278,632 research outputs found

    Size versus fairness in the assignment problem

    Get PDF
    When not all objects are acceptable to all agents, maximizing the number of objects actually assigned is an important design concern. We compute the guaranteed size ratio of the Probabilistic Serial mechanism, i.e., the worst ratio of the actual expected size to the maximal feasible size. It converges decreasingly to 1 − 1 e 63.2% as the maximal size increases. It is the best ratio of any Envy-Free assignment mechanism

    Beam Loss in Linacs

    Full text link
    Beam loss is a critical issue in high-intensity accelerators, and much effort is expended during both the design and operation phases to minimize the loss and to keep it to manageable levels. As new accelerators become ever more powerful, beam loss becomes even more critical. Linacs for H- ion beams, such as the one at the Oak Ridge Spallation Neutron Source, have many more loss mechanisms compared to H+ (proton) linacs, such as the one being designed for the European Spallation Neutron Source. Interesting H- beam loss mechanisms include residual gas stripping, H+ capture and acceleration, field stripping, black-body radiation and the recently discovered intra-beam stripping mechanism. Beam halo formation, and ion source or RF turn on/off transients, are examples of beam loss mechanisms that are common for both H+ and H- accelerators. Machine protection systems play an important role in limiting the beam loss.Comment: 24 pages, contribution to the 2014 Joint International Accelerator School: Beam Loss and Accelerator Protection, Newport Beach, CA, USA , 5-14 Nov 201

    Mechanism Design for Team Formation

    Full text link
    Team formation is a core problem in AI. Remarkably, little prior work has addressed the problem of mechanism design for team formation, accounting for the need to elicit agents' preferences over potential teammates. Coalition formation in the related hedonic games has received much attention, but only from the perspective of coalition stability, with little emphasis on the mechanism design objectives of true preference elicitation, social welfare, and equity. We present the first formal mechanism design framework for team formation, building on recent combinatorial matching market design literature. We exhibit four mechanisms for this problem, two novel, two simple extensions of known mechanisms from other domains. Two of these (one new, one known) have desirable theoretical properties. However, we use extensive experiments to show our second novel mechanism, despite having no theoretical guarantees, empirically achieves good incentive compatibility, welfare, and fairness.Comment: 12 page

    Combining Outcome-Based and Preference-Based Matching: A Constrained Priority Mechanism

    Full text link
    We introduce a constrained priority mechanism that combines outcome-based matching from machine-learning with preference-based allocation schemes common in market design. Using real-world data, we illustrate how our mechanism could be applied to the assignment of refugee families to host country locations, and kindergarteners to schools. Our mechanism allows a planner to first specify a threshold gˉ\bar g for the minimum acceptable average outcome score that should be achieved by the assignment. In the refugee matching context, this score corresponds to the predicted probability of employment, while in the student assignment context it corresponds to standardized test scores. The mechanism is a priority mechanism that considers both outcomes and preferences by assigning agents (refugee families, students) based on their preferences, but subject to meeting the planner's specified threshold. The mechanism is both strategy-proof and constrained efficient in that it always generates a matching that is not Pareto dominated by any other matching that respects the planner's threshold.Comment: This manuscript has been accepted for publication by Political Analysis and will appear in a revised form subject to peer review and/or input from the journal's editor. End-users of this manuscript may only make use of it for private research and study and may not distribute it furthe

    Envy Freedom and Prior-free Mechanism Design

    Full text link
    We consider the provision of an abstract service to single-dimensional agents. Our model includes position auctions, single-minded combinatorial auctions, and constrained matching markets. When the agents' values are drawn from a distribution, the Bayesian optimal mechanism is given by Myerson (1981) as a virtual-surplus optimizer. We develop a framework for prior-free mechanism design and analysis. A good mechanism in our framework approximates the optimal mechanism for the distribution if there is a distribution; moreover, when there is no distribution this mechanism still performs well. We define and characterize optimal envy-free outcomes in symmetric single-dimensional environments. Our characterization mirrors Myerson's theory. Furthermore, unlike in mechanism design where there is no point-wise optimal mechanism, there is always a point-wise optimal envy-free outcome. Envy-free outcomes and incentive-compatible mechanisms are similar in structure and performance. We therefore use the optimal envy-free revenue as a benchmark for measuring the performance of a prior-free mechanism. A good mechanism is one that approximates the envy free benchmark on any profile of agent values. We show that good mechanisms exist, and in particular, a natural generalization of the random sampling auction of Goldberg et al. (2001) is a constant approximation

    Contract Development In A Matching Market: The Case of Kidney Exchange

    Get PDF
    We analyze a new transplant innovation — Advanced Donation, referred to by some as a kidney “gift certificate,” “layaway plan,” or “voucher — as a case study offering insights on both market and contract development. Advanced Donation provides an unusual window into the evolution of the exchange of a single good — a kidney for transplantation — from gift, to simple barter, to exchange with a temporal separation of obligations that relies solely on trust and reputational constraints for enforcement, to a complex matching market in which the parties rely, at least in part, on formal contract to define and clarify their obligations to each other. The transplant community, however, has historically viewed formal contracts in the transplant setting with discomfort, and that traditional discomfort remains evident in current Advanced Donation practice. We conclude that the use of formal contracts in Advanced Donation is likely inadvertent, and the contracts, in a number of ways, are inadequate to tackle the complex, nonsimultaneous exchange of kidneys in which patients donate a kidney before their intended recipients have been matched with a potential donor
    • 

    corecore