11,818 research outputs found

    Detect or Track: Towards Cost-Effective Video Object Detection/Tracking

    Full text link
    State-of-the-art object detectors and trackers are developing fast. Trackers are in general more efficient than detectors but bear the risk of drifting. A question is hence raised -- how to improve the accuracy of video object detection/tracking by utilizing the existing detectors and trackers within a given time budget? A baseline is frame skipping -- detecting every N-th frames and tracking for the frames in between. This baseline, however, is suboptimal since the detection frequency should depend on the tracking quality. To this end, we propose a scheduler network, which determines to detect or track at a certain frame, as a generalization of Siamese trackers. Although being light-weight and simple in structure, the scheduler network is more effective than the frame skipping baselines and flow-based approaches, as validated on ImageNet VID dataset in video object detection/tracking.Comment: Accepted to AAAI 201

    Socially Aware Motion Planning with Deep Reinforcement Learning

    Full text link
    For robotic vehicles to navigate safely and efficiently in pedestrian-rich environments, it is important to model subtle human behaviors and navigation rules (e.g., passing on the right). However, while instinctive to humans, socially compliant navigation is still difficult to quantify due to the stochasticity in people's behaviors. Existing works are mostly focused on using feature-matching techniques to describe and imitate human paths, but often do not generalize well since the feature values can vary from person to person, and even run to run. This work notes that while it is challenging to directly specify the details of what to do (precise mechanisms of human navigation), it is straightforward to specify what not to do (violations of social norms). Specifically, using deep reinforcement learning, this work develops a time-efficient navigation policy that respects common social norms. The proposed method is shown to enable fully autonomous navigation of a robotic vehicle moving at human walking speed in an environment with many pedestrians.Comment: 8 page

    Dynamic programming for aligning sketch maps

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Geospatial TechnologiesSketch maps play an important role in communicating spatial knowledge, particularly in applications interested in identifying correspondences to metric maps for land tenure in rural communities. The interpretation of a sketch map is linked to the users’ spatial reasoning and the number of features included. Additionally, in order to make use of the information provided by sketch maps, the integration with information systems is needed but is convoluted. The process of identifying which element in the base map is being represented in the sketch map involves the use of correct descriptors and structures to manage them. In the past years, different methods to give a solution to the sketch matching problem employs iterative methods using static scores to create a subset of correspondences. In this thesis, we propose an implementation for the automatic aligning of the sketch to metric maps, based on dynamic programming techniques from reinforcement learning. Our solution is distinctive from other approaches as it searches for pair equivalences by exploring the environment of the search space and learning from positive rewards derived from a custom scoring system. Scores are used to evaluate the likeliness of a candidate pair to belong to the final solution, and the results are back up in a state-value function to recover the best subset states and recovering the highest scored combinations. Reinforcement learning algorithms are dynamic and robust solutions for finding the best solution in an ample search space. The proposed workflow improves the outcoming spatial configuration for the aligned features compared to previous approaches, specifically the Tabu Search
    • …
    corecore