced the highest srUT rate (=1.00) and a zero srOT rate; in contrast, Regions 

2 and 5 yielded a much lower srUT rate (0.078 and 0.084), but higher srOT rates of 0.527 

and 0.772, respectively. On the other hand, Region 1 with 5 TCs still produced an unusually 

high srUT rate of 0.47, largely because of the clustering of 3 out of 5 TCs in a single urban 

area (Toledo), which result in high access times for incidences that occur outside of Toledo.  
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2.6.1 Greenfield design of OH’s trauma network 

To optimize the network, we used identical system parameters: (1, 2)=(0.8, 0.2), 

=30, =-9, Vmax = 91, C=159; we set Vmin=22 to meet the ACS guidelines. The best 

solution obtained by BPSO (with 40 particles) resulted in 22 TCs with WSM=0.185 (a 

31.5% decrease from the 2012 estimate of 0.270). This optimized network reduced the 

srUT rate by 51.9% (i.e., 0.099 vs. 0.206 in 2012), with srOT rate increased by around 1% 

(i.e., 0.530 vs. 0.525 in 2012). Evaluation of the results depicted a rather dispersed pattern 

of TCs across the state (see Table 7). Specifically, Regions 7 and 8 (with TC in Region 8 

near to the boundary of the Region 7) now experienced a lower srUT rate of 0.786 and 

0.278, respectively. But the counter effect is that because of a TC in the region or near to 

the boundary of the region, the srOT rates increased in both Regions 7 and 8 (i.e., 0.229 

and 0.324, respectively). Alternatively, a reduction from 5 TCs to 2 TCs in Region 1 

resulted in the srUT rate dropping to 0.313 (compared to 0.47 in 2012) with a significant 

decrease in the srOT rate (0.252 compared to 0.41 in 2012). That is, while the state of OH 

Table 7. Comparison of 2012 network and optimized greenfield network 

Region 

# of TCs srUT rate srOT rate 

2012 

allocation 

TCLP 

allocation 

2012 

allocation 

TCLP 

allocation 

2012 

allocation 

TCLP 

allocation 

1 5 2 0.470 0.313 0.410 0.252 

2 3 3 0.078 0.000 0.527 0.525 

3 2 4 0.227 0.061 0.553 0.668 

4 4 4 0.184 0.143 0.576 0.588 

5 6 5 0.084 0.036 0.772 0.515 

6 1 3 0.174 0.062 0.302 0.553 

7 0 0 1.000 0.786 0.000 0.229 

8 0 1 1.000 0.278 0.000 0.324 

Overall 21 22 0.206 0.099 0.525 0.530 
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may have a nearly optimal number of TCs, their suboptimal distribution leads to high 

WSM.  

2.6.2 Redistribution of 21 TCs in OH 

If a ‘greenfield’ design may not be possible, then could a redistribution of the 21 

TCs within the state reduce the mistriages rate? To answer this question, we set C=21 in 

Constraint (16) of the TCLP model and kept the rest of the parameters identical to Section 

6.1. Figure 9 illustrates the differences in the heat maps for srUT and srOT across the 3 

networks (2012, greenfield, and redistributed). 

The results were quite interesting; the 21 TCs were distributed quite differently 

across the state (see Table 8 region-wise comparison). This redistribution likely allowed 

more trauma patients to access a TC within the ‘access’ threshold (via ground or air). This 

is evident from a substantial drop in the srUT rate (by 46.6% to 0.11); the srOT rate also 

decreased by 4.95% to 0.499; WSM reduced to 0.188 compared to 0.270 (a 30.4% 

decrease).  

Table 8. Comparison of 2012 network and redistributed network 

Region 

# of TCs srUT rate srOT rate 

2012 

allocation 

TCLP 

allocation 

2012 

allocation 

TCLP 

allocation 

2012 

allocation 

TCLP 

allocation 

1 5 2 0.470 0.253 0.410 0.223 

2 3 4 0.078 0.022 0.527 0.341 

3 2 4 0.227 0.055 0.553 0.668 

4 4 2 0.184 0.156 0.576 0.540 

5 6 5 0.084 0.080 0.772 0.504 

6 1 3 0.174 0.056 0.302 0.553 

7 0 0 1.000 0.786 0.000 0.229 

8 0 1 1.000 0.389 0.000 0.324 

Overall 21 21 0.206 0.110 0.525 0.499 
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                             srUT = 0.206                                                   srOT = 0.525 

(a) 2012 Network = 21 TCs 

            
                          srUT = 0.099                          srOT = 0.530 

(b) Greenfield Network = 22 TCs 

            
                           srUT = 0.110                srOT = 0.499 

(c) Redistributed Network = 21 TCs 

 

Figure 9. Heat maps of mistriages. 

(Note: Darker shades indicates higher values; Stars represents TCs) 
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The above two illustrations of our approach (i.e., greenfield and redistribution) 

using an actual state-wide network of all hospitals (TCs and NTCs) not only demonstrate 

that opportunities exist in the state to substantially improve patient safety, but also that our 

proposed approach is able to unearth those by specifying better networks. 

2.7 Summary 

Timely access of severely injured trauma victims to trauma centers can improve 

survival by 25%. Given the limitations of existing approaches in locating trauma facilities 

to address patient safety, we proposed the Trauma Center Location Problem (TCLP). The 

TCLP is to determine the optimal number and location of TCs in order to minimize the 

weighted sum of mistriages (srUT and srOT). This problem is an extension of multi-facility 

and multi-customer location models, which incorporates individual customer 

characteristics and individualized network-dependent allocation, along with multi-

transportation modes.  

We introduced an optimization model for TCLP that explicitly models patient 

safety via srUT and srOT rates, both estimated using our proposed notional tasking 

algorithm based on the standing guidelines in the trauma literature. To efficiently solve the 

resulting model, we proposed a Binary Particle Swarm Optimization (BPSO) approach and 

illustrated its use on 2012 data for the state of Ohio. The Train-Test approach provided 

further validity to our approach. 
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The key insights from our study include the following: 

• While an increase in the number of TCs can reduce srUT, it can increase srOT; setting 

an appropriate emphasis on their reduction (via weights) in the objective function is 

critical. 

• There is an inverse relationship between TC volume requirement and the number of 

TCs in the network. As a minimum volume requirement increases, some of the TCs 

need to downgrade to NTC's because of infeasibility due to low volume. A downgrade 

of TC increases the srUT rate that eventually decreases patient safety. 

• While requiring EMS to transport severely-injured patients to the nearest TC is 

desirable (reflected by a lower ‘access’ threshold), this can only be achieved through 

an increase in the number of TCs in the network (with the corresponding effect 

indicated in (i) above). 

• The illustration of our approach using real data from OH suggested that state has the 

nearly optimal solution in terms of the number of TC but significantly suboptimal 

objective value. A state can achieve up to 51.9% reduction in srUT at almost the same 

srOT rates can be realized with 1 additional TC; redistributing the same 21 TCs can 

still achieve the high reduction in srUT (46.6%) along with a 4.95% reduction in srOT. 

We believe our proposed approach is effective and efficient in helping state trauma 

decision makers not only evaluate their current system, but also optimize it (either as a 

greenfield or redistribution problem). They can also conduct ‘what-if’ analysis by fixing 

certain TCs in their current locations and allowing the optimization approach to find the 

locations of other TCs in the state. This latter approach can be of particular interest to those 

states where a mass reallocation of TCs is not possible; instead, they are seeking a gradual 



 

49 

 

change over a period of time, or evaluating the viability of a proposal by a healthcare 

system to upgrade an NTC to a TC or downgrade an existing TC to an NTC.
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CHAPTER 3

3 NESTED TRAUMA NETWORK DESIGN CONSIDERING EQUITY AND 

EFFECTIVENESS IN PATIENT SAFETY 

3.1 Introduction 

In the US, trauma is the leading cause of death for individuals aged 44 and under 

(#3 across all ages), resulting in almost 200,000 deaths and an economic burden of over 

$670 billion annually (ACS, 2016; CDC, 2022). Trauma is a serious public health problem 

with significant social and economic costs. A trauma care system in a state (or a region 

within a state) is often established in an attempt to provide prompt and definitive care to 

trauma patients. Timely access to a trauma center (TC) is one of the key determinants of 

patient outcomes (Branas et al., 2013; Jansen et al., 2015).  

3.1.1 Types of trauma centers 

The American College of Surgeons (ACS) verifies TCs as Levels I-V based on the 

presence of the type of trauma resources and their availability (American Trauma Society, 

2022). ACS-verified Levels I and II are referred to as major trauma centers (MTCs) and 

capable of providing definitive care for patients suffering from major traumatic injuries 

(i.e., severely injured patients). MTCs are equipped with highly sophisticated surgical and 

diagnostic equipment, with 24/7 surgeon availability, to provide high-quality medical and 
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nursing care. While timely access to a LI (MTC) improves survival of severely injured 

patients by 25% relative to care delivered at a non-trauma center (MacKenzie et al., 2006).  

According to the Centers for Disease Control and Prevention, “there is no access to 

an advanced trauma center for nearly 45 million Americans within the golden hour (60 

minutes)” (ACS, 2016). The reason for this is the geographic maldistribution of MTCs in 

the U.S.; in 2010, 9 states had a clustered pattern, 22 had a dispersed pattern, and 10 had a 

random pattern (Brown et al., 2016). Further, there is a significant cost associated with 

building and operating MTCs, and it can be financially challenging to open an MTC in 

rural areas due to concerns of sufficient patient volume.  

To circumvent this problem, Levels III-V TCs are set up to serve as feeder centers 

to MTCs for communities that do not have timely access to MTCs; we refer to such TCs 

as intermediate TCs (ITCs). ITCs provide a subset of services offered by LI/LII MTCs, but 

only during part of the day, and serve as centers for initial care, resuscitation, and 

subsequent transfer to major trauma centers (MTCs). It has been shown that an inclusion 

of ITCs in underserved counties decreases trauma-related mortality rates due to improved 

survival of transferred severely injured patients after stabilizing at those ITCs (Barringer 

et al., 2006; Tinkoff et al., 2007). After stabilizing, a patient is eventually transferred to an 

MTC as ITCs are not capable of providing definitive care to severely injured patients. All 

other hospitals are referred to as non-trauma centers (NTCs), which are the ideal 

destination for non-severely injured trauma patients.  
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3.1.2 On-field decisions and trauma triage 

The majority of trauma deaths occur in the pre-hospital environment or within 4 

hours of the trauma event (ACEP, 1987). The pre-hospital trauma triage is designed to 

transport the right patient to the right hospital at the right time. The emergency medical 

service (EMS) is crucial in providing initial care to the injured patient and accurate pre-

hospital triage. EMS providers’ on-field decision making practice involves two 

components; (i) injury assessment (how severe the injuries are) and (ii) destination 

determination (which hospital to select and how to transport). An error in making any of 

these decisions can lead to pre-hospital mistriage.  

Note that, besides mortality, mistriage has been used in the trauma literature as a 

surrogate for patient safety as it often increases the risk of short/long disability caused due 

to delay in provision of definitive care (Jansen et al., 2015; Hirpara et al., 2022, Parikh et 

al., 2022). Consequently, considering (i), an error in accurately assessing the injury type 

(severe or non-severe) can lead to ‘clinical mistriage.’ Similarly, for (ii), an error in 

determining the most suitable hospital type (trauma center or not) can lead to ‘system-

related mistriage.’  

3.1.3 System-related mistriages 

We define three types of system-related mistriages (as surrogates for patient safety). 

A situation when a severely injured patient is taken to an NTC because of a lack of access 

to an MTC experiences is referred to as ‘system-related under-triage (srUT).’ Further, in a 

trauma network with MTCs and ITCs, if a severely injured patient, who ideally should be 

transported to an MTC, is first transported to an ITC due to lack of access to MTC, then 
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we refer to that as ‘system-related under-triage stabilized (srUTs).’ We use the modifier 

‘stabilized’ because an ITC has the ability to provide prompt assessment, resuscitation, 

limited surgery, intensive care and stabilization of injured patients and emergency 

operations, compared to an NTC (in which case we would have referred this patient as 

srUT). In contrast, an excess (or cluster per Brown et al., 2016) of MTCs and ITCs in the 

vicinity of an incidence location (also known as scene) could induce EMS to transport a 

less severely injured patient to such hospitals, which we refer to as ‘system-related over 

triage (srOT).’ 

Generally, srUT (and srUTS) and srOT have negative implications on patient safety. 

A srUT increases the likelihood of an adverse outcome such as disability, morbidity, and 

even mortality due to delay in receiving definitive care (Rotondo et al., 2014). In contrast, 

a srOT indirectly impacts patient safety by causing overcrowding at emergency 

departments (Lerner, 2006), unnecessary trauma activation resulting in additional charges 

to the patient, and loss of salvageable lives in mass casualty trauma (Frykberg, 2002; 

Armstrong et al., 2008).  

3.1.4 Trauma network’s influence on destination determination 

It is during the destination determination phase when the network of MTCs and 

ITCs is critical. Table 9 shows three destination determination criteria used by EMS 

providers at the incidence location, the decision makers, and how the network of MTC/ITC 

impacts the corresponding decision.  Clearly, the network of MTC/ITC influences the 
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selection of an appropriate hospital for prompt and definitive care, eventually reducing 

mistriages and improving patient care.  

Although trauma literature alludes to the importance of network of MTC and ITC 

and implications on mistriages (a key patient safety metric), there key questions are yet to 

be addressed, which form the basis of our research. 

3.1.5 Focus of this work 

This paper focus on the strategic decision of jointly determining the number and 

location of MTCs and ITCs to improve patient safety. We address the following questions: 

• How do ITCs support patient safety? 

• What effect does destination determination criteria have on the MTC/ITC network? 

• How sensitive is the MTC/ITC network to the distribution of trauma patients? 

• What is the impact of focusing on equity of patient safety on the trauma network’s 

performance?  

The key contributions of our research are as follows. First, we propose a Nested 

Trauma Network Design Problem (NTNDP), which is a nested multi-level, multi-

Table 9. Influence of the trauma network on different destination determination 

criteria 

Dest. det. 

criteria 

Decision 

maker 
Influence of the MTC/ITC network 

Protocol EMS 

paramedics  

For severe injuries, take to an MTC (ideally) or ITC (if no 

MTC available) 

Patient 

choice 

Patient or 

family of a 

patient 

Choices tend to favor MTC or ITC based on perception of 

different hospital types in the vicinity, past experience, and 

access time  

Closest 

facility 

EMS 

paramedics 

Take to nearest hospital (even if NTC) during extreme 

weather condition or road closure 
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customer, multi-choice, multi-transportation capacitated model with a bi-objective of 

maximizing equity and effectiveness in patient safety. Multi-choice refers to the inclusion 

of all 3 dominant criteria for destination determination (see Table 9). While ‘equity’ 

quantifies the level of similarity in patient safety across regions in a geographical area 

(portion of a state or the state), ‘effectiveness’ quantifies overall patient safety (see Section 

3.1 for details). Second, we propose a three-step approach to efficiently solve the proposed 

MIP model. This approach is able to find a near-optimal solution in a reasonable amount 

of time for instances of realistic problem sizes. Finally, to test our approach, we generate 

several datasets with different distributions of trauma patients using information available 

from the trauma system of Ohio, a midwestern US state. We also evaluate the sensitivity 

of the solution to variations in proportion attributed to the 3 destination determination 

criteria, weights associated with equity and effectiveness, and different distributions of 

patients. Finally, we illustrate the use of our approach for real data from a midwestern US 

state (i.e., the state of Ohio). 

Our experiments suggest that destination determination criteria impact a trauma 

system's design and performance. While ACS and many state trauma agencies recommend 

using ‘protocol’ as the primary destination determination criteria, increased use of ‘patient 

choice’ criteria (often practiced in reality) results in more ITCs in suburban and rural zones; 

the corresponding mistriages are also high. Further, for the same number of patients, 

dispersed distribution of patients results in a 21.8% decrease in the trauma network 

performance (i.e., causes high mistriages) even with almost 3 times of ITCs in the network 

compared to cluster distribution. Further, if only equity among regions was emphasized 

(compared to effectiveness), the performance of the resulting network declines by over 8% 
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given the limitations inherent in the equity objective. Using real data from OH for 2019, 

we demonstrate that the state could achieve a 31.2% and 33.1% reduction in mistriages by 

using our approach to redistribute and optimize their trauma network.   

In the following sections, we first review the existing literature in Section 2. Our 

proposed optimization model for NTNDP and the solution approach are discussed in 

Sections 3 and 4, respectively. Next, we discuss our experimental study in Section 5 and 

illustrate the use of our approach on a real network in Section 6. Finally, in Section 7, we 

summarize our key findings and discuss avenues for further research.  

3.2 Literature Review 

Several approaches to address a variety of healthcare facility location problems 

have been proposed; e.g., primary health centers (Günes et al., 2014), long-term care 

centers (Cardoso et al., 2015; Intrevado et al., 2019), preventive healthcare facilities (Zhang 

et al., 2009; Zhang et al., 2010), ambulance location and/or relocation (Reuter-Oppermann 

et al., 2017; Vanbuuren et al., 2018), among others. For a comprehensive review, see 

Reuter-Oppermann et al. (2017), Ahmadi-Javid et al. (2017), and Gunes et al. (2019). 

Because our work focuses on patient safety, our review suggests that two types of 

surrogate metrics for patient safety have been widely used in the literature; (i) minimizing 

total distance or travel time across all constituents (Cocking et al., 2012; Schmid, 2012; 

Beliën et al., 2013; Toro-Díaz et al., 2013; Chen et al., 2013; Bayram et al., 2015) and (ii) 

maximizing demand coverage within a fixed access time (Ingolfsson et al., 2008; Balcik & 

Beamon, 2008; Lim et al., 2011; Shariff et al., 2012; Kim & Kim, 2013; Salman & Yücel, 

2015).  
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In terms of patient safety in trauma network design, Branas et al. (2000) proposed 

a model (known as TRAMAH) to simultaneously locate major trauma centers and air 

ambulances to maximize coverage of severely injured patients. Cho et al. (2014) also 

presented a model to simultaneously find major trauma centers and medical helicopters to 

maximize the expected number of patients transported to an MTC within 60 minutes. The 

authors incorporated busy fraction of medical helicopters in their model and developed the 

Shifting Quadratic Envelopes algorithm to optimize the problem. Lee et al. (2018) 

extended this model to a multiperiod location model by introducing an additional decision 

on when to locate trauma centers and air ambulances over a planning horizon. Considering 

additional complexity, the authors proposed a solution approach that iteratively updates 

helicopters’ availability using the previous step of optimization result. However, these 

approaches do not account for non-severely injured patients (who affect srOT) and 

intermediate trauma centers (which can improve access in rural areas). 

Jansen et al. (2015) proposed a novel data-driven approach to locate MTCs and 

ITCs with the bi-objective of minimizing the total access time and the number of 

exceptions or srUT for Scotland. The same authors developed a multi-fidelity surrogate-

management strategy to reduce the computation time for real-world data-driven 

optimization problems (Wang et al., 2016). They demonstrated the viability of their 

approach using real data from the state of Colorado’s trauma system (Jansen et al., 2018). 

While this model considered ITCs, it failed to account for non-severely injured patients 

and various destination determination criteria.  

To support decision making around trauma networks, the ACS Committee on 

Trauma (ACS COT) developed the Needs-Based Assessment of Trauma System (NBATS) 
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tool (ACS-NBATS, 2015). NBATS uses six criteria to suggest the required number of 

MTCs in a given geographical area, also known as the trauma service area (TSA); 

population, median travel times, lead agency support, an existing number of major trauma 

centers, and where severely injured patients are transported (MTCs and NTCs). However, 

NBATS does not determine the location of the MTCs. To address this gap, Parikh et al. 

(2022) proposed a model for a Performance-based Assessment of Trauma System 

(PBATS) to find the minimum number and location of MTCs by keeping system-related 

under-triage (srUT) and over-triage (srOT) rates within a prespecified limit. Recently, 

Hirpara et al. (2022) proposed a bi-objective model for trauma center location problem 

(TCLP) to determine the number and location of MTCs and NTCs in order to minimize the 

weighted sum of srUT and srOT rates. They demonstrated their approach through a case 

study based on the existing network of a US state with focus on ‘greenfield’ design and 

‘redistribution’ of existing MTCs. While both these recent works consider both types of 

patients and associated mistriages, they do not explicitly consider ITCs (a critical trauma 

facility for a viable trauma system) and various destination determination criteria (that 

affect mistriages). 

In terms of destination determination criterion, prior trauma location models have 

only considered a single criterion, often mimicking the ACS-suggested protocol. However, 

multiple criteria have been observed in practice besides this protocol, with patient choice 

and closest facility being dominant (Newgard et al., 2011, Newgard et al., 2013). Patient 

choice has been studied in many IE/OR journals to determine destination location in an 

optimization framework. Zhang et al. (2012) studied the impact of client choice behavior 

on the preventive care facility network configuration. The authors presented two alternative 
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models; (i) probabilistic-choice model based on the multinomial logit (MNL) model, where 

a client may patronize each facility with a certain probability based on the attractiveness of 

the facilities, and (ii) optimal-choice model, where each client will go to the most attractive 

facility. Zhang & Atkins (2019) presented several models for designing a network of walk-

in medical facilities. For a choice model, they considered travel time, attractiveness, and 

waiting time at the facility to calculate the utility of receiving care at a given facility. 

Further, they also considered deterministic patient choice, where a patient chooses the 

facility with the highest utility to receive care. Closest facility criteria have been considered 

in Cardoso et al. (2015), Mestre et al. (2015), and Nasrabadi et al. (2020). 

Our review of the literature suggests the following gaps: 

• All prior trauma system design approaches failed to explicitly consider multiple 

destination determination criteria alluded in medical literature and followed in 

practice. 

• None of the prior research considered both types of patients (severe and non-

severe), along with consideration of intermediate trauma centers. 

• Further, equity in safety among regions, along with effectiveness, have not been 

considered jointly in the trauma literature (further elaborated in Section 3). 

To fill the above gaps, we propose a nested multi-level, multi-customer, multi-

destination determination criteria and multi-transportation bi-objective (equity and 

effectiveness) capacitated model. Our proposed NTNDP model not only accounts for both 

types of patients (severely and non-severely injured) and associated mistriages, but also 

explicitly considers several other factors that affect system performance; i.e., ITCs, three 
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criteria for destination determination, and equity and effectiveness in patient safety. We 

now present our proposed model. 

3.3 A Bi-Objective Model for NTNDP 

Our generic model is developed for a Trauma Service Area (TSA); a geographical 

area comprising a collection of counties in a state, the state itself, or even collection of 

states, similar to the definition in NBATS tool. Further, this TSA is divided into subareas 

known as regions or districts, which have the oversight to providing trauma care within 

that region. Because of the existence of such regions within a TSA, it becomes critical to 

consider the equity of patient safety among regions when designing a trauma network.  

A variety of equity measures have been proposed in the literature when allocating 

public resources; e.g., minimax, variance, range, sum of absolute deviations, sum of 

absolute deviation from desire standard, squared coefficient of variation, and Gini index 

(Burkey et al., 2012; Lejeune et al., 2013; Smith et al., 2013; Chanta et al., 2014; Wang et 

al., 2015; Ares et al., 2016; Enayati et al., 2019). However, little consensus exists 

concerning which equity measure researchers should employ (Stone, 1997; McLay & 

Mayorga, 2013). Based on our interactions with trauma collaborators, their general focus 

is to improve patient safety in the worst-performing region (among all regions) of the TSA. 

Therefore, we use the minimax equity measure as it intrinsically focuses on improving the 

performance of the worst one.  

However, any equity measure as a standalone objective often results in undesirable, 

sometimes meaningless, solutions (Burkey et al., 2012; Smith et al., 2013; Enayati et al., 

2019). For instance, minimax cannot distinguish between two networks with identical 
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worst performing regions; however, one solution could have better performance in other 

regions than the other solution. In some situations, if a higher aggregated network 

performance can be achieved with a slightly less equity among individual regions, then it 

may be a preferred network for the decision makers. Considering both these factors, recent 

literature has proposed ‘effectiveness’ as a supporting metric, alongside equity (Burkey et 

al., 2012; Smith et al., 2013; Enayati et al., 2019). We, therefore, use both equity and 

effectiveness as objective terms in the proposed model. That is, the NTNDP is to determine 

the optimal number and location of MTCs and ITCs to maximize the weighted sum of 

equity in patient safety (among regions) and effectiveness (across the TSA).  

Recall that patients with traumatic injuries can be classified into two categories; (i) 

severely injured patients with life-threatening injuries and (ii) non-severely injured with 

other trauma injuries. In line with the existing trauma literature, we use Injury Severity 

Score (ISS) as a surrogate to estimate the severity of injury at the incidence location. We 

also define two thresholds: ‘access’ threshold as a clinically-driven time (specified in 

trauma literature) to reach a hospital (MTC, ideally) and ‘bypass’ threshold as a resource-

driven value that specifies the maximum additional minutes (compared to a nearby 

MTC/ITC) that EMS can dedicate to transport them to an NTC (ideal hospital). 

Before we present the model, we first present some preliminaries around 

destination determination and triage classification. 

3.3.1 Triage classification 

Table 10 classifies the triage types based on injury severity and destination hospital 

type. Irrespective of the destination determination criteria, if a patient is transported to the 
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ideal hospital type based on their injury severity, then it is deemed as appropriate triage; 

i.e., severely injured transported to MTC is classified as srATP and non-severely injured 

transported to NTC is classified as srATN. Mismatch in injury severity and destination 

hospital type results in mistriage (see Figure 10); recall that ISS>15 is considered a severely 

injured patient. 

As mentioned earlier, delay in definitive care for severely injured patients (i.e., 

srUTS or srUT) increases the likelihood of an adverse outcome due to the life-threatening 

nature of those injuries. We combine both mistriages associated with severely injured 

patients and refer to it as ‘system-related aggregated under-triage (srAU).’ It defines as a 

weighted sum of srUT and srUTS. In contrast, mistriage of the non-severely injured 

patients indirectly impacts patient safety and is relatively non-serious. Therefore, we 

consider mistriages of severely injured patients (i.e., srUT and srUTS, aggregated as srAU 

in the model) as the primary patient safety metric, while mistriage of non-severely injured 

patients (i.e., srOT) as a secondary patient safety metric. 

Table 10. Classification of triage type based on injury severity and destination 

hospital type 

 

Injury Severity Score (ISS) 

ISS>15 (severely injured) 
ISS≤15 (non-severely 

injured) 

Destination 

hospital 

type 

MTC 
System-related appropriate-

triage (srATP) System-related over-triage 

(srOT) 
ITC 

System-related under-trigae 

stabilized (srUTS) 

NTC 
System-related under-triage 

(srUT) 

System-related appropriate-

triage (srATN) 
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3.3.2 Destination determination 

Recall that in Section 2, we mentioned that we incorporate three dominant 

destination determination criteria that EMS use at the incidence location; protocol, patient 

choice, and closest facility. 

3.3.2.1 Protocol 

The protocol criterion is essentially the Notional Tasking Algorithm (NTA) that 

attempts to mimic the EMS decision making process at the incidence location, as proposed 

by the American College of Surgeons (ACS). It considers clinical and resource factors for 

destination determination. In this paper, we extend the NTA used in Hirpara et al. (2022) 

to consider ITCs for severely injured patients (see Figure 11). The NTA follows an ordered 

priority list based on patient’s injury severity, the thresholds, and the vicinity of MTCs, 

ITCs, and NTCs.  

3.2.1.1 Severely injured patient: The top priority is to assign a severely injured patient to 

any MTC (ideal hospital) within the ‘access’ threshold via ground; if this occurs, we refer 

to it as system-related appropriate triage positive (srATP). If no MTC is accessible via 

ground, then the second priority is assigning them to an MTC that is accessible via air 

 

  (a) System-related under-              (b) System-related                 (c) System-related  

 triage stabilized (srUTs)                under-triage (srUT)                over-triage (srOT) 

 

Figure 10. Mistriages based on severity of injury and destination hospital type 
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ambulance (if available); this is also considered as srATP. For air ambulance transport, the 

NTA considers inbound-to- incidence location, loading, and transport-to-MTC times and 

compares it against the ‘access’ threshold; if below, then such transport is feasible.  

If one of the first two priorities satisfy, then the third and fourth priorities are to 

assign them to an accessible ITC (not ideal, but better equipped than NTC) via ground and 

air. Because the ideal trauma hospital (i.e., MTC) is not chosen, we consider such a patient 

as system-related under-triage stabilized (srUTS). The modifier ‘stabilized’ is used because 

ITCs are often capable to stabilize a severely injured patient. If all of the above are 

infeasible, then, as the last option for EMS, the patient is assumed to be transported to a 

nearby NTC; this results in system-related under-triage (srUT). 

 

Figure 11. Notional Tasking algorithm 
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3.2.1.2 Non-severely injured patient: For such ISS≤15 patients, the ‘bypass’ threshold is a 

resource-driven value that specifies the maximum additional minutes (compared to a 

nearby MTC/ITC) EMS can dedicate to transport the patient to an NTC (ideal hospital). 

For example, suppose the additional time to reach an NTC beyond the time to nearest 

MTC/ITC (say, 10 minutes) is within the ‘bypass’ threshold (say 15 minutes), then, in 

practice, the EMS is often likely to take the patient to that NTC. We refer to this type of a 

situation as system-related appropriate triage negative (srATN). Otherwise, the EMS would 

likely take the patient to the nearby MTC/ITC (due to longer drive or other operational 

criteria) resulting in system-related under-triage (srOT). 

3.3.2.2 Patient choice 

Anecdotal evidence and discussions with EMS suggest that patients often choose 

bigger hospitals over nearby hospitals due to their perception that the bigger the hospital, 

the better the care. However, travel time to the hospital also impacts their decision as they 

want to reach the hospital soon to avoid delay in receiving the care. In line with literature 

in the healthcare domain, we model patients’ choices through a linear utility model (Zhang 

et al., 2012; Haase & Müller, 2015; Zhang & Atkins, 2019). Accordingly, linear function 

comprises two dominant components that impact patients’ decision making; (i) the 

attractiveness of hospitals and (ii) ground travel time to those hospitals. The below equation 

calculates the utility of patient i receiving care at hospital j as a linear function of 

attractiveness of facility j (𝐴𝑗) and ground travel time from the location of patient i to 

hospital j (TGij): 

𝑢𝑖𝑗 = 𝛽1𝐴𝑗 −  𝛽2 𝑇𝐺𝑖𝑗 
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Here, we let the attractiveness of a hospital for a patient (𝐴𝑗) depend upon the 

hospital type (MTC, ITC, or NTC) and that it is identical for all patients. The coefficients 

β1 and β2 denote the sensitivity to the two components, respectively, and can be estimated 

empirically based on available data or existing literature. Each patient is assigned to a 

hospital that has the highest utility across all hospitals.  

3.3.2.3 Closest facility 

In case of extreme weather considerations, road closures, or other unforeseen 

circumstances, EMS providers tend to prioritize closest facility over protocol or patient 

choice, irrespective of patient’s injury severity and closest hospital’s type. We model this 

by assigning such a patient to the closest hospital from the incidence location. 

3.3.3 Optimization model 

With this background, we now present the model under the following assumptions: 

• The candidate locations for the MTCs, ITCs, and NTCs are known and finite. 

• The number of patients, their locations, and severity are deterministic and known. 

• The destination determination criteria for each patient is preassigned based on the 

given %-allocation among the three criteria. 

• All severely injured patients, if initially transported to an ITC or an NTC, will 

eventually be transferred via ground to the nearest MTC from the incidence location 

(to allow them access to definitive care); patients are categorized as srUT and srUTS 

accordingly because of delays in reaching MTC. 
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• The attractiveness of the facility to patients is given and depends only on the 

hospital’s type. 

• A severely injured patient can be assigned to any MTC/ITC accessible within the 

access threshold in protocol criteria. 

Further, in keeping up with the existing literature and what was observed in the data 

we had access to, we make the following assumptions about transportation modes: 

• Ground and air transport times are known and deterministic. 

• Air ambulance is only allowed to transport severely injured patients to MTCs and 

ITCs in the protocol criteria. 

• While ground ambulance services are available without constraints, the availability 

of air ambulances was restricted to 15% of total severely injured patients based on 

data from state trauma agencies reports. 

Tables 11 and 12 summarize the parameters and decision variables, respectively, used in 

the model. 
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Table 11. Parameters in the model 

Notation Definition 

I Set of incidences for trauma patients, divided into the subsets 

• 𝐼𝑂; subset of patients assigned via protocol criteria; 𝑖 ∈ 𝐼𝑂 ⊆ 𝐼  

• 𝐼𝑃; subset of patients assigned via patient choice criteria; 𝑖 ∈ 𝐼𝑃 ⊆ 𝐼  

• 𝐼𝐶; subset of patients assigned via closest facility criteria; 𝑖 ∈ 𝐼𝐶 ⊆ 𝐼 

J Set of candidate locations (for MTC, ITC, and NTC); j ∈ J 

K Set of regions in the TSA; k ∈ K 

L Set of hospital type; 𝑙 ∈ 𝐿; l = 1, 2, 3 represent MTC, ITC, and NTC, 

respectively 

𝜔1, 𝜔2 Weights for equity and effectiveness in the objective function; 𝜔1  + 𝜔2  = 1 

γ, δ Weight for srUT and srUTS patient 

𝑆𝑖 Injury severity of patient i; 1, if severely injured (ISS > 15); 0, otherwise 

𝑅𝑖𝑘 Region indicator, 1 if patient i is from a region k; 0, otherwise   

𝑇𝐺𝑖𝑗, 𝑇𝐴𝑖𝑗 Travel time from patient i to any candidate location j via ground and air 

SGij Subset of set J corresponding to each i-j pair and includes all other locations 

t∈J such that ground travel time from patient i to t is greater than from i to j 

(i.e., t∈SGij, if TGij < TGit; j,t ∈ J) 

α ‘Access’ time threshold to determine srUT (for protocol criteria only)  

β ‘Bypass’ time threshold to determine srOT (for protocol criteria only)  

𝑇𝑖𝑛, 𝑇𝑙𝑜𝑎𝑑 Inbound time from base-to-incidence location and loading time of patient at the 

incidence location for an air ambulance 

Z Maximum allowable patients via air ambulance 

𝐴𝑙 Attractiveness of hospital level l 

𝛽1, 𝛽2 Coefficient for attractiveness and travel time in the utility function 

𝑉𝑀𝑇𝐶
𝑚𝑖𝑛, 𝑉𝑀𝑇𝐶

𝑚𝑎𝑥 Minimum and maximum allowable volume of a severely injured patient at 

MTC  

𝑉𝐼𝑇𝐶
𝑚𝑖𝑛, 𝑉𝐼𝑇𝐶

𝑚𝑎𝑥 Minimum and maximum allowable volume of a severely injured patient at ITC  

Ψ Minimum allowable ratio of number of ITCs to MTCs 

OTmax Maximum allowable overall over-triage patients  

𝐴𝑖𝑗
𝐺 , 𝐴𝑖𝑗

𝐴  Accessibility of candidate location j from patient i within α via ground and air; 

1, if candidate location j is accessible from patient i; 0, otherwise 

ρ Equivalent fraction of an MTC corresponding to an ITC 

C Maximum equivalent MTCs allowed in the network 

M Big number 
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Minimize: 𝜔1 𝑎𝑢𝑚𝑎𝑥   +  𝜔2  
∑ 𝑎𝑢𝑘𝑘

|𝐾|
   

Subject to: 

 

Calculation of region-wise and maximum aggregated under-triage  

𝑎𝑢𝑘 =  𝛾 ∑ 𝑅𝑖𝑘 ∑ (𝑦𝑖𝑗
3 − 𝑦𝑖𝑗

4 − 𝑦𝑖𝑗
5 )𝑗𝑖:𝑆𝑖=1 + 𝛿 ∑ 𝑅𝑖𝑘 ∑ (𝑦𝑖𝑗

4 + 𝑦𝑖𝑗
5 )𝑗𝑖:𝑆𝑖=1 ;  𝑘 ∈ 𝐾  (1) 

𝑎𝑢𝑚𝑎𝑥  ≥ 𝑎𝑢𝑘;  𝑘 ∈ 𝐾   (2) 

Limit on number of MTCs, and their minimum and maximum volume 

 ∑ 𝑥𝑗
𝑙

𝑙 =  1;  𝑗 ∈ 𝐽  (3) 

∑ 𝑥𝑗
1

𝑗 + 𝜌 ∑ 𝑥𝑗
2

𝑗 ≤ 𝐶  (4) 

𝑥𝑗
1 𝑉𝑀𝑇𝐶

𝑚𝑖𝑛 ≤  ∑ (𝑦𝑖𝑗
1 + 𝑦𝑖𝑗

2 + 𝑦𝑖𝑗
3 )𝑖: 𝑆𝑖=1 ≤ 𝑥𝑗

1 𝑉𝑀𝑇𝐶
𝑚𝑎𝑥;  𝑗 ∈ 𝐽  (5) 

Allowable number of ITCs, and their minimum and maximum volume 

∑ 𝑥𝑗
2

𝑗 ≥  ψ  ∑ 𝑥𝑗
1

𝑗  (6) 

Table 12. Decision variables in the model 

Notation Definition 

𝑥𝑗
𝑙 1, if a candidate location j is designated to be level l; 0, otherwise 

𝑎𝑢𝑘, 𝑎𝑢𝑚𝑎𝑥 System-related aggregated under-triage in region k; 𝑎𝑢𝑚𝑎𝑥 = 𝑚𝑎𝑥
𝑘

{𝑎𝑢𝑘} 

𝑦𝑖𝑗
1  1, if patient i is transported via ground to location j (i.e., if j is an MTC, 

then patient i is srATP and if j is an NTC, then patient i is srATN); 0, 

otherwise; 

𝑦𝑖𝑗
2  1, if severely injured patient i (𝑖 ∈ 𝐼𝑂 ⊆ 𝐼) is transported via air to location j 

that is marked as MTC (i.e., srATP via air); 0, otherwise 

𝑦𝑖𝑗
3  1, if severely injured patient i is transferred (from ITC or NTC) to location j 

that is marked as MTC (i.e., transferred srUT or srUTS patient); 0, 

otherwise 

𝑦𝑖𝑗
4  1, if severely injured patient i is transported via ground to location j that is 

marked as ITC (i.e., srUTS via ground); 0, otherwise 

𝑦𝑖𝑗
5  1, if severely injured patient i (𝑖 ∈ 𝐼𝑂 ⊆ 𝐼) is transported via air to location j 

that marked as ITC (i.e., srUTS via air); 0, otherwise 

𝑛𝑒𝑖𝑗
𝑀𝑇𝐶_𝐼𝑇𝐶

 1, if location j is marked as MTC or ITC and is the nearest non-NTC via 

ground for patient i (𝑖 ∈ 𝐼𝑂 ⊆ 𝐼); 0, otherwise 

𝑛𝑒𝑖𝑗
𝑁𝑇𝐶 1, if location j is marked as NTC and is the nearest NTC via ground for 

patient i (𝑖 ∈ 𝐼𝑂 ⊆ 𝐼); 0, otherwise 

𝑢𝑖𝑗, 𝑢𝑖
𝑚𝑎𝑥 Utility of patient i receiving care at hospital j; 𝑢𝑖

𝑚𝑎𝑥 = 𝑚𝑎𝑥
𝑗

{𝑢𝑖𝑗} 

𝑛𝑖𝑗 1, if candidate location j is the nearest hospital for patient i (𝑖 ∈ 𝐼𝐶 ⊆ 𝐼) or 

if the highest utility for patient i (𝑖 ∈ 𝐼𝑃 ⊆ 𝐼) occurs for a hospital j; 0, 

otherwise 
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𝑥𝑗
2 𝑉𝐼𝑇𝐶

𝑚𝑖𝑛 ≤  ∑ (𝑦𝑖𝑗
4 + 𝑦𝑖𝑗

5 )𝑖: 𝑆𝑖=1 ≤ 𝑥𝑗
2 𝑉𝐼𝑇𝐶

𝑚𝑎𝑥;  𝑗 ∈ 𝐽  (7) 

Limit on state-wide srOT  
 

∑ (1 − 𝑆𝑖𝑖 ) − ∑ ∑ 𝑦𝑖𝑗
1

𝑗𝑖:𝑆𝑖=0  ≤  𝑂𝑇𝑚𝑎𝑥  (8) 

Assignment and triage classification using protocol criteria 

∑ (𝑦𝑖𝑗
1 + 𝑦𝑖𝑗

2 + 𝑦𝑖𝑗
3 )𝑗 = 1; 𝑖 ∈ 𝐼𝑂: 𝑆𝑖 = 1  (9) 

𝑦𝑖𝑗
1 = 0;  𝑖 ∈ 𝐼𝑂: 𝑆𝑖 = 1, 𝑗 ∈ 𝐽, 𝑇𝐺𝑖𝑗 > 𝛼 (10) 

𝑦𝑖𝑗
2 = 0;  𝑖 ∈ 𝐼𝑂: 𝑆𝑖 = 1, 𝑗 ∈ 𝐽, 𝑇𝐴𝑖𝑗 + 𝑇𝑖𝑛 + 𝑇𝑙𝑜𝑎𝑑 > 𝛼  (11) 

∑ 𝐴𝑖𝑗
𝐺 𝑥𝑗

1
𝑗 ≤ 𝑀 (1 − ∑ 𝑦𝑖𝑗

2
𝑗 );  𝑖 ∈ 𝐼𝑂: 𝑆𝑖 = 1  (12) 

𝑥𝑗
1 + ∑ 𝑦𝑖𝑡

3
𝑡 ∈ 𝑆𝐺𝑖𝑗

≤ 1;  𝑖 ∈ 𝐼𝑂: 𝑆𝑖 = 1, 𝑗 ∈ 𝐽   (13) 

∑ (𝑦𝑖𝑗
4 + 𝑦𝑖𝑗

5 )𝑗 ≤  ∑ 𝑦𝑖𝑗
3

𝑗 ;  𝑖 ∈ 𝐼𝑂: 𝑆𝑖 = 1  (14) 

𝑦𝑖𝑗
4 = 0;  𝑖 ∈ 𝐼𝑂: 𝑆𝑖 = 1, 𝑗 ∈ 𝐽, 𝑇𝐺𝑖𝑗 > 𝛼 (15) 

∑ 𝐴𝑖𝑗
𝐺 𝑥𝑗

1
𝑗 ≤ 𝑀 (1 − ∑ 𝑦𝑖𝑗

4
𝑗 );  𝑖 ∈ 𝐼𝑂: 𝑆𝑖 = 1  (16) 

𝑦𝑖𝑗
5 = 0;  𝑖 ∈ 𝐼𝑂: 𝑆𝑖 = 1, 𝑗 ∈ 𝐽, 𝑇𝐴𝑖𝑗 + 𝑇𝑖𝑛 + 𝑇𝑙𝑜𝑎𝑑 > 𝛼  (17) 

∑ 𝐴𝑖𝑗 
𝐺 𝑥𝑗

2
𝑗 + ∑ 𝐴𝑖𝑗

𝐺 𝑥𝑗
1

𝑗 + ∑ 𝐴𝑖𝑗
𝐴 𝑥𝑗

1
𝑗 ≤ 𝑀 (1 − ∑ 𝑦𝑖𝑗

5
𝑗 );  𝑖 ∈ 𝐼𝑂: 𝑆𝑖 = 1  (18) 

∑ ∑ (𝑦𝑖𝑗
2

𝑗 + 𝑦𝑖𝑗
5 )𝑖 ≤  𝑍  (19) 

𝑛𝑒𝑖𝑗
𝑁𝑇𝐶 ≤ 𝑥𝑗

3;  𝑖 ∈ 𝐼𝑂: 𝑆𝑖 = 0, 𝑗 ∈ 𝐽  (20) 

∑ 𝑛𝑒𝑖𝑗
𝑁𝑇𝐶

𝑗 = 1;  𝑖 ∈ 𝐼𝑂: 𝑆𝑖 = 0  (21) 

𝑥𝑗
3 + ∑ 𝑛𝑒𝑖𝑡

𝑁𝑇𝐶
𝑡 ∈ 𝑆𝐺𝑖𝑗

≤ 1;  𝑖 ∈ 𝐼𝑂: 𝑆𝑖 = 0, 𝑗 ∈ 𝐽    (22) 

𝑛𝑒𝑖𝑗
𝑀𝑇𝐶_𝐼𝑇𝐶 ≤ 𝑥𝑗

1 + 𝑥𝑗
2;  𝑖 ∈ 𝐼𝑂: 𝑆𝑖 = 0, 𝑗 ∈ 𝐽 (23) 

∑ 𝑛𝑒𝑖𝑗
𝑀𝑇𝐶_𝐼𝑇𝐶

𝑗 = 1;  𝑖 ∈ 𝐼𝑂: 𝑆𝑖 = 0  (24) 

𝑥𝑗
1 + 𝑥𝑗

2 + ∑ 𝑛𝑒𝑖𝑡
𝑀𝑇𝐶_𝐼𝑇𝐶

𝑡 ∈ 𝑆𝐺𝑖𝑗
≤ 1;  𝑖 ∈ 𝐼𝑂: 𝑆𝑖 = 0, 𝑗 ∈ 𝐽    (25) 

∑ (𝑛𝑒𝑖𝑗
𝑁𝑇𝐶 𝑇𝐺𝑖𝑗)𝑗 − ∑ (𝑛𝑒𝑖𝑗

𝑀𝑇𝐶𝐼𝑇𝐶  𝑇𝐺𝑖𝑗)𝑗 − 𝛽 ≤  𝑀 (1 − ∑ 𝑦𝑖𝑗
1

𝑗 ); 𝑖 ∈ 𝐼𝑂: 𝑆𝑖 = 0   (26) 

∑ 𝑦𝑖𝑗
1

𝑗 ≤ 1;  𝑖 ∈ 𝐼𝑂: 𝑆𝑖 = 0   (27) 

Utility calculation for an assignment using patient choice criteria 

𝑢𝑖𝑗 = 𝛽1 ∑ 𝐴𝑙𝑥𝑗
𝑙

𝑙 −  𝛽2 𝑇𝐺𝑖𝑗;  𝑖 ∈ 𝐼𝑃, 𝑗 ∈ 𝐽  (28) 

𝑢𝑖
𝑚𝑎𝑥 ≥ 𝑢𝑖𝑗;  𝑖 ∈ 𝐼𝑃, 𝑗 ∈ 𝐽  (29) 

(𝑢𝑖
𝑚𝑎𝑥 − 𝑢𝑖𝑗) − 𝑀 (1 − 𝑛𝑖𝑗) ≤ 0;  𝑖 ∈ 𝐼𝑃, 𝑗 ∈ 𝐽  (30) 
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Closest hospital for patients assigning through closest facility criteria 

1 + ∑ 𝑛𝑖𝑡𝑡 ∈ 𝑆𝐺𝑖𝑗
≤ 1;  𝑖 ∈ 𝐼𝐶 , 𝑗 ∈ 𝐽  (31) 

∑ 𝑛𝑖𝑗𝑗 = 1;  𝑖 ∈ 𝐼𝐶 ∪  𝐼𝑃  (32) 

Assignment of patients through patient choice and closest facility criteria 

∑ (𝑦𝑖𝑗
1 + 𝑦𝑖𝑗

3 )𝑗 = 1;  𝑖 ∈ 𝐼𝐶 ∪ 𝐼𝑃: 𝑆𝑖 = 1  (33) 

𝑛𝑖𝑗 + 𝑥𝑗
1  ≥  2 𝑦𝑖𝑗

1 ;  𝑖 ∈ 𝐼𝐶 ∪ 𝐼𝑃: 𝑆𝑖 = 1, 𝑗 ∈ 𝐽  (34) 

𝑥𝑗
1 + ∑ 𝑦𝑖𝑡

3
𝑡 ∈ 𝑆𝐺𝑖𝑗

≤ 1;  𝑖 ∈ 𝐼𝐶 ∪ 𝐼𝑃: 𝑆𝑖 = 1, 𝑗 ∈ 𝐽   (35) 

∑ 𝑦𝑖𝑗
4

𝑗 ≤ ∑ 𝑦𝑖𝑗
3

𝑗 ; 𝑖 ∈ 𝐼𝐶 ∪ 𝐼𝑃: 𝑆𝑖 = 1 (36) 

𝑛𝑖𝑗 + 𝑥𝑗
2  ≥  2 𝑦𝑖𝑗

4 ;  𝑖 ∈ 𝐼𝐶 ∪ 𝐼𝑃: 𝑆𝑖 = 1, 𝑗 ∈ 𝐽 (37) 

𝑛𝑖𝑗 + 𝑥𝑗
3  ≥  2 𝑦𝑖𝑗

1 ;  𝑖 ∈ 𝐼𝐶 ∪ 𝐼𝑃: 𝑆𝑖 = 0, 𝑗 ∈ 𝐽  (38) 

Bounds on decision variables 

𝑥𝑗
𝑙 ∈ {0, 1};  𝑗 ∈ 𝐽, 𝑙 ∈ 𝐿  (39) 

𝑎𝑢𝑘, 𝑎𝑢𝑚𝑎𝑥 ≥  0;  𝑘 ∈ 𝐾  (40) 

𝑦𝑖𝑗
1 ∈ {0, 1};  𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (41) 

𝑦𝑖𝑗
3 , 𝑦𝑖𝑗

4 ∈ {0, 1};  𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽  (42) 

𝑦𝑖𝑗
2 , 𝑦𝑖𝑗

5 ∈ {0, 1};  𝑖 ∈ 𝐼𝑂 , 𝑗 ∈ 𝐽 (43) 

𝑛𝑒𝑖𝑗
𝑁𝑇𝐶 , 𝑛𝑒𝑖𝑗

𝑀𝑇𝐶__𝐼𝑇𝐶 ∈ {0, 1};  𝑖 ∈ 𝐼𝑂 , 𝑗 ∈ 𝐽  (44) 

𝑢𝑖𝑗 , 𝑢𝑖
𝑚𝑎𝑥 ∈ ℝ;  𝑖 ∈ 𝐼𝑃, 𝑗 ∈ 𝐽  (45) 

𝑛𝑖𝑗 ∈ {0, 1};  𝑖 ∈ 𝐼𝐶 ∪ 𝐼𝑃, 𝑗 ∈ 𝐽 (46) 

 

The model minimizes a weighted sum of maximum srAU patients among regions 

(equity measure) and average srAU patients across regions (effectiveness measure). We 

use 𝑦𝑖𝑗 variables in the model to classify triage types and record destination hospitals for 

further volume calculation. 

For each region, Constraints (1) calculate the total aggregated under-triage patients 

(srAU), which is a weighted sum of overall srUT (first term) and srUTS (second term) in a 
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region. Constraints (2) calculate maximum srAU patients among all regions. Constraints 

(3) ensure that each candidate location is designated as either MTC, ITC, or NTC. 

Constraint (4) ensures that the total number of MTCs and ITCs must be less than or equal 

to the maximum allowable equivalent MTCs (which allows the model to find the best 

combination of MTCs and ITCs considering budgetary constraints). Constraints (5) bound 

volume of severely injured patients (directly transported to MTC or transferred from ITC 

or NTC) at candidate location j if it is designated as MTC. Constraint (6) ensures that the 

ratio of ITCs to MTCs is within a prespecified value. Constraints (7) limit the volume of 

severely injured patients (transported to ITC via ground or air) at candidate location j if it 

is designated as ITC. Constraint (8) ensures that total TSA-wide srOT patients (difference 

of total non-severely injured patients and srATN) is within an allowable limit.  

For patients assigned via protocol criteria, Constraints (9)-(27) assign them to 

hospitals and classify their triage types. Constraints (9) ensure that each severely injured 

patient is either initially transported to an MTC via ground or air, or eventually transferred 

to MTC from an ITC/NTC. Constraints (10) and (11) rule out an assignment of severely 

injured patient i to every inaccessible MTC via ground and air, respectively. Note that an 

MTC is considered not accessible via ground if ground travel time is higher than the 

‘access’ threshold; it is not accessible via air if the total airtime (sum of inbound, loading, 

and air travel) is higher than the ‘access’ threshold. Constraints (12) rule out an assignment 

of severely injured patient i to all MTCs via air if any MTC is accessible via ground. That 

is, in an effort to preserve the limited air ambulance trips, a patient is only airlifted if no 

MTC is accessible via ground.  
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Constraints (13) capture the transfer of severely injured patients from an ITC or NTC to 

the nearest MTC to receive definitive care. Constraints (14) ensure that severely injured patient i  

is assigned to an ITC (via ground or air) if initially not assigned to any MTC (∑ 𝑦
𝑖𝑗
3

𝑗 = 1). 

Constraints (15) rule out an assignment of severely injured patient i to ITCs not accessible 

via ground. However, if any MTC is accessible via ground, then Constraints (16) rule out 

assignment of severely injured patient i to all ITCs. Constraints (17) rule out an assignment 

of severely injured patient i to ITCs not accessible via air, while Constraints (18) rule out 

assignments to all ITCs if any ITC is accessible via ground or any MTC is accessible via 

ground or air. Constraints (16) and (18) ensure priority-based assignment of severely 

injured patients discussed in the section 3.2.1.1. Constraints (19) ensure that the air 

transport usage does not exceed their availability. 

For each non-severely injured patient i, Constraints (20)-(22) determine the nearest 

NTC. Constraints (20) ensure that a candidate location j must be an NTC to be considered as the 

nearest NTC, Constraints (21) make sure that for a non-severely injured patient i, only one NTC 

should be considered as the nearest NTC. For any pair of patient i and candidate location j, if a 

candidate location j is marked as NTC, then Constraints (22) rule out the assignment of patient i 

to candidate location(s) t that are located further (in terms of time) than j. Constraints (23)-(25) 

serve the same purpose as (20)-(22), respectively, for the nearest non-NTC (MTC or ITC) 

via ground. For non-severely injured patient i, Constraints (26) rule out the assignment to 

all NTCs if the ‘bypass’ threshold criterion is not met; this patient is marked as srOT. Note 

that srOT occurs when MTC or ITC is closer than the nearest NTC. We do not need to 

explicitly assign srOT patients to an MTC or ITC as they are not counted towards trauma 
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volume; these patients are often discharged from the ED of an MTC or ITC without 

admission to the inpatient trauma unit. 

For patients assigned via patient choice criteria, Constraints (28)-(30) capture 

patients’ choices using the utility model. For each patient i, Constraints (28) calculate 

utility of receiving care at each hospital (candidate location), Constraints (29) find 

maximum utility among all hospitals, while Constraints (30) record the hospital with the 

maximum utility. Constraints (31) and (32) find the closest facility for each patient 

assigned via closest facility criteria. For patients assigned via patient choice and closest 

facility criteria, variable nij capture patient choice and the closest facility, respectively. 

Constraints (32) ensure that each patient has only one closest facility and select one hospital 

with maximum utility for the closest facility and patient choice criteria, respectively. 

For patients assigned through patient choice and closest facility criteria, Constraints 

(33)-(38) assign them to hospitals and classify their triage types. Constraints (33) ensure 

that each severely injured patient is initially assigned to MTC or eventually transferred to 

MTC from ITC/NTC. Constraints (34) assign and classify severely injured patient i as 

srATP if the nearest hospital or patient’s choice is MTC. Constraints (35) ensure that each 

severely injured patient is transferred to the nearest MTC after being initially transported 

from the incidence location to an ITC (srUTS patient) or an NTC (srUT patient). Constraints 

(36) ensure that severely injured patient i is assigned to an ITC if initially not assigned to any 

MTC; i.e., ∑ 𝑦𝑖𝑗
3

𝑗 = 1. Constraints (37) classify a severely injured patient i as srUTS if the 

criterion of nearest hospital or patient choice results in ITC. Constraints (38) classify a non-

severely injured patient i as srUTN if the criterion of nearest hospital or patient choice 

results in NTC. Constraints (39)-(46) define bound on decision variables. 
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Note that the NTNDP can be characterized as a hierarchical, discrete, multi-facility 

location problem. Such problems are combinatorial in nature and have been shown to be 

NP-hard (Daskin, 2011). For even 50 candidate hospital locations, there are 350 = 7.18x1023 

solutions. Our preliminary experiments suggested that commercial software such as 

CPLEX and Gurobi encountered out-of-memory issues for realistic problem instances that 

normally have 100+ locations and 1,000+ patients. We, therefore, explored a tailored ‘3-

phase’ approach to avoid such issues and find a near-optimal solution. We now discuss our 

proposed approach. 

3.4 A 3-Phase Solution Approach  

A primary goal of any trauma system 

is to provide prompt care to severely injured 

patients. Data from the state of OH indicated 

that severely injured patients made up about 

15% of the total patients. The problem 

complexity can thus be reduced if relaxed the 

model to first focus on severely injured 

patients, and then the non-severely injured 

patients. Considering this, we propose a ‘3-

phase’ approach that systematically reduces 

the problem complexity into different phases 

to decrease the number of decision variables 

and constraints (see Figure 12).  

 

Figure 12. Flowchart of the ‘3-phase’ 

approach 
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In Phase 1, we only consider severely injured patients (Si = 1) and determine the 

optimal location of MTCs and ITCs based on the NTNDP model presented earlier. 

Essentially, we remove all decision variables and constraints related to non-severely 

patients. The Phase 1 problem is as follows: 

 In Phase 2, we use the solution from 

Phase 1 and solve a Constraint Satisfaction 

Problem for non-severely injured patients. 

Essentially, we check the feasibility of the Phase 

1 solution in terms of total over-triage patients 

(which are triggered by non-severely injured patients). Feasibility in Phase 2 means overall 

srOT patients are within the prespecified limit, and that the solution found in Phase 1 is 

optimal to the entire problem. However, infeasibility in Phase 2 indicates the need for 

changes in the solution from Phase 1 to keep total srOT patients within the limit, which 

then invokes Phase 3. As non-severely injured patients do not directly impact the objective 

of the NTNDP, the model for the Phase 2 can be defined by Constraints (8), (20)-(32), (38), 

(41), and (44)-(46). 

In Phase 3, we fix the location of MTCs 

(obtained from Phase 1) while considering both 

types of patients and solve the original model for 

NTNDP. Basically, for a given location of 

MTCs, we find the optimal location of ITCs to 

minimize the objective while keeping total srOT within a limit. Fixing MTCs is reasonable 

as the impact of MTCs on the objective is relatively higher than ITCs due to their capability 

Phase 1 problem 

minimize:    𝜔1 𝑎𝑢𝑚𝑎𝑥   +  𝜔2  
∑ 𝑎𝑢𝑘𝑘

|𝐾|
   

s.t.  

Constraints (1)-(7), (9)-(19), (28)-

(37), (39)-(43), (45)-(46) 

Phase-3 problem 

minimize:    𝜔1 𝑎𝑢𝑚𝑎𝑥   +  𝜔2  
∑ 𝑎𝑢𝑘𝑘

|𝐾|
   

s.t.   

Constraints (1)-(46)  

𝑥𝑗
1 =  1;  𝑗 ∈ 𝐽’  (47) 
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of providing definitive care to severely injured patients. In  the formulation for Phase 3, we 

add Constraints (47) to fix the location of MTCs obtained from Phase 1 (represented by set 

J’ where J’ ∈ J).    

We used Gurobi solver on Dell I7-10700 CPU @2.90 GHz Desktop with 32GB 

RAM to find an optimal solution in each phase. 

3.5 Computational Study 

We now detail our experimental study starting with the test area generation 

(referred to as a TSA), sources of data collection, evaluation of the solution approach, 

sensitivity analysis, and insights. 

3.5.1 TSA determination 

We consider the collection of counties in an 

existing midwestern US state as TSA. In so doing, 

we can use the underlying transportation network 

to estimate actual ground transportation times from 

the incidence locations to the candidate hospitals. 

Figure 13 illustrates the TSA with 34 counties and 

64 hospitals. In this TSA, 21 counties are rural 

(61.7%), in line with the % of rural counties in the 

US (i.e., 62%). All 64 hospitals in the TSA were 

considered as candidate locations for an MTC, ITC, 

or NTC. We also grouped counties to represent 

 

Figure 13. TSA with counties, and 

region; grey filled areas are 

urban counties; ‘+’represents 

candidate locations 

1
2

3 4

5
6
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regions similar to several state trauma agencies (MDHHS, 2022; TDSHS, 2022). In our 

chosen TSA, Regions 2 and 6 are entirely rural regions, while Region 4 is an entirely urban. 

Further, Region 1 is dominantly rural (with higher % of rural counties compared to urban 

counties), while Regions 3 and 5 are dominantly urban.  

For all analyses, we used ArcGIS Pro 2.9.1 to calculate actual drive times to 

generate the ground time matrix (TGij) and the Haversine formula (assuming the helicopter 

speed of 120 mph) to generate the airtime matrix (TAij). Note that both these time matrices 

are pre-generated and serve as a look-up table during the solution process. 

3.5.2 Performance of the 3-Phase approach 

For performance evaluation of the ‘3-phase’ approach, we considered 10 problem 

instances using this TSA, each with 5,000 patients (15.63% of severely injured patients), 

and between 15 and 60 candidate locations. We used 200 and 50 as a lower bound for the 

volume of severely injured patients at MTCs and ITCs, respectively. The limit for srOT 

patients is set as 50% of total non-severely injured patients. The attractiveness for MTCs, 

ITCs, and NTCs is set as 5, 4, and 1, respectively, and coefficients for attractiveness and 

ground travel time were set as 0.825 and 0.566. All other parameters are the same as the 

base case mentioned in section 5.4. We set the CPU-time limit as 12 hours for solving the 

Gurobi MIP solver. 

Table 13 presents our computational experiments that compare the solution quality 

and runtime of the ‘3-phase’ approach and ‘Original model’ (per Section 3.3) for several 

problem instances. The ‘% Difference’ column represents the difference between the 

objective of the ‘3-phase’ and ‘Original model,’ where positive value represents a ‘3-phase’ 
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approach outperformed the ‘Original model.’ The number in a bracket of the ‘Original 

model’ column of ‘Solution Quality’ represents the gap between best solution and lower 

bound when the solver reached the time limit.  

These computational experiments verify that our ‘3-phase’ approach can achieve 

high-quality solutions in a short amount of time; therefore, we used this approach for 

further experiments to generate insights. 

3.5.3 Patient volume and sampling 

We collected state-wide trauma data across various states from published annual 

reports (available on state trauma websites) and observed a substantial variation across 

these states. The patient volume varied between 11,000 and 72,000 per year, with 3.2 to 

8.2 variation in number of trauma patients per thousand citizens. Additionally, patient 

volume at a county level was observed to be highly correlated with the population of that 

Table 13. Performance evaluation of the ‘3-phase’ approach 

Problem 

instance 

Candidate 

Locations 

Solution Quality Runtime in Hours 

Original 

model 
3-phase 

% 

Difference 

Original 

model 
3-phase 

1 15 158.3 159.8 -0.93% 1.65 0.07 

2 20 169.3 169.6 -0.22% 1.94 0.14 

3 25 141.5 142.3 -0.53% 2.16 0.19 

4 30 120.9 120.9 0% 3.29 0.28 

5 35 122.5 122.5 0% 3.77 0.32 

6 40 100.9 100.9 0% 6.70 0.4 

7 45 
113.1 

(4.95) 

112.9 
0.17% 12 1.17 

8 50 
100.3 

(6.17) 

99.9 
0.35% 12 1.53 

9 55 
Out of 

Memory 
- - 

Out of 

Memory 
1.68 

10 60 
Out of 

Memory 
- - 

Out of 

Memory 
5.2 
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county. For the experimental study, our TSA attempts to mimic the trauma patient volume 

of a median US state; i.e., we used 5.2 as the average trauma patients per thousand citizens 

and median population of a US state as 4.5 million to arrive at 23,680 trauma patients. In 

line with the literature, we considered 15.63% of patients as severely injured and the rest 

as non-severely injured.  

Through preliminary experiments, we also noticed that the computational time to 

reach a solution was prohibitively high when considering all 23,680 patients (65 hours). 

Instead of aggregating patients at the county or zip level (which would lose the granularity 

required for our problem), we adopted a sampling approach. We selected a representative 

sample among these 23,680 patients such that the underlying distribution of patients (Gini 

index) was highly correlated with the distribution of these 23,680 patients. All other 

parameters were appropriately scaled.  

Figure 14 illustrates the solution quality and runtime comparison at various 

sampling rates. To balance quality and computational time, we selected 15% as the sample 

 

Figure 14. Solution quality and runtime for different sample size compared to 

complete data set 
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size; it reduced the time by 95% with about 1.6% difference in the solution compared to 

the problem being solved with complete data. Essentially, this sampling allowed us to solve 

problem instances (per Table 14) on average in 3.5 hours. 

3.5.4 Experimental setting 

During the preliminary experiments, we also noticed that the solutions appeared to 

be sensitive to three key factors. Table 14 summarizes these factors and their levels with 

bold entries in the last column indicating the base case. While ACS or state trauma agencies 

typically propose a protocol for destination determination based on the severity of injuries, 

only 40% of patients were assigned using protocol criteria according to literature and data 

from our collaborators. Patient choice (PC) is the second dominant criteria for destination 

determination, followed by assignment to the closest facility, which is inevitable. 

Therefore, we considered four scenarios to quantify the impact of assignment criteria on 

the performance and design of the network. We used the (40, 40, 20) combination as a base 

case based on our interactions with our trauma collaborators and the trauma literature; i.e., 

40% of patients were assigned using protocol and patient choice (PC) criteria, while the 

remaining 20% used the closest facility criteria in all counties. Assignment criteria and 

injury severity are preassigned to each patient as part of the data preprocessing step.  

Table 14. Summary of the parameters, levels, and values in the sensitivity analysis 

Parameter Level Values 

Percentage of assignment using protocol, 

patient choice and closest facility criteria 
4 

(40, 40, 20), (60, 20,20), (80, 

0,20), (100,0,0) 

Distribution of trauma patients 3 
Disperse (0.25), Regular (0.5),  

Cluster (0.75) 

Weights combination for equity and 

effectiveness  
3 (0.1, 0.9), (0.5, 0.5), (0.9, 0.1) 
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Distribution of patients in the TSA was distributed using 3 levels quantified through 

the Gini index, where 0 and 1 represent fully-dispersed and fully-clustered distributions. 

Accordingly, dispersed corresponded to Gini=0.25 (patients are less clustered and more 

homogeneously distributed), clustered corresponded to Gini=0.75 (patients are highly 

clustered around urban zones), and regular corresponded to Gini=0.5 (patients are 

moderately clustered around urban zones). While the dispersed distribution attempted to 

mimic states such as New Jersey, Delaware, and Vermont, the clustered distribution 

mimicked states such as Nevada, Texas, and Arizona.  

Three weight combinations are used to evaluate the impact of emphasis on equity 

vs. effectiveness. We also use 1 and 0.5 as the γ and δ, respectively. Following ACS 

recommendation, we used 240 severely injured patients as a lower bound for MTCs and 

60 for ITCs considering their limited resources (specialist surgeons, equipment and 

capacity). Additionally, per trauma literature, we used the upper bound on volume as 1,000 

at both MTCs and ITCs, access time threshold as 30 minutes, bypass time threshold as 0 

minutes, and C = 64 (total candidate locations). For air transport (via helicopter), we set 

the inbound time (time from the helicopter depot to the incidence location) as 10 minutes 

and the loading time as 5 minutes. Based on the range calculated from state trauma reports, 

we used 15% of severely injured patients as upper bound for helicopter use. We set 70% 

of total non-severely injured as the maximum allowable number of over-triage patients in 

the TSA.  

For the utility model representing the patient choice, the attractiveness for MTC, 

ITC, and NTC is set as 5, 3, and 1, respectively, as a way to differentiate the relative 

perception of trauma centers among citizens. The coefficients for attractiveness and ground 
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travel time were estimated as 0.1 and 0.05 using the optimization framework and data from 

the state of Ohio (see Appendix B for details). 

3.5.5 Insights from the experiments 

Below, we summarize key insights from our experimental study. 

Insight 1: Destination determination criteria impacts patient safety; while 100% protocol 

usage improves it, increased use of patient choice lowers it. 

As alluded earlier, the ACS and/or state trauma agencies prefer that EMS 

paramedics determine the destination of patients based on a protocol. Our results suggest 

that if all such determinations were done using this protocol (i.e., 100, 0, 0), we observed 

a 92.4% reduction in objective compared to the base 

case of (40, 40, 20)  (i.e., 1.71 vs. 22.54) with fewer  

ITCs (1 vs. 9) and MTCs (14 vs. 15). That is, if 

patient choice and closest facility considerations 

were not part of the destination determination, the 

trauma network could be optimized and substantial 

performance benefits could be achieved. 

In terms of the distribution of MTCs, we 

noticed a disperse distribution that accessed by most 

of the TSA by at least one MTC or ITC such that 

most severely injured patients had access to one of 

them within the access time, thus, reducing under-triage patients (see Figure 15). Further, 

a dispersed network of MTCs and ITCs also means a higher chance of having NTCs within 

 

Figure 15. Dark areas indicate 

30-minute access from the 

incidence location to at least one 

MTC or ITC; stars indicate 

MTCs and circle indicates ITC 
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the bypass threshold for non-severely injured patients resulting in lower over-triage 

patients.  

However, as shown in Figure 16, higher assignments through patient choice (PC) 

criterion require more ITCs (3 in a vs. 9 in c) and result in a 73.1% increase in objective 

(12.96 vs. 22.54). 

To understand this further, imagine a network without ITC. Under the PC criterion, 

the absence of ITCs in the vicinity of the incidence location in a suburban or rural zone 

would leave a severely injured patient (or their family) to choose between a nearby NTC 

(say, at 5 min) and far located MTC (say, at 25 min). Considering a lower travel time, that 

patient will likely choose the NTC over MTC. This would result in that patient experience 

under-triage. While at least one MTC in that zone would mitigate such an under-triage, it 

may not be feasible due to MTC’s minimum volume requirement. This is where an ITC 

could play a compromising role as it would likely induce the patient (or their family) to 

choose this ITC over an NTC, and eventually getting better care (see Figurer 17-c). 

 

Figure 16. Objective and #ITCs for different destination assignment criteria 

scenarios; a= (80, 0, 20), b=(60, 20, 20), and c=(40, 40, 20), where each 

element represents protocol, patient choice, and closest facility, respectively 
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Insight 2: TSA with clustered distribution of patients appear to improve patient safety 

compared to other distributions. 

To delineate different distributions of severely injured patients, we use D, R, and C 

to represent disperse, regular, and cluster with Gini indexes of 0.25, 0.5, and 0.75, 

respectively (see Figure 18). Our 

results indicate that as the patient 

distribution changes from disperse 

(D) to cluster (C), the overall 

objective decreases by 18.8% (22.42 

vs. 18.5). The number of ITCs is 

almost three times (14 vs. 5) in the 

dispersed situation compared to 

cluster situation. 

This is reasonable as 

clustered distribution increases 

 

Figure 18. Objective, #MTC and #ITCs for 

disperse (D), regular (R) and cluster (C) 

distribution of patients 
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      (a) (80, 0, 20)                    (b) (60, 20, 20)                 (c) (40, 40, 20) 

Figure 17. Locations of MTCs and ITCs for different percentage of 

assignments; dense areas represent higher number of patients, stars 

represent MTCs, and circles represent ITCs 
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opportunities for treating more patients at the same MTCs and ITCs located around the 

clustered zones. However, the performance of cluster distribution highlights that better 

performance can be achieved with even fewer resources which is counterintuitive.  

Moreover, we observed distinct location of MTCs and ITCs across three patient 

distribution scenarios (see Figure 19). In the cluster distribution, due to higher patients 

from dominantly urban regions (#3-#5), 13 out of 14 MTCs are located in those regions; 

however, in the dispersed situation, the MTCs are spread across the TSA. In addition, 

higher patients from suburban and rural zones in disperse distribution trigger the opening 

of ITCs in those zones as patients are still not enough to make an MTC feasible from a 

minimum volume perspective. As a result, 11 out of 14 ITCs are located in dominantly 

rural regions in dispersed distribution compared to zero in the case of cluster distribution. 

That is, the distribution of the patients tends to drive the number and location of MTCs and 

ITCs across the TSA. 

 

 

                       

(a) Disperse distribution (D)     (b) Regular distribution (R)     (c) Cluster distribution (C) 

Figure 19. Locations of MTCs and ITCs superimposed over heatmap of patient 

distribution 
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Insight 3: An emphasis on equity in a network 

may lead to a decline in overall patient safety. 

As expected, in an equitable network, most 

regions performed equally. This is evident from 

the histogram (depicting equity per region under 

ω1 = 0.9) in Figure 20. Despite this, the 

performance of many regions is worse than the 

performance observed with lower values of ω1 

(a less equitable network). To quantify this, we 

used skewness of the distributions for each of 

the three ω1 values. For the most equitable 

network (ω1 = 0.9), the skewness was -2.4, while 

it reduced to -0.5 for the least equitable network 

(alternately, network with higher effectiveness, 

(ω1 = 0.1). The corresponding TSA-wide AU 

(Aavg) increased by 8% (20.75 vs. 22.42) 

indicating an overall decline in the system 

performance. Note that an 8% increase is 

equivalent to an annual increase of 67  severely injured patients who will suffer aggregated 

under-triage (considering 23,680 data); they all could experience disabilities or mortality. 

The reason for this increase is due to the relocation of a few MTCs and ITCs to improve 

the performance of worse-performing regions. However, those relocations decrease AU of 

 

Figure 20. Region-wise AU (Aavg) for 

different values of ω1; black line 

represents Aavg of the TSA  
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worse regions at the cost of a relatively higher increase of AU patients from the well-

performing regions; the net effect is an overall increase of AU at the TSA level.  

In a nutshell, results emphasize that the trauma decision maker should choose 

weights wisely as a higher focus on equity of patient safety can lead to higher under-triage 

patients, eventually increasing the likelihood of disability and mortality.  

3.6 Case Study 

To illustrate the practical benefit 

of the proposed approach, we 

considered the state of Ohio as a TSA 

and used actual data from the state for 

2019. Among 71,971 trauma patients 

recorded in 2019, we received 17,757 

de-identified patient records resulting 

after data linkage performed by the 

ODPS (Ohio Department of Public 

Safety). This data was further cleansed 

to remove missing data and unresolved 

addresses using ArcGIS. The resulting 

11,313 patients in the cleansed dataset had a correlation of 0.99 with the 17,757 patients 

based on county-level case comparison, which indicated a similar spatial distribution of 

incidences between the original and cleansed datasets. This TSA consisted of a network of 

 

Figure 21. Trauma network in OH for 8 

regions; star indicates MTCs, circle 

indicates ITCs and cross represents NTCs. 

Darker shades of grey indicate higher 

volume of incidences. 
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163 hospitals in 2019, which included 21 MTCs, 21 ITCs, and the remaining 121 NTCs. 

Figure 21 illustrates the heat map of 11,313 incidences and the location of hospitals. 

In this data, destination determination through protocol, patient choice, and closest 

facility criteria were around 20%, 50%, and 30%, respectively. We empirically 

derived ‘access’(α) as 25 minutes and ‘bypass’(β) as -12 minutes such that the estimated 

srAU and srOT closely matched the observed values in the 20% of patients assigned 

through protocol criteria in the existing data. Similarly, patients assigned through patient 

choice criteria were used to estimate β1 = 0.1 and β2 = 0.05 through an optimization model 

shown in Appendix B. In line with the discussion in Section 5.3, we further sampled 3,552 

patients (correlation of 0.999 with 11,313 data) to limit the computational burden; we 

scaled the MTC and ITC volume requirements accordingly. We set maximum allowable 

number of over-triage patients in the state as 67.31% of total non-severely injured patients 

(similar to observed in 11,313 data) and remaining parameters values are as used in Section 

5.   

Using ω1 = 0.5, we derived two optimal networks, one for the case when the number 

of effective MTCs is the same (Redistributed) and the other where this number is also 

optimally determined by the model (Greenfield). In addition, we also derived an optimal 

trauma network with all assignments through protocol criteria as recommended by ACS 

and/or state trauma agencies. 

3.6.1 Existing vs. Redistributed vs. Greenfield trauma network 

The Existing network had 31.5 effective MTCs (21 MTCs + 0.5*21 ITCs). Hence, 

for the Redistributed network, we set C = 31.5. However, for the Greenfield network, we 
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let  C = 163 (all candidate locations) allowing the model to select as many MTCs and ITCs 

it needs to minimize the objective function.  Table 15 summarizes the performance of the 

three networks, while Figure 22 illustrates the trauma network superimposed on heat maps 

of incidences.  

The Gini index for the 2019 data is 0.751, representing a clustered distribution of 

patients. In the Existing network, many ITCs were observed in the clustered areas (darker 

areas in Figure 22); however, the Redistributed and Greenfield networks, we observed 

several MTCs in those clustered areas in line with Insight 2. Due to these additional MTCs, 

redistribution reduces the average srAU patients by 31.2% compared to the Existing 

network (10 vs. 6.88). The Greenfield network only did slightly better than the 

Redistributed network; the average srAU patients decreased by 33.1% (10 vs. 6.69) at the 

cost of an additional 3.5 effective MTCs. Further, in both the Redistributed and Greenfield 

(a) Existing 2019 network       (b) Redistributed network           (c) Greenfield network 

Figure 22. Comparison of trauma networks (darker shades indicate higher volume of 

incidences; stars indicate MTCs; circles indicate ITCs) 

Table 15. Performance of Existing, Redistributed, and Greenfield network 

Network Obj 
Average 

srAU 

Max 

srAU 

# 

MTC 
# ITC 

Effect. 

MTC 

Existing 16.50 10 23 21 21 31.5 

Redistributed 9.69 6.88 12.5 25 13 31.5 

Greenfield 9.59 6.69 12.5 29 12 35 
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networks, ITCs were located in moderately dense areas (light grey areas in Figure 22) as 

highlighted in Insight 1. 

Overall, our results indicate that for the same number of effective MTCs, the 

potential to improve patient safety is considerably high in the Redistributed approach. 

Further, the law of diminishing returns applies in the Greenfield network, where an increase 

from 31.5 to 35 effective MTCs does not yield a significant benefit in the performance. 

However, the Greenfield solution can enable benchmarking of existing, redistributed, or 

any other network that the state trauma decision makers may be considering. 

3.6.2 Greenfield network with 100% protocol criteria 

Figure 23 compares the Greenfield network with two destination determination 

allocations over 11,313 patients. We observed that a network with 100% protocol criteria 

results in a reduction in the objective by more than 50% (9.59 vs. 4.75) compared to a 

network with 20% protocol, 50% patient choice and 30% closest facility (similar to the 

Existing network). This observation is similar to Insight 1. We did observe that 100% 

protocol led to fewer number of effective MTCs (24 vs. 31.5; MTCs increase to 29 from 

22, but ITCs decreased to 4 from 12).  

Further, maximum srAU among all regions decreased by 52% (a 47.7% reduction 

in average srAU patients), which corresponds to 27 ({6.89-3.5}*8) fewer severely injured 

patients who would suffer a mistriage (srUT or srUTs) in sample (3,552) data. Considering 

71,971 patients reported in 2019 in OH, this would correspond to 547 fewer patients 

annually, which is substantial. Clearly, following ACS recommendation of using protocol 

as the primary criteria can lead to substantial benefits in patient safety; however, this will 
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require the state to introduce new EMS training initiatives to promote protocol, while  

attempting to mitigate other reasons for destination determination. 

3.7 Summary 

Our research introduced the nested trauma network design problem (NTNDP) that 

determines the number and location of major, intermediate, and non-trauma centers for a 

trauma service area. The NTNDP minimizes a weighted sum of equity among regions and 

effectiveness across the TSA. Several practical considerations, compared to existing 

trauma literature,  were incorporated in the NTNDP, such as multiple patient types, 

multiple choices for transportation, multiple destination determination criteria and multiple 

level of hospitals. Specific to the trauma literature, NTNDP generalizes TCLP by including 

intermediate trauma centers, a vital element of a trauma network that improves access to 

trauma care for regions that do not have access to a major trauma center. The inclusion of 

three dominant destination determination criteria ensures faithful representation of the on-

scene EMS decision making process. In addition, consideration of both equity and 

               
a) 20% protocol, 50% patient choice,              b) 100% protocol  

30% closest facility  

     (similar to Existing network) 

 

Figure 23. Optimal trauma network superimposed on heat maps of 

incidence 
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effectiveness in the objective allow trauma decision makers to trade off these two 

contradicting measures in network design.  

We modeled the NTNDP as a mixed-integer linear program and proposed a ‘3-

Phase’ solution approach to find near-optimal solutions in a reasonable amount of time. 

We generated a TSA using data from a state trauma system in the US and quantified the 

impact of system parameters on the performance of the trauma system. We illustrated the 

use of the proposed approach on 2019 data for the state of Ohio.  The key findings from 

our study are as follows: 

• If EMS providers could exclusively use ‘protocol’ as the criterion for destination 

determination at the incidence location, then a trauma network with low levels of 

under-triages can be realized with fewer MTCs and ITCs. Increased use of the 

‘patient choice’ criterion could result in higher number of ITCs required in 

suburban and rural zones and increased under-triages. 

• A clustered distribution of severely injured patients in the TSA appears to improve 

trauma system performance with fewer MTCs and ITCs. 

• Solely focusing on equity of patient safety among regions as an objective function 

appears myopic; balancing it with effectiveness across the TSA appears to result in 

a better performing network. 

• Illustration of our approach on real data from a midwestern US state indicated an 

over 30% improvement in patient safety; Greenfield network can enable 

benchmarking of existing, redistributed, and other networks. Importance of 100% 

use of protocol for destination determination was also verified.  



 

94 

 

These findings have several practical implications. Trauma decision makers can 

use our approach to comprehend the compromised role offered by ITCs on patient safety 

(via provision of intermediate care), especially in suburban and rural zones where MTCs 

are financially not viable (due to a low number of patients). Further, they can quantify the 

impact of various destination determination criteria used in practice on patient safety. They 

can, subsequently, design training programs for EMS providers that help them employ 

‘protocol’ (which is the preferred approach suggested by ACS) during on-scene decision 

making
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CHAPTER 4 

4 NETWORK DESIGN PROBLEM CONSIDERING ASSESSMENT MISTRIAGES  

(TNDP-AM) 

 

4.1 Trauma Injuries and Decision-making Processes 

Traumatic injury continues to be a major public health problem, with worldwide 

4.4 million deaths each year (nearly 8% of all deaths). It continues to be the #1 cause of 

death, disability, and morbidity for individuals aged 44 and under in the US (#3 across all 

ages) with almost 200,000 deaths. The corresponding economic burden is over $4.2 trillion 

annually (WHO, 2021; CDC, 2021; CDC, 2022).   

In response to this mortality and economic burden, many state agencies have 

established integrated and coordinated trauma care system for their state. To ensure the 

continuum of trauma care, these systems have three major phases (prehospital, acute care, 

and rehabilitation). The ‘prehospital’ phase activates from the moment a call is made to 

911 to seek help for the injured victim (patient). The emergency medical dispatcher 

coordinates with various Emergency Medical Services (EMS) nearby and dispatches 

appropriate EMS to the incidence location (also known as the scene). EMS paramedics 

stabilize the patient, assess their vital conditions with the aid of various diagnostic tests and 
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medical protocols to determine injury severity, and the appropriate destination hospital and 

transportation mode for transport to that hospital.  

Once a patient arrives at the hospital (the ‘acute care’ phase), the trauma response 

team assesses and treats their life-threatening injuries and transfers them to an operating 

room or intensive care according to their condition. Hospitals are verified by the American 

College of Surgeons (ACS) as major trauma centers (MTCs) if they are capable of 

providing definitive care for patients suffering severe injuries. Otherwise, they are deemed 

as non-trauma centers (NTCs), which are the ideal destination for non-severely injured 

trauma patients. In case the hospital is not capable of treating the patient's injury, the patient 

is further transferred to the appropriate hospital, known as a secondary transfer. After the 

patient stabilizes, they are moved to the general care unit before being discharged. Some 

patients may be sent to a rehabilitation program depending on the type of injury (i.e., the 

‘rehabilitation’ phase).    

It is the prehospital phase of the trauma care system that is critical to providing the 

right care to the right patient at the right time at the scene to improve chances of survival 

and avert life-long disabilities (Van Laarhoven et al., 2014; Van Rein et al., 2019; Van 

Rein et al., 2020). Three critical decisions impact the prehospital elements of the trauma 

care system: (i) EMS network and dispatch, (ii) on-scene injury assessment, and (iii) 

destination determination. There is a vast literature that focuses on (i); i.e., the location, 

relocation, and dispatch of EMS. For reviews on (i), see Brotcorne et al., 2003; Aringhieri 

et al., 2017; Bélanger et al., 2019.    



 

97 

 

4.1.1 On-scene decision-making and mistriages 

Once the EMS has reached the incidence location, subsequent decisions (i.e., on-

scene assessment and destination determination) become vital. On-scene assessment of an 

injured patient can be challenging and time-sensitive. To assist EMS paramedics during 

this process, national and state organizations have proposed guidelines, known as Field 

Triage Guidelines (FTG), using the best available evidence and expert consensus (Van 

Rein et al., 2018a; Lupton et al., 2022). An accurate on-scene injury assessment is crucial 

for timely patient care as assessed severity becomes the basis for the destination 

determination decision (right care at the right time). The latter depends upon the location 

of trauma centers in the vicinity and available transportation modes. 

Mistriages in on-scene injury assessment often occur during both decision-making 

processes and can induce patient safety issues, such as short/long-term disability, 

morbidity, and even mortality. Mistriages (both under- and over-triage) have been 

preferred surrogate measures for patient safety in the healthcare literature (Jansen et al., 

2015; Hirpara et al., 2022, Parikh et al., 2022). We use ‘assessment-related’ to refer to 

mistriages caused during injury assessment and ‘system-related’ to refer to mistriages 

during ‘destination determination.’ However, none of the prior research explicitly 

considered assessment-related mistriages and analyzed the impact of change in those 

mistriages on patient safety, which form the basis of our research. We first describe what 

these assessment-related mistriages and illustrate how they impact patient safety, before 

presenting our research questions. 



 

98 

 

4.1.2 Inaccuracy in injury assessment 

Even though FTGs are developed by medical experts and updated periodically, they 

are not accurate in classifying the severity of a patient’s injury on the scene. Several reasons 

for the inaccuracy have been reported in the literature based on field studies and 

retrospective data analysis; e.g., human error due to lack of training, internal injuries that 

are hard to assess, faulty diagnosis tests (Newgard et al., 2011a; Newgard et al., 2011b; 

Van Rein et al., 2020), and inability to capture regional factors (Parikh et al., 2017). 

Healthcare literature estimates 5 to 95% of injury assessment-related mistriages using 

various FTGs (Van Rein et al., 2018a; van Rein et al., 2018b; Gianola et al., 2021; Lupton 

et al., 2022). Statistical models have been proposed to reduce assessment-related mistriages 

at the scene (Newgard et al., 2013; Parikh et al., 2017; Van Rein et al., 2019; Larsson et 

al., 2021). 

Given that the outcomes of this clinical assessment of injuries can be severe or non-

severe, there are four possibilities; we use the modifier ‘assessment-related’ to represent 

these: 

• Assessment-related appropriate triage positive (arATP): A patient with underlying 

severe injury assessed severe at the scene.  

• Assessment-related appropriate triage negative (arATN): A patient with underlying 

non-severe injury assessed non-severe at the scene. 

• Assessment-related under-triage (arUT): A patient with underlying severe injuries 

assessed as non-severe (Voskens et al., 2018; Shanahan et al., 2021; Lupton et al., 

2022). 
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• Assessment-related over-triage (arOT): A patient with underlying non-severe 

injuries assessed as severe. 

4.1.3 Effective triage 

Considering the occurrences of mistriages at both on-scene decision-making 

processes (injury assessment and destination determination), the decision process may lead 

to 8 possible outcomes as shown in Figure 24. Note that we use the same definitions of 

‘system-related’ mistriages (caused during destination determination) as suggested in prior 

literature (Hirpara et al., 2022; Parikh et al.; 2022); i.e., ‘system-related’ appropriate triage 

(assessed severely injured taken to MTC - srATP and assessed non-severely to NTC - 

srATN), ‘system-related’ under-triage (assessed severely injured taken to NTC - srUT), and 

‘system-related’ over-triage (assessed non-severely taken to MTC - srOT). 

We aggregate these 8 outcomes into three groups based on whether or not the final 

hospital where the patient was transported to was the appropriate hospital to treat this 

patient’s true underlying injury severity; we refer to them as effective triage: 

  

 

Figure 24. Outcomes based on mistriages in on-scene clinical assessment and choice 

of destination for a given underlying (true) injury severity 
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• Effective appropriate triage (efAT): These include patients with underlying severe 

injuries transported to MTCs (efATP and efATP̃) and underlying non-severe injuries 

transported to NTCs (efATN and efATÑ). The ‘~’ symbol represents the situation 

where a patient’s injury was incorrectly assessed (resulting in either arUT or arOT), 

but was subsequently taken to an incorrect hospital (resulting in srOT or srUT, 

respectively), in turn resulting in the patient eventually making it to the correct 

hospital based on their true underlying injury. 

• Effective under-triage (efUT): This group includes patients with underlying severe 

injuries transported to NTCs (not an ideal hospital) due to either assessment-related 

mistriage (UT|ar) or system-related mistriage (UT|sr). These patients could suffer 

from short/long-term disability, morbidity, and even mortality due to delay in the 

definitive care (Rotondo et al., 2014). 

• Effective over-triage (efOT): Patients with underlying non-severe injuries 

transported to MTCs are referred to as efOT (OT|ar and OT|sr). Effective over-

triage patients cause overcrowding at MTCs, higher medical bills due to 

unnecessary trauma activation, and occupy resources, which can delay care for 

other patients (Frykberg, 2002; Armstrong et al., 2008). 

4.1.4 Research questions and contributions 

Our focus in this research is on arUT and arOT mistriages (due to clinical 

assessment) and its eventual effect on efUT and efOT, and the network of trauma hospitals. 

It is worth noting that there is a void in the literature in exploring the impact of assessment-
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related mistriages on patient safety and/or network design. We address the following 

questions through our work. 

• How do assessment-related mistriages during the on-scene injury assessment phase 

(an operational decision) impact the network of major trauma centers (a strategic 

decision)? 

• How substantial are the effects of assessment-related mistriages in the ISS 9-15 

group (moderate injuries) compared to the ISS>15 group (severe injuries) on 

patient safety? 

The key contributions of our approach are as follows. First, to address the above 

questions, we propose a stochastic nested multi-level, multi-transportation capacitated 

model to maximize patient safety. Second, our proposed model explicitly considers 

mistriages in injury assessment by incorporating the uncertainty in the binary assessment 

decision (severe vs. non-severe) as a Bernoulli random variable with the probability of 

success referring to a patient being classified as having severe injuries. Third, we integrate 

Monte Carlo Simulation with a genetic algorithm (GA) to solve the proposed stochastic 

model efficiently. We incorporate a feasibility algorithm in the proposed GA to convert 

infeasible solutions during offspring generation into feasible ones. Finally, we generate a 

dataset using state-wide annual trauma registry data published across the US to evaluate 

the sensitivity of the solution to mistriages in injury assessment.    

Our findings suggest that the network is sensitive to mistriages in the ISS >15 group 

(i.e., underlying severe injuries). The resulting network with high mistriages in this group 

increases efUT by 799% compared to the network without assessment mistriages. In 

addition, it may also lead to the clustering of MTCs near high trauma incidence rates. The 
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trauma network is also sensitive to mistriages in the ISS 9-15 group, and the resulting 

network tends to have a fewer and dispersed distribution of MTCs.  

In the following sections, we first summarize the relevant literature in Section 2. 

We introduce the problem and present the mathematical model in Section3. Next, in 

Section 4, we provide details of the proposed solution approach and insights based on an 

experimental study in Section 5. Finally, Section 6 summarizes our work and offers 

guidance for future research in this area. 

4.2 Literature Review 

Several studies have addressed a variety of healthcare facility location problems, 

such as the location of primary health centers (Günes et al., 2014), long-term care centers 

(Cardoso et al., 2015; Intrevado et al., 2019), preventive healthcare facilities (Zhang et al., 

2009; Zhang et al., 2010), blood bank locations (Çetin & Sarul, 2009), organ-transplant 

centers (Caruso & Daniele, 2018) and ambulance location and/or relocation (Reuter-

Oppermann et al., 2017; Vanbuuren et al., 2018). For a comprehensive review, see Reuter-

Oppermann et al. (2017), Ahmadi-Javid et al. (2017), and Gunes et al. (2019). 

In the area of trauma network design, approaches proposed have focused on 

maximizing patient safety due to the time-sensitive and life-threatening nature of traumatic 

injuries. Three types of surrogate metrics for patient safety have been used in this literature: 

(i) coverage, (ii) access time, and (iii) mistriages. Branas et al. (2000) proposed a model to 

maximize coverage of severely injured patients by simultaneously locating major trauma 

centers and air ambulances. Cho et al. (2014) further incorporated a busy fraction of 

medical helicopters in their model that simultaneously locates major trauma centers and 
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medical helicopters to maximize the expected number of severe patients transported to an 

MTC within 60 minutes. Lee et al. (2018) extended this model and proposed a multiperiod 

location model that determines when and where to locate trauma centers and air 

ambulances over a planning horizon. However, all of these approaches assume 100% 

accuracy in on-scene injury assessment by the EMS and do not consider non-severely 

injured patients.  

In terms of considering access time and mistriage as bi-objective, Jansen et al. 

(2015) proposed a data-driven bi-objective approach to minimize the total access time and 

the number of exceptions for severely injured patients by locating major and intermediate 

trauma centers. Jansen et al. (2018) further designed Colorado’s trauma network with the 

same objective using a multi-fidelity surrogate-management strategy developed by Wang 

et al. (2016) for offline data-driven multi-objective optimization problems that reduce the 

computation time. Both models used the triage protocol proposed by ACS to determine the 

injury severity and clinical need (different levels of trauma care); however, they do not 

explicitly account for injury assessment-related mistriages. In addition, these approaches 

do not consider non-severely injured patients and associated mistriages, and also restrict 

the network design to only downgrading an existing MTC.  

To support decision making around trauma networks, the ACS Committee on 

Trauma (ACS COT) developed the Needs-Based Assessment of Trauma System (NBATS) 

tool that determines the required number of major trauma centers using six criteria (ACS-

NBATS, 2015). However, the NBTAS tool does not determine the location of those major 

trauma centers and the network's performance. Parikh et al. (2022) proposed a model for a 

Performance-based Assessment of Trauma System (PBATS) that determine the minimum 
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number and location of MTCs by keeping system-related under-triage (srUT) and over-

triage (srOT) rates within a prespecified limit. Hirpara et al. (2022) proposed a bi-objective 

model that maximizes patient safety by optimally locating major trauma centers. Patient 

safety is measured as the weighted sum of srUT and srOT rates; mistriages occur during 

the destination determination phase. These works consider both types of patients; however, 

they do not explicitly account for on-scene injury assessment-related mistriages.  

Literature has also focused on estimating the accuracy of field triage guidelines 

(FTGs) proposed by national and state agencies worldwide using retrospective and 

prospective studies. The ACS developed a field triage guideline known as the National 

Field Triage Decision Scheme (FTDS) more than three decades ago and has periodically 

revised it (ACS COT, 1986; ACS COT, 2006; Sasser et al., 2011). Newgard et al. (2011b) 

estimated the performance of 2006 FTDS through a retrospective study using data from 7 

regions of the Western US from 2006 through 2008 and estimated 14.2% and 31.3% arUT 

and arOT rates, respectively. Newgard et al. (2016) sought a prospective validation of 2006 

FTDS through a study of 1 year in 7 counties in 2 states, and estimated 33.8% and 12.2% 

arUT and arOT rates, respectively. Parikh et al. (2017) assessed the performance of the 

2011 FTDS and Ohio Prehospital Trauma Triage Decision Tree (OPTTDT) through a 

retrospective analysis of 5 years of data from the state of Ohio. They observed 9.09% and 

9.57% arUT and 87.45% and 86.99% arOT rates for FTDS and OPTTDT, respectively. An 

analysis of the Dutch Field Triage protocol using a retrospective study of 2 years of data 

from central Netherlands resulted in 63.8% arUT and 7.4% arOT rates. See Van Rein et al. 

(2018a), van Rein et al. (2018b), Gianola et al. (2021), and Lupton et al. (2022) for 

comprehensive reviews of the performance of various FTGs developed worldwide.    
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Considering the lower accuracy rates of the FTGs, several studies have proposed 

statistical models to improve assessment quality using various medical characteristics 

known at the scene. Parikh et al. (2017) developed a multivariate logistic regression-based 

prediction model using 5-year data from the state of Ohio. They observed considerably 

better injury severity estimates through their proposed model compared to 2011 FTDS 

(arUT = 1.93% versus 9.03%; arOT = 66.42% versus 87.52%). Van Rein et al. (2019) 

developed a bivariable logistic regression model based on prehospital predictors associated 

with injury using the data from the central Netherlands region. The developed model uses 

only 8 prehospital parameters (vs. an average of 40 in FTGs) to estimate injury severity. 

Their model resulted in an arUT rate of 11.2% and an arOT of 50.0%, which is 10.4% and 

19.4% lower than the Dutch Field Triage Protocol for the same data.  

Our review of existing trauma literature suggests the following gaps: 

• Prior work assumes 100% accuracy in on-scene clinical injury assessment by EMS 

and does not explicitly account for mistriage rates in assessments; this limits our 

understanding of how these mistriage rates impact patient safety.  

• While a number of alternate models for on-scene injury assessment have been 

proposed, none have attempted to quantify the impact of their quality on the trauma 

network. 

This work fills the above gaps by proposing a stochastic nested trauma network 

design model to determine the optimal number and location of trauma centers in order to 

maximize patient safety. The proposed model considers both severe and non-severe 

patients, and explicitly accounts for on-scene injury assessment-related mistriages. We 

now present details of our approach. 
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4.3 Optimization Model 

Trauma care systems are often designed for a specific Trauma Service Area (TSA), 

which is a geographical area comprising a collection of counties in a state, the state itself, 

or even a collection of states. Typically, a TSA is further divided into subareas known as 

regions (or districts), which oversee trauma care within that region. The proposed generic 

model explicitly accounts for assessment-related mistriages and determines the optimal 

number and location of MTCs within a TSA in order to maximize overall patient safety 

(quantified in terms of effective under-triage). As mentioned earlier, due to severe life-

threatening injuries, delay in definitive care for under-triage patients increases the 

likelihood of adverse outcomes; therefore, we consider effective under-triages (efUT) as 

the primary patient safety metric while effective over-triages (efOT) as a secondary metric.   

Although a true underlying injury severity is often classified as severe or non-

severe (binary) in the literature, non-severe injuries (ISS ≤ 15) are further classified into 

minor (ISS 1-8) and moderate (ISS 9-15) injuries, with the latter often complex to separate 

them from severe injuries (ISS>15). We, therefore, consider such subgroups to further 

understand the effect of assessment mistriages in each of these groups on system 

performance. 

For a given ISS group, an assessment-related mistriage (arUT and arOT) represents 

the % of patients that have been assessed to have injury that is different from their true 

underlying injury. That is, in case of ISS 1-8 and 9-15 groups (i.e., underlying injuries are 

non-severe), an assessment-related mistriage (arOT) means the patient is assessed to have 

severe injuries. However, for the ISS >15 group (i.e., underlying injuries are severe), an 

assessment-related mistriage (arUT) refers to the patient assessed to have non-severe 
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injuries. We model these binary mistriages via group-specific Bernoulli distributions with 

probability of injury perception being severe as x for ISS 1-8, y for ISS 9-15, and (1-z) for 

ISS >15 group. Note that a mistriage in ISS > 15 group means a severely injured patient 

was mistriaged as non-severe; so if z refers to the probability of assessed non-severe (a 

mistriage - arUT), then (1-z) refers to assessed severe (which is what we need for the 

Bernoulli distribution for this group). 

For given assessed injury severity, we use the Notional Tasking Algorithm 

proposed in Hirpara et al. (2022) to determine the destination hospital, mode of 

transportation, and resulting system-related triage type.  

Given this background, we now present our model under the following 

assumptions: 

• True injury severity is known only through the ISS score recorded during the 

patient’s hospital stay. 

• The number of patients and their locations are deterministic and known. 

• In the case of multiple patients at the scene (say, during a multi-vehicle crash), each 

patient is evaluated individually and transported based on their medical condition. 

• The candidate locations for the MTCs and NTCs are known and finite. 

• If a severely injured patient is initially transported to an NTC, they are eventually 

transferred via ground to the nearest MTC from the incidence location for definitive 

care. 

• While ground ambulance services are available without constraints, the availability 

of air ambulances is restricted, and the trips are only allowed to transport assessed 

severely injured patients. 



 

108 

 

• Ground and air transport times are known and deterministic. 

Tables 16 and 17 summarize the parameters and decision variables, respectively, 

used in the model. 

 

 

 

 

 

 

 

 

Table 16. Parameters in the model 

Notation Definition 

I Set of incidences for trauma patients; 𝑖 ∈ 𝐼 

J Set of candidate locations (for MTC and NTC); j ∈ J 

α ‘Access’ time threshold to determine srUT (in minutes) 

β ‘Bypass’ time threshold to determine srOT (in minutes) 

𝑆𝑖
𝑇 

True underlying injury severity of patient i, 1 if severely injured (ISS>15); 0, 

otherwise (non-severe) 

𝑆𝑖
�̃� 

EMS’s on-scene assessment of severity of patient i; 1 if assessed severely 

injured; 0 otherwise (assessed non-severe) 

𝑇𝑖𝑛, 𝑇𝑙𝑜𝑎𝑑 
Inbound time from base-to-incidence location and loading time of patient at 

the incidence location for an air ambulance 

Z Maximum allowable patients via air ambulance 

𝑉𝑚𝑖𝑛, 𝑉𝑚𝑎𝑥 
Minimum and maximum allowable volume of underlying severely injured 

patients at MTC 

C Maximum number of allowable MTCs in the TSA 

𝑇𝐺𝑖𝑗, 𝑇𝐴𝑖𝑗 Travel time from patient i to any candidate location j via ground and air 

𝑂𝑇𝑚𝑎𝑥 Maximum allowable effective over-triage patients calculated as the proportion 

of underlying non-severe patients 
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Minimize:   𝐸[∑ ∑ 𝑈𝑇𝑖𝑗|𝑠𝑟𝑗𝑖 ] + 𝐸[∑ ∑ 𝑈𝑇𝑖𝑗|𝑎𝑟𝑗𝑖 ]    

Subject to: 

Determining the nearest NTC and MTC   

(𝑛𝑖𝑗
𝑀𝑇𝐶_𝐺 , 𝑛𝑖𝑗

𝑀𝑇𝐶_𝐴, 𝑛𝑖𝑗
𝑁𝑇𝐶) = 𝑓1(𝑆𝑖

�̃�, 𝑇𝐺𝑖𝑗, 𝑇𝐴𝑖𝑗 , 𝑥𝑗); 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽  (1) 

Determining the system-related triage of patients using on-scene assessed 

severity and notional tasking algorithm 

 

(𝑠𝑟𝐴𝑇𝑖𝑗
𝑃, 𝑠𝑟𝐴𝑇𝑖𝑗

𝑁 , 𝑠𝑟𝑈𝑇𝑖𝑗, 𝑠𝑟𝑂𝑇𝑖𝑗)

= 𝑓2(𝑆𝑖
�̃�, 𝑇𝑖𝑛, 𝑇𝑙𝑜𝑎𝑑, 𝛼, 𝛽, 𝑍, 𝑛𝑖𝑗

𝑀𝑇𝐶_𝐺 , 𝑛𝑖𝑗
𝑀𝑇𝐶_𝐴, 𝑛𝑖𝑗

𝑁𝑇𝐶); 

𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽  

(2) 

  

Table 17. Decision variables in the model 

Notatio

n 
Definition 

xj 
1, if a candidate location j is designated to be an MTC; 0, otherwise (designated as 

an NTC) 

𝑛𝑖𝑗
𝑀𝑇𝐶_𝐺

 
1, if location j is marked as MTC and is the nearest MTC for patient i via ground; 

0, otherwise 

𝑛𝑖𝑗
𝑀𝑇𝐶_𝐴

 
1, if location j is marked as MTC and is the nearest MTC for patient i via air; 0, 

otherwise 

𝑛𝑖𝑗
𝑁𝑇𝐶 

1, if location j is marked as NTC and is the nearest NTC for patient i via ground; 

0, otherwise 

𝑠𝑟𝐴𝑇𝑖𝑗
𝑃 

1, if patient i is assessed as severely injured and transported to MTC j via ground 

or air; 0, otherwise 

𝑠𝑟𝑈𝑇𝑖𝑗 
1, if patient i is assessed as severely injured and transported to NTC j via ground; 

0, otherwise 

𝑠𝑟𝐴𝑇𝑖𝑗
𝑁 

1, if patient i is assessed as non-severely injured and transported to NTC j via 

ground; 0, otherwise  

𝑠𝑟𝑂𝑇𝑖𝑗 
1, if  patient i is assessed as non-severely injured and transported to MTC j via 

ground; 0, otherwise 

𝑈𝑇𝑖𝑗|𝑠𝑟 
1, if patient i has underlying severe injuries and is also assessed to be severe, but 

still transported to NTC j; 0, otherwise 

𝑈𝑇𝑖𝑗|𝑎𝑟 
1, if patient i has underlying severe injuries but is assessed to be non-severe 

(incorrect assessment) and transported to NTC j; 0, otherwise 

𝑂𝑇𝑖𝑗|𝑠𝑟 
1, if patient i has underlying non-severe injuries and is also assessed to be non-

severe, but transported to MTC j; 0, otherwise 

𝑂𝑇𝑖𝑗|𝑎𝑟 
1, if patient i has underlying non-severe injuries but is assessed to be severe 

(incorrect assessment) and transported to MTC j; 0, otherwise 

𝑣𝑗 Volume of underlying severe patients if location j marked as MTC; 0, otherwise  
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Determining the effective mistriages  

(𝑈𝑇𝑖𝑗|𝑎𝑟, 𝑂𝑇𝑖𝑗|𝑎𝑟, 𝑈𝑇𝑖𝑗|𝑠𝑟, 𝑂𝑇𝑖𝑗|𝑠𝑟)

= 𝑓3(𝑆𝑖
𝑇 , 𝑆𝑖

�̃�, 𝑠𝑟𝐴𝑇𝑖𝑗
𝑃, 𝑠𝑟𝐴𝑇𝑖𝑗

𝑁 , 𝑠𝑟𝑈𝑇𝑖𝑗 , 𝑠𝑟𝑂𝑇𝑖𝑗); 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽  
(3) 

Determining the volume at MTC based on the true underlying severity of patients  
 

𝑣𝑗 =  𝑓4(𝑆𝑖
𝑇 , 𝑠𝑟𝐴𝑇𝑖𝑗

𝑃, 𝑠𝑟𝑈𝑇𝑖𝑗, 𝑠𝑟𝑂𝑇𝑖𝑗, 𝑠𝑟𝐴𝑇𝑖𝑗
𝑁 , 𝑛𝑖𝑗

𝑀𝑇𝐶_𝐺); 𝑗 ∈ 𝐽 (4) 

Allowable number of MTCs, and their minimum and maximum volume 
 

𝑥𝑗  𝑉𝑚𝑖𝑛 ≤ 𝑣𝑗 ≤ 𝑥𝑗  𝑉𝑚𝑎𝑥; 𝑗 ∈ 𝐽 (5) 

∑ 𝑥𝑗 ≤𝑗  C  (6) 

Allowable maximum effective over-triage  
 

∑ ∑ (𝑂𝑇𝑖𝑗|𝑠𝑟 + 𝑂𝑇𝑖𝑗|𝑎𝑟)𝑗𝑖 ≤  𝑂𝑇𝑚𝑎𝑥  (7) 

Bounds on decision variables 

𝑥𝑗 , 𝑈𝑇𝑖𝑗|𝑠𝑟, 𝑈𝑇𝑖𝑗|𝑎𝑟, 𝑂𝑇𝑖𝑗|𝑠𝑟, 𝑂𝑇𝑖𝑗|𝑎𝑟, 𝑛𝑖𝑗
𝑀𝑇𝐶𝐺 , 𝑛𝑖𝑗

𝑀𝑇𝐶𝐴 , 𝑛𝑖𝑗
𝑁𝑇𝐶 , 𝑠𝑟𝐴𝑇𝑖𝑗

𝑃, 𝑠𝑟𝐴𝑇𝑖𝑗
𝑁 , 𝑠𝑟𝑈𝑇𝑖𝑗 , 𝑠𝑟𝑂𝑇𝑖𝑗

∈ {0, 1};  𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽  
(8) 

𝑣𝑗 ≥  0; 𝑗 ∈ 𝐽 (9) 

 

The proposed model minimizes expected effective under-triage (efUT) patients in 

the TSA, which comprises of UT|sr and UT|ar. Constraints (1) determine the nearest MTC 

and NTC via ground for each patient, and the nearest MTC via air for assessed severe 

patients; this is depicted as function f1 and can be expressed in closed analytical form 

(similar to Hirpara et al., 2022). The function f2 represents the notional tasking algorithm 

that uses several system parameters, such as assessed severity of injury (𝑆𝑖
�̃�), nearest MTC 

and NTC for each patient (depend on trauma network 𝑥𝑗), clinically recommended 

thresholds ( and ), and helicopter-related parameters (see Hirpara et al., 2022). 

Constraints (2) classify each patient into one of the 4 system-related triage types; under-
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triage (srUT), over-triage (srOT), appropriate-triage to MTC (srATP), and appropriate-

triage to NTC (srATN).  

Constraints (3) determine effective mistriages (efUT and efOT) based on true 

underlying severity and system-related triage. Recall effective mistriage occur either due 

to system-related mistriage (UT|sr, and OT|sr given correct assessment) or due to 

assessment-related mistriage (UT|ar, and OT|ar) in the first place (see Figure 24). 

Constraints (4) estimate the total volume of underlying severe patients if an MTC is located 

at a candidate location. Any underlying severe patient primarily transported to MTC 

(𝑒𝑓𝐴𝑇𝑃  and 𝑒𝑓𝐴𝑇𝑃̃  in Figure 24) are considered toward trauma volume at MTC. However, 

all underlying severely injured patients primarily transported to NTCs (UT|sr and UT|ar) 

are typically transferred from an NTCs to the nearest MTCs (on the same day or later after 

the patient stabilized) for definitive care; such patients are also considered towards the 

volume of MTC.  

Constraints (4) specify the bounds on the allowable minimum and maximum 

volumes of severely injured trauma patients for an open MTC. The maximum allowed 

MTCs in the TSA is specified by Constraint (5). Constraints (6) limit maximum allowable 

efOT patients, which is a summation of correctly assessed non-severe patients taken to 

MTC (OT|sr) and incorrectly assessed non-severe taken to MTC (OT|ar). Finally, 

Constraints (7)-(8) specify bounds on the decision variables. 

The proposed model is a stochastic, nested, multi-level, multi-transportation 

capacitated model. Such problems are combinatorial in nature and have been shown to be 

NP-hard (Daskin, 2011). Even a deterministic version of such a problem is difficult to solve 

optimally using commercial software such as CPLEX and Gurobi. Therefore, we propose 
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a Simheuristic approach, which has been used to solve stochastic combinatorial 

optimization problems in different fields (Juan et al., 2015). We describe details of our 

Simheuristic-based solution approach in the next section.  

4.4 Simheuristic  

A Simheuristic approach is an integration of simulation (any of its variants) and 

metaheuristic to solve a real-life problem with uncertainty. Their popularity has increased 

recently due to their flexibility in solving various stochastic combinatorial optimization 

problems. Successful applications of Simheuristic include vehicle routing problem with 

stochastic demands (Juan et al., 2013), flow-shop problem with stochastic processing times 

(Juan et al., 2014), stochastic uncapacitated facility location problem (De Armas et al., 

2017), and waste location-routing problem (Rabbani et al., 2019); see Juan et al., 2015 and 

Amaran et al., 2016 for a comprehensive review. 

4.4.1 Proposed Simheuristic approach 

In our proposed Simheuristic, we use a Genetic Algorithm (GA) as the underlying 

metaheuristic and Monte Carlo simulation (MCS) to capture uncertainty using repeated 

random sampling (Juan et al., 2013; Juan et al., 2014; Gruler et al., 2018; Rabbani et al., 

2019; Quintero-Araujo et al., 2021; Sadrani et al., 2022). While a Simheuristic with GA 

has been proposed in the literature (Yoshitomi et al., 2003; Edison et al., 2011; Rabbani et 

al., 2019; Slama et al., 2021), the novelty in our implementation springs from two 

enhancements that help reduce computation time while achieving high quality solutions: 

(i) feasibility algorithm, which refers to converting infeasible offspring to feasible ones (as 
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elaborated in Section 4.2) (ii) elite population, that uses evolution (to collect promising 

offspring) and refinement (to select the best among these). 

Figure 25 illustrates a flowchart of our proposed Simheuristic approach, and the 

following sub-sections describe the various steps in detail.  

4.4.1.1 Population initialization 

We use binary string to form a chromosome indicating a network of MTCs with the 

following representation: H = {0, 1, 0, 1, 1, 0, ..., 0, 1}; where 1 represents an MTC and 0 

represents an NTC, and |H| represents the total number of existing hospitals. The initial 

population of chromosomes (P) is generated using an ‘initial solution generator’ described 

in Section 4.3. 

   
 

Figure 25. Flowchart of the proposed Simheuristic 
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4.4.1.2 Crossover 

It is analogous to reproduction by exchanging genetic material between parents to 

generate new chromosomes known as offspring that are more likely to be better than the 

parents. The standard 2-point crossover is used to generate two offspring using the two 

parents with the crossover probability (cp) that controls the crossover operation. 

4.4.1.3 Mutation  

The mutation process diversifies the search process and prevents evolution from 

getting stuck in local optima. We use the flip bit mutation technique with mutation 

probability (mp) that controls the rate at which chromosomes’ genes can mute.  

4.4.1.4 Evaluation 

Each offspring is evaluated using a MCS to estimate the expected efUT (objective), 

efOT, and volume at MTCs. For a given offspring, we first sample the assessed severity of 

each patient using MCS and use the notional tasking algorithm (per Hirpara et al., 2022) to 

determine the destination hospital. In each MCS replication, we use the ISS-group specific 

Bernoulli random variable to assign the assessed severity to each patient. Next, we use 

destination hospital type, along with true underlying and assessed injury severity, to 

classify each patient in one of the 4 system-related triage types and calculate efUT and 

efOT. Further, the volume at an MTC is calculated as a sum of number of underlying 

severely injured patients primarily transported to the MTC and the number of efUT patients 

that would be transferred from the NTC. We repeat these steps for N replications in the 

MCS to estimate the expected value of efUT, efOT, and volume at MTCs. If an offspring 
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violates any constraints, we use our proposed ‘feasibility’ algorithm to convert an 

infeasible offspring to a feasible one (see Section 4.2). 

4.4.1.5 Elite population 

Elite population refers to a collection of promising offspring that are derived and 

evaluated in two stages, evolution, and refinement. During the evolution stage, each 

offspring in a generation is evaluated via a quick simulation run (limited number of 

replications, N) using the MCS. Feasible offspring that has the best solution in that 

generation is added to the elite population if either (i) the number of solutions in the elite 

population has not reached its maximum limit (Pelite) or (ii) this solution is better than the 

worst solution in the elite population. Once the maximum number of generations have been 

achieved, the refinement stage begins where all solutions in the elite population are then 

re-evaluated using a suitably large number of simulation replications (Nelite) (Juan et al., 

2014; Pagès‐Bernaus et al., 2019; Gruler et al., 2020; Quintero-Araujo et al., 2021). This 

evolution-refinement (similar to coarse-fine) approach enables identifying high quality 

solutions at reduced computational effort.  

4.4.1.6 Selection  

We use the elitist selection method that combines parents and offspring, and selects 

the best individuals among them for the next generation.  
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4.4.1.7 Stopping criteria 

We use two termination criteria in the proposed approach: (i) a maximum number 

of total generations and (ii) a maximum number of generations without improvement in 

the best solution.  

4.4.1.8 Refinement of elite population 

This stage refines the best solutions preserved over the evolution (elite population) 

using an intensive simulation (large number of replications, Nelite) to precisely estimate the 

performance metrics.  

4.4.2 Feasibility algorithm 

An offspring is considered infeasible if it violates any of the four constraints in the 

model: (i) the lower bound on MTC volume (Constraints 5 in the optimization model), (ii) 

the upper bound on MTC volume (Constraints 5), (iii) limit on maximum MTCs in the 

Feasibility Algorithm 

New offspring = infeasible offspring 

k = 0 

Repeat 

    If minimum volume violation: 

        New offspring = Minimum volume repair 

    If max volume violation: 

        New offspring = Maximum volume repair 

    If #MTCs (New Offspring) > C: 

New offspring = Maximum MTCs repair 

    Else If efOT violation and no minimum volume violation: 

        New offspring = Maximum efOT repair 

    Evaluate New offspring 

    If feasible: 

        Return New offspring 

    Else: 

        k = k + 1 

Until k = kmax 
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TSA (Constraint 6), and (iv) maximum allowable efOT (Constraint 7). The proposed 

feasibility algorithm iteratively repairs the offspring using one or more modifications 

corresponding to the constraint violations, as detailed below. 

4.4.2.1 Minimum volume repair  

Violation in the constraint representing the lower bound of MTC volume is the most 

common reason for the infeasibility of an offspring. If this happens, we use the following 

dynamics: if we downgrade an infeasible MTC to an NTC, then patients from downgraded 

MTC would be diverted to another infeasible nearby MTC. In that case, this nearby MTC 

may eventually receive enough patients to satisfy the minimum volume requirement at that 

MTC (making it feasible). Following this logic, if the minimum volume constraint is 

violated at only one MTC in an offspring, then that offspring can be repaired by simply 

downgrading the infeasible MTC to NTC (i.e., the decision variable for this hospital in that 

offspring is switched from 1 to 0). However, if >1 MTCs are violate this constraint in an 

offspring, then we create an offspring-specific list consisting of all these infeasible MTCs 

and downgrade only a handful of infeasible MTCs using the following steps. First, we pick 

one MTC in that list at random and downgrade it to an NTC. Second, then we randomly 

pick another MTC from this same list ensuring that this new MTC is relatively far away 

from the already downgraded MTC (e.g., >30 miles) and downgrade this MTC as well. We 

repeat the second step until for all MTCs in this list have been tested (ensuring that the 

chosen MTC is far away from the already downgraded MTCs). At this point, the entire 

offspring is again evaluated using the MCS. If this offspring is still infeasible, then the 

feasibility algorithm is repeated again until the constraint is satisfied. 
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4.4.2.2 Maximum volume repair 

If any MTC violates the maximum allowable limit of severely injured patients, the 

algorithm randomly selects one of the five NTCs closest to this MTC and upgrades that 

NTC to an MTC. The idea is that upgrading a nearby NTC to an MTC would divert some 

severely injured patients to this new MTC, eventually reducing the burden on the violating 

MTC. 

4.4.2.3 Maximum MTCs repair 

A violation of maximum allowable MTCs in the TSA can only be repaired by 

downgrading all additional MTCs to NTCs in the same iteration this repair is invoked. Note 

that a downgrade of MTCs could increase access time for severely injured patients and 

subsequently increase efUT (objective). Therefore, the idea is to downgrade MTCs that 

have additional MTCs nearby (within 30 miles). To understand this, consider a situation 

when there are 13 MTCs in the offspring, while only 10 MTCs (C=10) are allowed in the 

TSA (Constraint 7). First, for each of the13 MTCs, the repair algorithm determines the 

number of other MTCs nearby and downgrades the MTC with a maximum number of other 

MTCs nearby. This process is repeated until the maximum limit (C) is satisfied; in this 

specific situation, the process is repeated 3 times.  

4.4.2.4 Maximum allowable efOT 

An infeasibility due to higher efOT patients is repaired by downgrading MTCs to 

NTCs. Recall that the higher the number of MTCs, the higher the likelihood of efOT. In 

this case, because of the downgrade of one or more MTCs in the minimum volume repair 
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(4.2.1) and maximum MTCs repair (4.2.3), efOT could already be within the maximum 

allowable value. Therefore, this repairing step is only performed if the offspring is not 

violating any of those two constraints (4.2.1 and 4.2.3). The repairing for this violation is 

similar to the previous repair (Section 4.2.3); however, it only downgrades one MTC with 

the highest number of other MTCs nearby and it usually repairs the issue. If it does not, we 

downgrade another one according to the same rule in the next iteration of the feasibility 

algorithm until the constraint is satisfied. 

To achieve 100% of feasibility in the offspring, a higher number of iterations (kmax) 

are required in the feasibility algorithm. Initial analysis suggested that, in most cases, at 

least 95% feasibility can be achieved by using the feasibility algorithm with kmax = 4 

compared to less than 40% without it. If there is still an infeasible offspring, then its 

objective value is set to a very high value. 

4.4.3 Initial solution generator 

To initiate the Simheuristic, we use this generator to generate several initial feasible 

solutions for a given number of underlying severe patients (SI), minimum volume 

requirement at MTC (Vmin), and maximum allowable MTCs in the TSA (C). We embed the 

feasibility algorithm (Section 4.2) inside of this generator as well.  

First, the generator calculates the number of MTCs to open (m) in the TSA as the 

minimum of two criteria: (a) maximum feasible MTCs for a given minimum volume 

requirement and (b) maximum allowable MTCs in the TSA (C). For each county in the 

TSA, the generator first calculates criteria (a), the maximum feasible MTCs (n) in the 

county, as the nearest smallest integer of the ratio of total severely injured patients in the 
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county (#SI) and the minimum volume requirement at MTC (Vmin). For a given county, n 

greater than or equal to 1 represents that there are sufficient underlying severe patients to 

satisfy the absolute minimum volume requirement of these n MTCs. Therefore, the 

generator randomly chooses n candidate locations from that county as MTCs. Next, if the 

total number of chosen MTCs across all counties (|MTC|) is less than the maximum feasible 

MTCs (m) in the TSA, the generator randomly chooses additional candidate locations as 

MTCs. The generator creates a binary chromosome using chosen MTC locations and 

evaluates the chromosome. If the chromosome is infeasible, the ‘feasibility’ algorithm is 

invoked to repair the chromosome. This process repeats until we generate P initial feasible 

solutions to initiate the evolution.  

 We used R to implement our proposed Simheuristic on a computer with 16 virtual 

CPUs, each with a 2.9 gigahertz processor and a total of 32GB RAM. We used parallel 

processing in R that allowed parallel feasible solution generation, evaluation of offspring 

during evolution, running feasibility algorithms for infeasible offspring, and refinement of 

the elite population.  

Initial Solution Generator 

MTC = Ø 

m = min(floor(# SI/Vmin), C) 

For each county in TSA: 

    n = floor(# SI cases in county/Vmin) 

    If n ≥ 1: 

        MTC = MTC ⋃ {randomly choose n location(s) within the county} 

If m - |MTC| > 0: 

    MTC = MTC ⋃ {randomly choose (m - |MTC|) non MTC location within TSA} 

Return MTC 

Chromosome = Generate binary string using MTC 

Evaluate Chromosome  

If infeasible: 

    Run feasibility algorithm 
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Based on preliminary experiments, we use a population size (P) of 30 

chromosomes, the mutation rate (mp) of 1/n (where n represents a number of candidate 

locations), crossover probability (cp) of 0.9, 50 replications of MCS during evolution (N), 

500 replications of MCS during refinement (Nelite), and the elite population size of 50 

(Pelite). We used two termination criteria (i) maximum generations (set to 1,000) and (ii) 

non-improving 75 generations.  

4.5 Experimental Study 

To analyze the impact of assessment-related mistriages, we selected (i) a TSA and 

(ii) identified corresponding trauma incidences. For (i), we considered a group of real 

counties in an existing midwestern US state (Figure 26). We ensured that this TSA is 

representative of an average TSA in the US for which 62% counties are rural; in the chosen 

TSA, there are 34 counties with 21 rural.  

For (ii), we estimated median population of a 

US state, which is 4.55 million. Based on state-wide 

annual trauma registry data published by nine states 

across the US, we estimated that there are an average 

of 5.2 trauma patients per thousand citizens; this 

corresponded to 23,680 trauma patients in the TSA 

(given 4.55 million population). In line with National 

Trauma Data Bank (NTDB) report, we considered 

15.63% of patients as severely injured and the rest as 

non-severely injured (NTDB, 2016). We used ArcGIS 

    

Figure 26. TSA with counties; 

grey filled areas are urban 

counties; ‘+’represents 

candidate locations 

 



 

122 

 

Pro 2.9.1 to generate locations (latitude and longitude) of trauma incidences in the TSA; 

we used a Gini index of 0.5 to represent distribution of trauma incidences in this TSA with 

moderate clustering around urban areas.  

We next modeled the injury assessment mistriages and refer to them as assessment-

related (ar) to distinguish them from system-related (sr) that occur during destination 

determination. For each group of ISS, we generated ar-related mistriages using the scheme 

shown in the Table 18; because there are relatively few mistriages in assessing minor 

injuries (ISS 1-8 group), we assumed 100% certainty in assessing minor injuries. We 

considered up to 75% mistriages in assessing moderate injuries (ISS 9-15) as it is hard to 

separate from severe injuries (ISS >15), resulting in often higher mistriages among all 

groups. The scenario with no assessment mistriage is considered the base case (marked in 

bold). 

There are a total of 64 hospitals currently in this TSA. We considered all hospitals 

in the TSA as candidate locations and used the underlying transportation network in these 

counties to generate the actual drive time matrix (TGij) from an incidence location to a 

candidate hospital using ArcGIS Pro 2.9.1. Airtime matrix (TAij) was generated using the 

Haversine formula assuming the helicopter speed of 120 mph.  

Table 18. Summary of the parameters, levels, and values in the sensitivity analysis 

ISS 

group 
Levels 

Assessment mistriage in 

percentage 

Probability (in Bernoulli 

distribution) 

9-15 4 
0, 25, 50, 75 (resulting in 

arOT) 
0, 0.25, 0.5, 0.75 

>15 3 0, 25, 50 (resulting in arUT) 0, 0.75, 0.5 
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As per ACS recommendation, we used a minimum of 240 severely injured patients 

as a lower bound for MTCs (Vmin), 1,000 as the upper bound on volume (Vmax) and 

maximum allowable efOT as 35% of total underlying non-severe patients (OTmax). In line 

with the literature, we used access time threshold as 30 minutes, bypass time threshold as 

0 minutes, C = 64 (total candidate locations), and helicopter usage of 15% to transport 

severely injured patients. 

Insight 1: Assessment-related mistriages in the ISS >15 group (underlying severe 

injuries) leads to poor patient safety  

Recall that ISS >15 group is patients with severe underlying injuries. For this group, 

an assessment mistriage means assessing the injuries to be non-severe. When such 

mistriages are at 50% (resulting in arUT), we noticed that the optimal trauma network had 

an increase of 799% in efUT (1,357 vs. 151 in the base case). Further, the network required 

 

Figure 27. efUT and # MTCs for different % of arUT 
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an additional MTC (12 vs. 11) compared to the base case (see Figure 27); these 12 MTCs 

are clustered around high incidence rates (see Figure 28). 

To understand this further, recall that when all patients are assessed correctly (base 

case) in the ISS >15 group, a severe patient may only experience UT|sr if the EMS has to 

transport this patient to an NTC (incorrect hospital) because the nearest MTC is outside of 

the access threshold (30 minutes via air or ground). This means that to minimize UT|sr, the 

optimal network corresponding to the base case would likely have a dispersed distribution 

of MTCs to increase access to MTC. 

However, when the assessment mistriage in the ISS >15 group is high (say, 50%), 

the EMS would aim to transport mistriage patients (deemed non-severe) to an NTC, thus 

experiencing UT|ar. This increases the efUT as pointed out earlier.  

Insight 2: Assessment-related mistriages in the ISS >15 group (underlying severe 

injuries) may lead to the clustering of MTCs near high trauma incidence rates 

 

 0% arUT                                 25% arUT                                50% arUT 

Figure 28. Locations of MTCs for different percentage of arUT; dense areas represent 

higher trauma incidence rate and stars represent MTCs 
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This insight is clearly evident from Figure 28 where the MTCs appear to cluster as 

the assessment mistriages increase. Recall clustering of MTCs around those areas may 

prone EMS paramedics to transport assessed non-severely injured patients (especially, the 

incorrectly-assessed in ISS >15 group) to MTCs (per the bypass threshold condition in the 

Notional Tasking Algorithm). That is, although an ISS >15 patient is mistriaged as having 

non-severe injuries, that patient may end up in an MTC (experiencing srOT), the correct 

hospital based on true underlying injury indicating an effective appropriate triage patient. 

This essentially means, clustering of MTCs would help reduce UT|ar patients in the trauma 

network with higher mistriages in assessing severe injuries. The gradual clustering of 

MTCs with an increase in assessment-related mistriages in the ISS >15 group is evident 

from Figure 27. 

Insight 3: Assessment-related mistriages in the ISS 9-15 group (underlying non-severe 

injuries) may lead to poor patient safety and potentially a disperse distribution of MTCs  

Recall that for the ISS 9-15 group, an assessment-related mistriage indicates that 

the EMS assessed the true underlying non-severe injuries of a patient as being severe. 

When such mistriages are increase, we observed an increase in the objective function 

(suggesting poor patient safety). At 75% assessment mistriage in this group, efUT 

increased from 151 (base case) to 586 (a 288% increase); see Figure 29. We also observed 

a more dispersed distribution of MTCs with an increase in the mistriages than the base case 

(Figure 30), along with a decrease in MTC at high mistriage values.  
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To understand this phenomenon, note that a mistriaged patient in this group would 

be assessed by the EMS as severe, and, in turn, will prompt the EMS to transport them to 

the nearest MTC (the correct hospital based on assessed severity) if it is within the access 

threshold; a case of over-triage (OT|ar). Consequently, if such OT|ar patients need to be 

limited due to the efOT constraints (constraint 7), the ideal thing would be to lower the 

accessibility of MTCs from the scene (i.e., increase the access time), which would induce 

the EMS to transport such mistriaged (assessed severe) patients to nearby NTCs. This 

would result in the patient experiencing appropriate effective triage (an eventual correct 

outcome for the patient). To enable this, the resulting network tends to have a dispersed 

distribution of MTCs, and potentially fewer MTCs at high mistriage rates for this group. 

The obvious downside of this change in the network is the inability of EMS to transport 

severely injured patients to MTCs (both correctly assessed in the ISS >15 group and 

incorrectly assessed in the ISS 9-15 group), resulting in higher efUT (Figure 29).  

 

 

Figure 29. Objective and # MTCs for different % of arOT in ISS 9-15 group  
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4.6 Summary 

Realizing that an accurate on-scene injury assessment is critical for timely patient 

care, national and state organizations have proposed guidelines to assist EMS paramedics. 

Even though the field triage guidelines (FTGs) have been developed by medical experts 

and updated periodically, literature and anecdotes from practice suggested that these FTGs 

do not always provide 100% accurate determination of injury severity. Errors in clinical 

assessment of a patient’s injury can have negative implication on overall patient safety, 

and even the design of the trauma network.   

To understand the impact of such errors, not evaluated in prior literature, we 

proposed a stochastic nested multi-level, multi-transportation capacitated model. This 

model explicitly considers injury assessment mistriages, and determines the number and 

locations of major trauma centers to maximize patient safety. Because the EMS on-scene 

clinical injury assessment (severe vs. non-severe) is a binary decision problem, we modeled 

this assessment as a Bernoulli random variable with the probability of success referring to 

a patient classified as having severe injuries. Because mistriage in injury assessment for 

      

        0% arOT                   25% arOT                      50% arOT                     75% arOT 

Figure 30. Comparison of trauma network for different % of arOT in ISS 9-15 group 
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ISS 1-8 group is low, we specifically focused on ISS 9-15 (moderately severe) and ISS >15 

(severe) groups as mistriages in these groups have a higher likelihood, with major 

implications on patient safety.  

We proposed an optimization model that captures the impact of assessment-related 

mistriages on the final outcome for each trauma patient. To solve this model efficiently, 

we proposed a Simheuristic approach that integrates Monte Carlo Simulation (MCS) with 

a genetic algorithm (GA). Two enhancements were proposed: elite population and 

feasibility algorithm. To quantify the impact of assessment mistriages on the resulting 

trauma network and patient safety, we considered a representative TSA generated using 

data from a state trauma system in the US. Key insights from our experimental study 

suggest that assessment-related mistriages: 

• in assessing patients with underlying severe injuries (ISS>15) can substantially 

increase efUT. 

• in assessing such patients with severe injuries (ISS>15) may also lead to the 

clustering of MTCs around areas with high trauma incidence rates.  

• in assessing patients with underlying non-severe injuries (ISS 9-15) increase efOT, 

resulting in the reduction and dispersed distribution of MTCs. 

Our research has several practical implications. It allows for quantifying the impact 

of clinical assessment-related mistriages on the performance of the existing network for 

trauma policy makers. Decision makers can use our approach for quantitative evaluation 

of various existing or new injury assessment protocols and even for validation of changes 

in existing protocols before implementing them in practice. In addition, decision-makers 

can quantify the impact of reducing assessment-related mistriages in specific ISS groups 
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and modify existing EMS training programs for such groups. Better training can lead to 

reduced errors (if not fully eliminated), resulting in improve outcomes of trauma patients.
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CHAPTER 5

5 CONCLUSION 

Timely access to a trauma center is a key determinant of patient outcomes. 

Motivated by the limitations of existing approaches in locating trauma facilities, this 

dissertation studied the trauma network design problem to maximize patient safety, 

modeled using under-triage (UT) and over-triage (OT). In this dissertation, we developed 

multiple optimization-based approaches that account for various critical elements of a 

trauma system, such as multiple patient types, multiple levels of hospitals, multiple choices 

for transportation, multiple destination determination criteria, equity of care, and 

consideration of mistriages in the clinical assessment of injuries. Below we summarize our 

key findings followed by opportunities for future work in this area. 

5.1 Summary of Contribution 1  

We proposed the TCLP to determine the optimal number and location of MTCs 

that minimize the weighted sum of mistriages (srUT and srOT). We considered both severe 

and non-severe patients and their on-field operational decision-making processes and 

accounted for associated mistriages in the optimization model. We also conducted an 

experimental study to analyze how 4 key system parameters (i.e., weights for two 

mistriages in the objective, volume requirements at a major TC, access, and bypass 

thresholds) impact patient safety. The experimental results revealed the following: 
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• An increase in the number of major TCs can reduce system-related UT (srUT) at 

the cost of an increase in system-related OT (srOT); the trauma decision maker 

should choose their weights in the objective function wisely. 

• There is an inverse relationship between the minimum volume requirement at MTC 

and the number of MTCs in the network. A lower volume requirement can result in 

better patient safety, but may not be financially viable for some MTCs. 

• Quickly transporting severely injured patients to the nearest MTC is desirable 

(reflected by a lower ‘access’ threshold); this can only be achieved through more 

MTCs in the network (with the corresponding increase in srOT as highlighted 

above). 

• An illustration of our approach using real data from Ohio indicated that up to 51.9% 

reduction in srUT can be achieved (at nearly the same srOT rate) with just one 

additional MTC. The state can also redistribute the same 21 MTCs and still achieve 

a high reduction in srUT (46.6%) along with a 4.95% reduction in srOT. 

5.2 Summary of Contribution 2 

We proposed NTNDP and presented a mixed integer problem that jointly locates 

major, intermediate, and non-trauma centers to minimize a weighted sum of equity among 

regions and effectiveness across a trauma service area (TSA). In the proposed model, we 

also incorporated three dominant destination determination criteria that EMS use at the 

incidence location (i.e., protocol, patient choice, and closest facility). We generated a TSA 

using data collected from state-wide trauma agencies across the US and analyzed the 

impact of system parameters on the performance of the network. We demonstrated the use 
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of the proposed approach on 2019 data for the state of Ohio. The key insights from our 

study include the following: 

• The 100% use of the ‘protocol’ criterion (as per ACS recommendation) can achieve 

better patient safety even with fewer MTCs and ITCs. Increased use of the ‘patient 

choice’ criterion appears to reduce patient safety and may lead to a higher number 

of ITCs in the trauma network, specifically in suburban and rural areas. 

• A clustered distribution of severely injured patients in the TSA appears to improve 

trauma system performance with fewer MTCs and ITCs. 

• An emphasis on equity in the network may lead to a decline in overall patient safety; 

better performance can be achieved by balancing it with effectiveness across the 

TSA. 

• The illustration of our approach using real data from Ohio suggested an over 30% 

improvement in patient safety with an existing mixer of destination determination 

criterion. The importance of 100% protocol use for destination determination was 

also verified.  

5.3 Summary of Contribution 3 

To understand the impact of mistriages in injury assessment, we proposed a 

stochastic nested multi-level, multi-transportation capacitated model that explicitly 

considers clinical mistriages in injury assessment in determining the number and location 

of trauma centers to maximize patient safety. We modeled on-scene clinical injury 

assessment as a Bernoulli random variable with the probability of success referring to a 

patient classified as having severe injuries. We generated a representative TSA using data 
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from a state trauma system in the US, and quantified the impact of assessment mistriages 

on the resulting trauma network and patient safety. Our experimental study led us to the 

following insights: 

• The trauma network is susceptible to clinical mistriages in assessing patients with 

severe injuries (ISS>15); higher mistriages in this group tends to increase effective 

UT (efUT). 

• Higher mistriages in assessing patients with underlying severe injuries (ISS>15) 

may also lead to the clustering of MTCs around areas with high trauma incidence 

rates.  

• The network with higher mistriages in assessing patients with non-severe injuries 

(ISS 9-15) resulted in higher effective OT (efOT) and dispersed distribution of 

MTCs. 

5.4 Future Research  

This research attempted to address several fundamental questions in trauma care 

provision in the US. This is a relatively less explored domain within IE/OR; there are many 

other opportunities for future research that we summarize below. 

Inclusion of migration patterns within a state, between the state, and other patient 

distribution uncertainties would help evaluate the robustness of optimal (near-optimal) 

trauma network. Learning such migration patterns to design trauma networks that evolve 

over time would create a roadmap for the trauma decision makers to deploy in practice. 

Because the resulting model would be highly complex, it would more a sophisticated 

solution approach. 
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The inclusion of the cost incurred in upgrading an ACS-verification of a trauma 

center (e.g., from NTC to ITC/MTC and ITC to MTC) through a multi-criteria optimization 

model would allow trauma policymakers to appropriately tradeoff cost vs. care in designing 

their network.   

Investigating the impact of uncertainty in the ground and air EMS arrival and on-

scene assessment times on destination determination, network design, and patient safety 

would also be an interesting consideration. While our models assumed deterministic times 

for EMS arrival and on-scene assessment, in practice, those times could vary substantially 

between rural and urban areas, and can lead to subsequent network changes.  

Patient safety in rural areas is a major public health concern. As MTCs are not 

financially viable in rural areas due to low patient volume, designing an optimization-based 

framework to tradeoff between financial loss of MTC due to fewer patients vs. compromise 

in patient safety due to the inability to access trauma centers can be considered. This model 

can further be extended to account for various regional or state-level government subsidies 

to recover the financial loss at the trauma center due to low volume.  
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7 APPENDIX 

Appendix A: Notional Tasking Algorithm to Estimate srUT and srOT 

Figure 31 presents a schematic of the notional tasking algorithm. Accordingly, let 

tTC-gnd and tTC-air refer to the total time from field to the TC via ground and air, respectively, 

and tNTC is the time from field to NTC via ground. While tin and tload refer inbound and 

loading time for the air ambulance, respectively. If taccess and tbypass refer to the ‘access’ and 

‘bypass’ thresholds, then 

 

 

 

Figure 31. Notional Tasking Algorithm 
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• If ISS>15 (i.e., severe injuries), then 

o If tTC-gnd ≤ taccess, then transport to TC 

o Elseif (helicopter available), then  

▪ If tTC-air + tin  + tload  ≤ taccess, then transport to TC 

o Else transport to NTC (and mark the case as srUT) 

• Elseif ISS ≤ 15 (i.e., less severe injuries), then 

o If tNTC - tTC-gnd ≤ tbypass, then transport to NTC 

o Else transport to TC (and mark the case as srOT) 

 

Table 19. Illustration of Triage Classification by the Notional Tasking Algorithm 

(taccess = 30 minutes and tbypass = 15 minutes) 

Instance ISS 

Ideal 

hospit

al 

Time 

to 

neares

t TC 

by 

road, 

tTC-gnd 

(mins) 

Time 

to 

nearest 

TC by 

air, 

tTC-air 

(mins) 

Time 

to 

nearest 

NTC 

by 

road, 

tNTC 

(mins) 

Likely 

EMS 

transport 

Triage 

classifi-

ation 

Reason 

1 18 TC 25 10 45 TC ATP 

tTC-gnd ≤ taccess 

TC is within 

access threshold 

by road 

2 27 TC 40 15 55 TC ATP 

tTC-air + tin  + tload  

≤ taccess 

TC is within 

access threshold 

by air 

3 24 TC 80 35 24 NTC srUT 

tTC-gnd; tTC-air+ tin  

+ tload  > taccess 

TC is not within 

threshold by 

road/air 

4 10 NTC 30 - 16 NTC ATN 

tNTC - tTC-gnd ≤ 

tbypass           NTC is 

within bypass 

threshold 

5 14 NTC 25 - 8 TC srOT 

tNTC - tTC-gnd > 

tbypass           NTC is 

not within 

bypass threshold 

 

 

Table A1. Illustration of Triage Classification by the Notional Tasking Algorithm 
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Table 19 presents a few representative cases to illustrate how the tasking algorithm 

helps classify a specific trauma incidence as appropriately triaged (ATP for triaged to TC 

and ATN for triaged to NTC) or mistriaged (srUT or srOT). In these cases, we assume taccess 

= 30 minutes and tbypass = 15 minutes.  

In Table 19 consider trauma incidence #1 with ISS>15, suggesting the need to 

transport this patient to the nearest TC. The algorithm first finds the nearest TC from the 

incident field in a given network and compares the EMS ground transportation to this TC 

(tTC-gnd) to the ‘access’ threshold. Because tTC-Gnd < taccess = 25<30, driving to this TC is 

feasible, and so the case is categorized as ATP. However, for incidence #2 also with 

ISS>15, tTC-Gnd > taccess (40>30), and so the possibility of air transportation is explored. The 

algorithm then compares the total flight time to this TC (tTC-air), which accounts for inbound 

from the nearest helicopter base, patient loading, and outbound to the TC, with taccess. 

Assuming an inbound time of 5 minutes and a loading time of 5 minutes, the total air 

transportation time will result in 25 minutes. In this case, tTC-air<taccess (25<30), and thus 

this incidence is classified as transportation via air, also resulting in ATP. But the total air 

transportation time incorporating inbound and loading time may not be feasible, as in the 

case of incidence #3 where tTC-air > taccess ({35+5+5} 45 >30), in which case the patient will 

be assigned to the nearest NTC by road, and the incidence will be classified as a srUT. 

Similarly, all the patients meeting the inclusion criteria are run through the tasking 

algorithm. A similar process is followed for patients with ISS≤15; air transportation is not 

considered as the injuries are less severe, in line with the actual EMS practice. 
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Appendix B: The Optimization Model to Estimate Coefficients of Patient Choice 

Utility Model  

Our proposed model determines the coefficients of the utility model in order to 

minimize the misclassification of patients. A patient is misclassified if the destination 

hospital type estimated through the utility model differs from the actual destination type; 

e.g., a misclassification would be when a patient was taken to MTC (according to actual 

data), while the utility model's estimated choice is NTC. The optimization model is 

presented below with parameter and decision variables in Table 20 and 21, respectively. 

Table 20. Parameters in the model 

Notation Definition 

I Set of trauma patients assigned via protocol criteria; 𝑖 ∈ 𝐼  

J Set of candidate hospital locations (for MTC, ITC, and NTC); j ∈ J 

L Set of hospital type; 𝑙 ∈ 𝐿; l = 1, 2, 3 represent MTC, ITC, and NTC, 

respectively 

𝐴𝑙 Attractiveness of hospital level l 

𝐶𝑖
𝑙 1, if patient i chose hospital type l; 0, otherwise 

𝑇𝐺𝑖𝑗 Travel time from patient i to any candidate location j via ground  

𝑋𝑗
𝑙 1, if a candidate location j is designated to be level l; 0, otherwise 

M Big number 

 

Table 21. Decision variables in the model 

Notatio

n 
Definition 

𝛽1 Coefficient for the attractiveness of hospital 

𝛽2 Coefficient for travel time between incidence location and hospital 

𝑢𝑖𝑗, 

𝑢𝑖
𝑚𝑎𝑥 

Utility of patient i receiving care at hospital j; 𝑢𝑖
𝑚𝑎𝑥 = 𝑚𝑎𝑥

𝑗
{𝑢𝑖𝑗}  

𝑛𝑖𝑗 1, if the highest utility for patient i occurs for a hospital j; 0, otherwise 

𝑚𝑖 1, if estimated choice through utility model is different than chosen hospital 

type; 0, otherwise 
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minimize: ∑ 𝑚𝑖𝑖  

subject to: 

 

𝑢𝑖𝑗 = 𝛽1 ∑ 𝐴𝑙𝑋𝑗
𝑙

𝑙 −  𝛽2 𝑇𝐺𝑖𝑗;  𝑖 ∈  𝐼, 𝑗 ∈ 𝐽  (1) 

𝑢𝑖
𝑚𝑎𝑥 ≥ 𝑢𝑖𝑗;  𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽  

(2) 

(𝑢𝑖
𝑚𝑎𝑥 − 𝑢𝑖𝑗) − 𝑀 (1 − 𝑛𝑖𝑗) ≤ 0;  𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽  

(3) 

∑ 𝑛𝑖𝑗𝑗 = 1;  𝑖 ∈ 𝐼  
(4) 

𝑚𝑖 ≥ 𝑛𝑖𝑗  𝑋𝑗
𝑙 −  𝐶𝑖

𝑙  ;  𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑙 ∈ 𝐿  (5) 

0 ≤  𝛽1, 𝛽2 ≤ 1 
(6) 

𝑢𝑖𝑗 , 𝑢𝑖
𝑚𝑎𝑥 ∈ ℝ;  𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 

(7) 

𝑛𝑖𝑗 ∈ {0, 1};  𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 
(8) 

𝑚𝑖 ∈ {0, 1};  𝑖 ∈ 𝐼 
(9) 

The objective of the model is to minimize the total misclassification of patients. 

Constraints (1)–(4) are similar to the NTNDP model to capture patients’ choices using the 

utility model. For each patient i, Constraints (1) calculate the utility of receiving care at 

each hospital, Constraints (2) find maximum utility among all hospitals, while Constraints 

(3) and (4) record the hospital with the maximum utility. For each patient i, Constraints (5) 

record misclassification by comparing the estimated and actual hospital type. Constraints 

(6)-(9) define bound on decision variables. 

The attractiveness for MTC, ITC, and NTC is set as 5, 3, and 1, respectively. We 

used 5627 cases assigned through patient choice criteria in the cleaned 2019 data from the 

state of Ohio, along with corresponding 2019 network of hospitals and their types. Further, 
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we used ArcGIS to generate the ground travel time matrix and the Gurobi solver to find an 

optimal solution. 
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Appendix C: List of Abbreviations 

 

ACS American College of Surgeons  

ACS COT American College of Surgeons Committee on Trauma 

arATN Assessment-related Appropriate Triage Negative 

arATP Assessment-related Appropriate Triage Positive 

arOT Assessment-related Over-triage 

arUT Assessment-related Under-triage 

BPSO Binary Particle Swarm Optimization 

CDC Centre for Disease Control and Prevention 

CP Crossover Probability 

efAT Effective Appropriate Triage 

efOT Effective Over-triage 

efUT Effective Under-triage 

EMS Emergency Medical Services 

FTDS Field Triage Decision Scheme 

FTG Field Triage Guidelines 

GA Genetic Algorithm  

ISS Injury Severity Score 
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ITC Intermediate Trauma Center 

NTC Non-trauma Center 

MCS Monte Carlo Simulation 

MNL Multinomial Logit 

MP Mutation Probability 

MTC Major Trauma Center 

NBATS Needs-Based Assessment of Trauma System 

NTDB National Trauma Data Bank 

NTNDP Nested Trauma Network Design Problem 

ODPS Ohio Department of Public Safety 

OPTTDT Ohio Prehospital Trauma Triage Decision Tree 

OT Over-triage 

PBATS Performance-Based Assessment of Trauma System 

PC Patient Choice 

PSO Particle Swarm Optimization 

srATN System-related Appropriate Triage Negative 

srATP System-related Appropriate Triage Positive 

srOT System-related Over-triage 

srUT System-related Under-triage 
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srUTS System-related Under-triage Stabilized 

TC Trauma Center 

TCLP Trauma Center Location Problem 

TNDP-AM Trauma Network Design Problem Considering Assessment-Related 

Mistriages 

TRAMAH Trauma Resource Allocation Model for Ambulance and Hospitals 

TSA Trauma Service Area 

UT Under-triage 

WSM Weighted Sum of Mistriages 
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