78 research outputs found

    A new approach in building parallel finite field multipliers

    Get PDF
    A new method for building bit-parallel polynomial basis finite field multipliers is proposed in this thesis. Among the different approaches to build such multipliers, Mastrovito multipliers based on a trinomial, an all-one-polynomial, or an equally-spacedpolynomial have the lowest complexities. The next best in this category is a conventional multiplier based on a pentanomial. Any newly presented method should have complexity results which are at least better than those of a pentanomial based multiplier. By applying our method to certain classes of finite fields we have gained a space complexity as n2 + H - 4 and a time complexity as TA + ([ log2(n-l) ]+3)rx which are better than the lowest space and time complexities of a pentanomial based multiplier found in literature. Therefore this multiplier can serve as an alternative in those finite fields in which no trinomial, all-one-polynomial or equally-spaced-polynomial exists

    Doctor of Philosophy

    Get PDF
    dissertationWith the spread of internet and mobile devices, transferring information safely and securely has become more important than ever. Finite fields have widespread applications in such domains, such as in cryptography, error correction codes, among many others. In most finite field applications, the field size - and therefore the bit-width of the operands - can be very large. The high complexity of arithmetic operations over such large fields requires circuits to be (semi-) custom designed. This raises the potential for errors/bugs in the implementation, which can be maliciously exploited and can compromise the security of such systems. Formal verification of finite field arithmetic circuits has therefore become an imperative. This dissertation targets the problem of formal verification of hardware implementations of combinational arithmetic circuits over finite fields of the type F2k . Two specific problems are addressed: i) verifying the correctness of a custom-designed arithmetic circuit implementation against a given word-level polynomial specification over F2k ; and ii) gate-level equivalence checking of two different arithmetic circuit implementations. This dissertation proposes polynomial abstractions over finite fields to model and represent the circuit constraints. Subsequently, decision procedures based on modern computer algebra techniques - notably, Gr¨obner bases-related theory and technology - are engineered to solve the verification problem efficiently. The arithmetic circuit is modeled as a polynomial system in the ring F2k [x1, x2, · · · , xd], and computer algebrabased results (Hilbert's Nullstellensatz) over finite fields are exploited for verification. Using our approach, experiments are performed on a variety of custom-designed finite field arithmetic benchmark circuits. The results are also compared against contemporary methods, based on SAT and SMT solvers, BDDs, and AIG-based methods. Our tools can verify the correctness of, and detect bugs in, up to 163-bit circuits in F2163 , whereas contemporary approaches are infeasible beyond 48-bit circuits

    Doctor of Philosophy

    Get PDF
    dissertationAbstraction plays an important role in digital design, analysis, and verification, as it allows for the refinement of functions through different levels of conceptualization. This dissertation introduces a new method to compute a symbolic, canonical, word-level abstraction of the function implemented by a combinational logic circuit. This abstraction provides a representation of the function as a polynomial Z = F(A) over the Galois field F2k , expressed over the k-bit input to the circuit, A. This representation is easily utilized for formal verification (equivalence checking) of combinational circuits. The approach to abstraction is based upon concepts from commutative algebra and algebraic geometry, notably the Grobner basis theory. It is shown that the polynomial F(A) can be derived by computing a Grobner basis of the polynomials corresponding to the circuit, using a specific elimination term order based on the circuits topology. However, computing Grobner bases using elimination term orders is infeasible for large circuits. To overcome these limitations, this work introduces an efficient symbolic computation to derive the word-level polynomial. The presented algorithms exploit i) the structure of the circuit, ii) the properties of Grobner bases, iii) characteristics of Galois fields F2k , and iv) modern algorithms from symbolic computation. A custom abstraction tool is designed to efficiently implement the abstraction procedure. While the concept is applicable to any arbitrary combinational logic circuit, it is particularly powerful in verification and equivalence checking of hierarchical, custom designed and structurally dissimilar Galois field arithmetic circuits. In most applications, the field size and the datapath size k in the circuits is very large, up to 1024 bits. The proposed abstraction procedure can exploit the hierarchy of the given Galois field arithmetic circuits. Our experiments show that, using this approach, our tool can abstract and verify Galois field arithmetic circuits up to 1024 bits in size. Contemporary techniques fail to verify these types of circuits beyond 163 bits and cannot abstract a canonical representation beyond 32 bits

    Efficient Arithmetic for the Implementation of Elliptic Curve Cryptography

    Get PDF
    The technology of elliptic curve cryptography is now an important branch in public-key based crypto-system. Cryptographic mechanisms based on elliptic curves depend on the arithmetic of points on the curve. The most important arithmetic is multiplying a point on the curve by an integer. This operation is known as elliptic curve scalar (or point) multiplication operation. A cryptographic device is supposed to perform this operation efficiently and securely. The elliptic curve scalar multiplication operation is performed by combining the elliptic curve point routines that are defined in terms of the underlying finite field arithmetic operations. This thesis focuses on hardware architecture designs of elliptic curve operations. In the first part, we aim at finding new architectures to implement the finite field arithmetic multiplication operation more efficiently. In this regard, we propose novel schemes for the serial-out bit-level (SOBL) arithmetic multiplication operation in the polynomial basis over F_2^m. We show that the smallest SOBL scheme presented here can provide about 26-30\% reduction in area-complexity cost and about 22-24\% reduction in power consumptions for F_2^{163} compared to the current state-of-the-art bit-level multiplier schemes. Then, we employ the proposed SOBL schemes to present new hybrid-double multiplication architectures that perform two multiplications with latency comparable to the latency of a single multiplication. Then, in the second part of this thesis, we investigate the different algorithms for the implementation of elliptic curve scalar multiplication operation. We focus our interest in three aspects, namely, the finite field arithmetic cost, the critical path delay, and the protection strength from side-channel attacks (SCAs) based on simple power analysis. In this regard, we propose a novel scheme for the scalar multiplication operation that is based on processing three bits of the scalar in the exact same sequence of five point arithmetic operations. We analyse the security of our scheme and show that its security holds against both SCAs and safe-error fault attacks. In addition, we show how the properties of the proposed elliptic curve scalar multiplication scheme yields an efficient hardware design for the implementation of a single scalar multiplication on a prime extended twisted Edwards curve incorporating 8 parallel multiplication operations. Our comparison results show that the proposed hardware architecture for the twisted Edwards curve model implemented using the proposed scalar multiplication scheme is the fastest secure SCA protected scalar multiplication scheme over prime field reported in the literature

    High-speed polynomial basis multipliers over GF(2^m) for special pentanomials

    Get PDF
    Efficient hardware implementations of arithmetic operations in the Galois field GF(2^m) are highly desirable for several applications, such as coding theory, computer algebra and cryptography. Among these operations, multiplication is of special interest because it is considered the most important building block. Therefore, high-speed algorithms and hardware architectures for computing multiplication are highly required. In this paper, bit-parallel polynomial basis multipliers over the binary field GF(2^m) generated using type II irreducible pentanomials are considered. The multiplier here presented has the lowest time complexity known to date for similar multipliers based on this type of irreducible pentanomials
    corecore