483 research outputs found

    Improved Linear (hull) Cryptanalysis of Round-reduced Versions of KATAN

    Get PDF
    KATAN is a family of block ciphers published at CHES 2009. Based on the Mixed-integer linear programming (MILP) technique, we propose the first third-party linear cryptanalysis on KATAN. Furthermore, we evaluate the security of KATAN against the linear attack without ignoring the dependence of the input bits of the 2×12\times 1 S-box(the AND operation). Note that in previous analysis, the dependence is not considered, and therefore the previous results are not accurate. Furthermore, the mounted 131/120-round attack on KATAN32/48 respectively by our 84/90-round linear hull is the best single-key known-plaintext attack. In addition, a best 94-round linear hull attack is mounted on KATAN64 by our 76-round linear hull

    Fault Analysis of the KTANTAN Family of Block Ciphers: A Revisited Work of Fault Analysis of the KATAN Family of Block Ciphers

    Get PDF
    This paper investigates the security of the KTANTAN block cipher against differential fault analysis. This attack is considered to be first side channel analysis of KTANTAN in the literature. KTANTAN is a relative to the KATAN block cipher. Therefore, the previous fault analysis on KATAN family of block cipher is revisited. Similar to KATAN, KTANTAN has three variants namely KTANTAN32, KTANTAN48 and KTANTAN64. The inner structure of KTANTAN is similar to KATAN except the key schedule algorithms. KATAN has been practically broken by using fault analysis, employing a transient single-bit fault model, with the assumption is that the attacker is able to inject faults randomly into the internal state of the cipher. The attack is empowerd by extended cube method similarly as applied on KATAN. The complexity of this attack is 2742^{74} for KTANTAN32 and 2762^{76} for both KTANTAN48 and KTANTAN64. Furthermore, based on the obtained results, this paper concludes that KTANTAN is more robust against fault analysis compared to KATAN

    Lightweight Cryptography for Passive RFID Tags

    Get PDF

    Stream ciphers: A Practical Solution for Efficient Homomorphic-Ciphertext Compression

    Get PDF
    International audienceIn typical applications of homomorphic encryption, the first step consists for Alice to encrypt some plaintext m under Bob’s public key pk and to send the ciphertext c = HEpk(m) to some third-party evaluator Charlie. This paper specifically considers that first step, i.e. the problem of transmitting c as efficiently as possible from Alice to Charlie. As previously noted, a form of compression is achieved using hybrid encryption. Given a symmetric encryption scheme E, Alice picks a random key k and sends a much smaller ciphertext c′ = (HEpk(k), Ek(m)) that Charlie decompresses homomorphically into the original c using a decryption circuit CE−1 .In this paper, we revisit that paradigm in light of its concrete implemen- tation constraints; in particular E is chosen to be an additive IV-based stream cipher. We investigate the performances offered in this context by Trivium, which belongs to the eSTREAM portfolio, and we also pro- pose a variant with 128-bit security: Kreyvium. We show that Trivium, whose security has been firmly established for over a decade, and the new variant Kreyvium have an excellent performance

    Improved Multi-Dimensional Meet-in-the-Middle Cryptanalysis of KATAN

    Get PDF
    We study multidimensional meet-in-the-middle attacks on the KATAN block cipher family. Several improvements to the basic attacks are introduced and explained. The most noteworthy of these is the technique of guessing only non-linearly involved key bits, which reduces the search space by a significant factor. The optimizations decreases the complexity of multidimensional meet-in-the-middle attacks, allowing more rounds of KATAN to be efficiently attacked than previously reported

    Symmetric block ciphers with a block length of 32 bit

    Get PDF
    Subject of the thesis at hand is the analysis of symmetric block ciphers with a block length of 32 bit. It is meant to give a comprising overview over the topic of 32 bit block ciphers. The topic is divided in the examination of three questions. It contains a list of state of the art block ciphers with a block length of 32 bit. The block ciphers are being described, focussing on the encryption function. An SPN-based cipher with 32 bit block length is being proposed by rescaling the AES cipher. The 32 bit block length results in certain security issues. These so called risk factors are analysed and mitigating measures are proposed. The result of the thesis is, that 32 bit block ciphers can be implemented in a secure manner. The use of 32 bit ciphers should be limited to specific use-cases and with a profound risk analysis, to determine the protection class of the data to be encrypted

    Improved All-Subkeys Recovery Attacks on FOX, KATAN and SHACAL-2 Block Ciphers

    Get PDF
    The all-subkeys recovery (ASR) attack is an extension of the meet-in-the-middle attack, which allows evaluating the security of a block cipher without analyzing its key scheduling function. Combining the ASR attack with some advanced techniques such as the function reduction and the repetitive ASR attack, we show the improved ASR attacks on the 7-round reduced FOX64 and FOX128. Moreover, the improved ASR attacks on the 119-, 105- and 99-round reduced KATAN32, KATAN48 and KATAN64, and the 42-round reduced SHACAL-2 are also presented, respectively. As far as we know, all of those attacks are the best single-key attacks with respect to the number of attacked rounds in literature
    • …
    corecore