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ABSTRACT

With the spread of internet and mobile devices, transfgriiformation safely
and securely has become more important than ever. Finigsfighve widespread
applications in such domains, such as in cryptographyy eosoection codes, among
many others. In most finite field applications, the field sizmé therefore the bit-width
of the operands — can be very large. The high complexity ahraetic operations
over such large fields requires circuits to be (semi-) cusdesigned. This raises the
potential for errors/bugs in the implementation, which ¢enmaliciously exploited
and can compromise the security of such systems. Formdication of finite field
arithmetic circuits has therefore become an imperative.

This dissertation targets the problemfofmal verification of hardware implemen-
tations of combinational arithmetic circuits over finitelfie of the typeF,.. Two
specific problems are addressed: i) verifying the correstrid a custom-designed
arithmetic circuit implementation against a given wordelepolynomial specification
over IF,.; and ii) gate-level equivalence checking of two differenthemetic circuit
implementations.

This dissertation proposes polynomial abstractions omgeffields to model and
represent the circuit constraints. Subsequently, detisiocedures based on modern
computer algebra techniques — notablyprer bases-related theory and technology
— are engineered to solve the verification problem efficgerithe arithmetic circuit is
modeled as a polynomial system in the rifg [z, z, - - - , 4], and computer algebra-
based results (Hilbert’s Nullstellensatz) over finite feetde exploited for verification.

Using our approach, experiments are performed on a varfetysiom-designed
finite field arithmetic benchmark circuits. The results dsmaompared against con-
temporary methods, based on SAT and SMT solvers, BDDs, andbakgd methods.
Our tools can verify the correctness of, and detect bugitg Li63-bit circuits inFyss,

whereas contemporary approaches are infeasible beysh circuits.
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CHAPTER 1

INTRODUCTION

With the rapidly increasing complexity of hardware systewesification of the cor-
rectness of designs poses serious challenges. Design #aveextremely costly. For
example, the Intel Pentium floating point divide bug resuiite475 million dollars of
extra costs in993. In many safety-critical applications, such as cryptogsegystems,
arithmetic bugs can be especially catastrophic. In [18§,shown that incorrect (buggy)
hardware can lead to full leakage of the secret key, whichcoampromise the security
of such systems. Therefore, it is of utmost importance tafywéine correctness of

hardware designs.

1.1 Hardware Verification

Today, hardware verification averages about 70 percenteabvikrall hardware de-
sign effort and is believed to be the largest source of riskcarst. Hardware verification
is becoming even more challenging as the design complexgtgases.

The hardware design flow typically starts with a high-leye&fication or a prop-
erty of the design. This specification is then translated mtregister-transfer-level
(RTL) description, which is further optimized and transtto its corresponding netlist
representation. Then, the logic-level netlist is tramslab a physical layout, which is
subsequently fabricated into integrated circuits. FidL shows a typical design flow
for realizing a hardware system. The design flow can be autmhiyy Computer-Aided
Design (CAD) tools available from both academia and indud#gwever, one critical
guestion emerges: how to prove equivalent functionalitywben the different levels of
representations. This is the objective of hardware vetiina For example, after the
RTL description is transformed into a gate-level netlisis important to ensure that its
functionality remains the same. Similarly, after logiciapkation is performed on the
gate-level unoptimized netlist, it has to be ensured thatojbtimization process does
not introduce a bug in the original design. Therefore, asvehia Fig. 1.1, verification

is needed between different levels of abstractions, iedwéen design specification and
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Figure 1.1 Typical circuit design and verification flow.

the “golden model”, RTL-level model and netlist-level mga@dad between unoptimized
and optimized netlists, etc.

There are two main methodologies applied to hardware vatidio: simulation and
formal verification. In a traditional design flow, simulatics the primary methodology
for design validation. The effectiveness of simulationdkiaved by exhaustive assign-
ments of inputs to excite all possible behaviors of the sysiad then by analyzing the
output values. However, the increasing complexity of designakes it impossible for
simulation to provide complete coverage.

In recent years, formal verification has emerged as an aligetechnique to ensure
the correctness of hardware designs, overcoming some bfrtttations of simulation.
Formal verification is the process of utilizing mathemdttbaory to reason about the
correctness of hardware designs. Formal verification imware usually takes one
of two forms: property checking and equivalence checkingopBrty checking is a
process of checking whether a design conforms to its givdrawer or properties.
Equivalence checking is conducted to prove the equivalamttionality of two given

designs. Usually, equivalence checking is applied at vargiages of the design cycle



to verify correctness of the applied transformations. Fegli.1 shows the role of
equivalence checking in a typical hardware design flow.

Techniques utilized by property checking include modeb&imy, theorem proving
and approaches that integrate both. Equivalence checkakgsmuse of Binary Decision
Diagrams (BDDs), Satisfiability (SAT) solvers, and And-Irtee-Graph (AIG)-based
reductions, among others. As an emerging technique fovalguce checking, com-
puter algebra-based decision procedures are gaining gripulThis kind of verifica-
tion technique is believed to be more sophisticated in yigf arithmetic hardware
designs in that they exploit the powerful applications otmeanatics rather than ad-hoc

techniques.

1.1.1 Property Checking

Property verification refers to proving the correspondebetveen designs and
given properties. Usually, property verification is acle@\by two main formal meth-
ods: theorem proving and model checking.

Theorem proving60] requires the existence of mathematical description$bth
the specification and implementation, allowing these deans to be manipulated
in a formal mathematical framework. Theorem provers appigitive proof (math-
ematical) rules to a specification in order to derive new progs of a specification.
Through this method, theorem proving can reduce a prooftgaaimpler subgoals that
can be easily proved/disproved automatically by primifiweof steps. The benefit of
this approach is its generality and completeness. Howelespite several advances,
generating the proof requires extensive guidance from #ee. UAs a result, theorem
proving lacks the level of automation that is desirable f@AD framework to be prac-
tically useful. Theorem proving has gained commercial nseerifying that division
and other operations are correctly implemented in procesgAMD and Intel.

Model checking21] is an approach to formally verifying finite-state syate Prop-
erties of the system are modeled as temporal logic formalad,the model defined
by the system is traversed to check if the properties holdobr Therefore, model
checking consists of specifying the desired propertiehefdystem and checking if
there are violations of specified properties for all pogsii#haviors of the system.

Model checkings one of the most successful approaches for property \etidic
to date. Model checking tools [12] [63] [40] have achievedgmi$icant level of au-

tomation and maturity and are widely in use in both academéiadustry. A good



aspect of model checking that is extremely important infaicacs the ability to generate
counterexamples. Such counterexamples provide a wayde tin@ incorrect behaviors
(bugs). However, these tools tend to be memory intensiveaeschore applicable to at

most medium sized designs or at the block-level, rather #hdme system-level.

1.1.2 Equivalence Checking

Equivalence checking is used to formally prove that two espntations of circuit
designs have exactly equivalent functionality. As showFio 1.1, once a high-level
representation is validated (by simulation or propertyc&i®), it is transformed into a
gate-level netlist so that logic synthesis tools can be tsegtimize the design accord-
ing to the desired area/delay/power constraints. Thengdésegn proceeds through a
varied set of optimization and transformation operatidsing various transformation
stages, different implementations of the design, or pditiseodesign, are examined de-
pending upon the constraints, such as area, performarstabiléy, etc. As the design
is modified by replacing one of its components by anothenadgmt implementation,
it needs to be verified whether or not the modified design istfanally equivalent to
the original one.

Equivalence checking has important applications in argtencircuit verification.
Hardware designs contain a large number of custom-designadts such as adders,
multipliers, dividers, and so on. Such circuits are usuatlysynthesized by CAD tools
because of area and performance constraints. Therefaseatbes the potential for
errors/bugs in the implementation. Consequently, it remairchallenge to conduct
equivalence checking for these large-scale arithmetouits.

As an intensively investigated topic, techniques and aggres for equivalence
checking have been well established. With various teclesgemployed for equiv-
alence checking, BDDs and SAT-based techniques are the tmineot approaches
widely used in both academia and industry. BDD-based aphesatry to construct
canonical representations of given circuits and conduneat comparison to determine
whether they are equivalent or not. SAT-based equivaleheeking approaches try to
find the unsatisfiability of a “miter” representing two desig

There are also many promising generalizations of SAT and BEDs&ry Moment
Diagrams (BMDs), which have shown their superiority for fxgng integer multipliers
[16], and Satisfiability Modulo Theories (SMT) solvers, wihiare the next generation

of SAT. These approaches, to some extent, have gained satesses in equivalence
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checking. However, these approaches are beginning to sgowaf inadequacy in two
cases. First, large-scale hardware designs still hingeetjuivalence checking as the
level of design complexity grows rapidly. For example, thezification of al6-bit
modular multiplier becomes infeasible for the current SPD-based approaches.
Secondly, for structurally similar circuits, this problaran be efficiently solved using
the techniques of AlG-based reductions [11] and subseagusendf circuit-SAT solvers
[53]. However, when the circuits are functionally equivdleut structurally very dis-
similar, none of the contemporary techniques, including BDBAT and AlG-based
approaches, are able to prove equivalence.

Ideally, approaches for equivalence checking should ramirda high-level of ab-
straction while still retaining sufficient information se & not lose lower-level func-
tional details [37]. For instance, implementing arithrodtinctions at bit-level can
provide highly optimized implementations while word-lewabstraction usually has
much less structural information for solvers to analyze.

Arithmetic Bit Level (ABL) [85] abstraction techniques comise to achieving
these requirements by extracting an arithmetic bit levptasentation from a given
circuit. Then, the method can use the ABL information to prthreesearch space of
SAT solvers. The drawback of this approach is that it can mdgtify ABL information
locally when analyzing the given circuit, which results mexponential blowup when
looking at sophisticated circuits consisting of severdharetic blocks.

In this dissertation, we focus on equivalence checkinglprab for finite field arith-
metic circuits. Such circuits are found in many applicasi@uich as in cryptography,
coding theory, signal processing, among others. We utiheetheory of computer-
algebra and algebraic-geometry, notablypksrer bases-related theory and technology,
as the underlying verification engines. Our approach isistipated enough to take
into account both high-level (word-level) specificatiomsl dow-level (bit-level) imple-

mentation details.

1.2 Computer Algebra-Based Formal Verification
The first computer algebra-based verification techniquesdback to1996 when
Grobner bases were utilized for SAT solving and formal verif@ma [23]. Indeed,
there have been many attempts to solve verification problesirey Gbbner basis
formulations [4] [24] [87]. The standard flow of these apmtoes is:

1. The verification problem is first formulated as a polyndraystem.



2. The polynomial system is fed into a @mer basis engine to check whether the

desired property is satisfied.

The critical step of this approach is thedbner basis computation. Unfortunately,
the computation is known to have worst-case double-exg@esomplexity in the
input data. In practice, ®bner basis algorithms have not been capable of satisilgtctor
solving problems derived from real-world applications. iBes, these methods are
employed for verification by modeling constraints over theBan levelZ,; word-level
abstractions, which can be powerfully modeled in algelm@pnat utilized.

Recent advances [88] [56] [73] [58] [57] suggest a new dicgctf utilizing com-
puter algebra theory to conduct hardware verification. &wasrks show that it is fea-
sible to overcome the complexity of &sner basis algorithm by efficiently engineering

the integration of Gibner bases theory and circuit analysis techniques.

1.3 Objective and Contributions of this Dissertation
This dissertation focuses on verification of hardware imm@etations of arithmetic
circuits over finite fields of the typE,.. Specifically, the following verification prob-

lems are addressed:

1. Formal verification of a custom-designed finite field an#tic circuit implemen-

tation against its given word-level polynomial specifioati

2. Gate-level equivalence checking of two finite field arigtim circuit implemen-

tations.

Verification of onlycombinational logic circuitover finite fields is considered in
this work. Sequential circuit verification is a very diffateproblem for arithmetic
circuits — and it is beyond the scope of this dissertation.

Themotivationfor this work stems from applications in cryptography citspthough
our techniques can be applied to verify arbitrary finite fiakithmetic circuits. In
cryptosystems, the datapath size (operand gize)he circuits can be very large. For
example, the U.S. National Institute for Standards and delcigy (NIST) recommends
the use of finite fields corresponding to datapath sizés-ofl 63-bit or more. The large
size and high complexity of such circuits makes design eation quite challenging.
Indeed, contemporary combinational verification techegjare unable to verify such

large arithmetic circuits.



1.3.1 Contributions of this Dissertation

We propose the application obmputer-algebra techniquasotably,Grobner bases
related theory and technology [17] [3], as the underlyingfioation framework for our
applications. The advantage of using computer-algebtatgues is that it allows us
to integrate finite field arithmetic, circuit models and dgec reasoning in a common
verification framework. The circuits are modeled as a systémmultivariate poly-
nomials in the fieldF,.. The formal verification problem is then formulated using
Hilbert's Nullstellensat425] as ideal membership testing. A &mer basis engine is
subsequently employed as a decision procedure to solvedhigation problem.

Grobner basis theory is very powerful as it enables one to saley polynomial
decision questions. Unfortunately, the computationabitigms are known to have
worst-case double-exponential complexity in the inpuadatherefore, in order to make
verification practical and scalable, we engineer efficippliaation of Gbbner basis by
integrating it with circuit analysis techniques. Specificave analyze the topology
of the given circuit and derive efficiemariable and term orderdo systematically
represent and manipulate the polynomials. Subsequestlyy the theory of Gibner
bases over finite fields, we prove that our term orderings se@pecific constraints
on the polynomials that caabviate the need to compute adbner basis Under
this term ordering, either the polynomials themselves titats a Gbbner basis, or
the term ordering allows us to identify a minimum number ompaitations in the
Grobner basis algorithm that are sufficient for verificationhisTsignificantly scales
verification — we are able to verify circuits for which conteonary verification methods
are infeasible. To further improve our approach, we impleinaa efficient polynomial
reduction (division) algorithm that operates on a matmséd representation of the
polynomial system.

Experiments are conducted over various custom-designeungtic circuits over
For. These include three different modulo-multiplier arcbitees and point-addition
circuits used in elliptic curve cryptosystems. Using oupra@ach and tools, we can
verify the correctness of, and detect bugs in, upc-bit finite field arithmetic circuits,

whereas contemporary approaches are infeasible.

1.4 Thesis Organization
The rest of this dissertation is organized as follows. Chapteeviews previ-

ous approaches and highlights their drawbacks with redpeitte given verification
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problem. Chapter 3 briefly describes the construction anggsties of finite fields
F,.. Arithmetic circuit design over such fields is also reviewedshed some light
on the difficulty of the verification problem. Chapter 4 covpreliminary theoretical
background related to computer-algebra, algebraic-gagraed Gobner bases. Chap-
ter 5 describes our approach to verify a circuit impleméotaagainst a word-level
polynomial specification using ideal membership testinge $Wow how the Gibner
basis computation can be obviated using efficient term orgederived from the given
circuit. Chapter 6 presents our approach to equivalenceksigeof two arithmetic cir-
cuit implementations. Efficient term orderings and mabased polynomial reduction
procedures are derived. Chapter 7 describes a hierarctedgfication methodology
to verify arithmetic circuits over composite fiel#,)., wherek = m - n. Finally,
Chapter 8 concludes the dissertation with a perspective oerduand future research

directions on computer algebra methods for verification.



CHAPTER 2

PREVIOUS WORK AND LIMITATIONS

Equivalence checking has been extensively investigatddvany well-developed
theories and techniques have been successfully appliesthraicademica and industry.
The fundamental techniques used in equivalence checkahgde BDDs [15] and SAT
solvers [26]. Recently, Gbner bases-based approaches are also gaining popularity.
This chapter reviews widely used techniques in the equicalehecking domain and

discusses their limitations.

2.1 BDDs and Their Variants

Reduced Ordered Binary Decision Diagrams (ROBDDs or BDDs) aanaracal
Directed Acyclic Graph (DAG) representation of a Booleanction. Circuits are
usually described as a DAG. Two functionally equivalentwits can be represented by
the same BDDs. Therefore, equivalence checking betweenitauits can be simply
achieved by a comparison of their BDDs.

BDDs have found wide applications in many verification profideincluding equiv-
alence checking of arithmetic circuits, symbolic modelakieg [33] [63], among many
others. However, along with the increasing complexity afiges, the size-explosion
problem of BDDs becomes a bottleneck for many applicatioihss problem becomes
especially serious when applied on designs containing larfhmetic data-path units.
For example, BDD representation of multipliers requires mmnthat is exponential
in the number of variables. As a result, BDDs fail to representtipliers beyond
16-bit. As an attempt to control the exponential size, pantiéid BDDs [70] introduce
intermediate variables to represent sub-BDDs, thus pariitg the original BDD. Un-
fortunately, it is an intractable problem to find an optimuantftion. This issue renders
partitioned ROBDDs impractical for general verification lplems.

Other efforts to extend the capabilities of BDDs are derivexnf generic Word

Level Decision Diagrams (WLDDs), which are graph-basedeggntations for func-
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tions with a Boolean domain and an integer range. These mueg©NSs include
ADDs [5], *BMDs [16], etc. A thorough review of WLDDs can be fodim [41].

Algebraic decision diagrams (ADDSs) [5] provide an efficiergans for representing
and performing arithmetic operations on functions fromhiveary domain {0, 1}) to
the integer domain, i.e{0,1} — Z. However, the mapping/decomposition at each
node/variable is still binary and leads to exactly two termestricting the decompo-
sition to a binary type limits the abstraction of integeriahles, as they have to be
decomposed into their constituent bits. Consequently, AEdds the same problem
that BDDs do: the exponential size of the number of input bits.

BMDs [16] and their variants, such as HDDs [22], K*BMD [30], antpothers,
perform a moment-based decomposition of a linear functBMDs represent binary
variables ag0, 1) integers instead of Boolean variables. Moment diagramsigecy
concise representation of integer-valued functions defaver vectors of bits, or words,
suchasX = 2" 'z, _; +...4 22, + x¢, for ann-bit word X, where each;; is a binary
variable. BMDs are linear in size for integer multiplier aiits, as shown in Figure
2.1. The multiplicative constants of this representatieside in the terminal nodes.
Moreover, the constants can also be represented as nudtipé terms and assigned
to the edges of the graph, giving a rise to the MultiplicaBieary Moment Diagram
(*BMD) [16]. Several rules for manipulating edge weights enposed on the graph to
ensure canonicity.

One of the main limitations of BMDs is that performing sometarietic operations
on functions represented by BMDs is very expensive. For el@rfgr ann-bit vector

X, the BMD for X* requiresO(n*) nodes. In addition, BMDs for modular operations

Figure 2.1 BMD for F' = x x y; x,y are 2-bit wide F' is 4-bit wide.
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on bit-vectors are distorted, losing the compactness oflwerel expression. One such
example is depicted in Fig. 2.2.

Taylor Expansion Diagram§TEDs) [20] [19] [45] [44] are derived from Taylor
series and canonical DAG representations for functionisddwa be abstracted as poly-
nomials. TEDs represent bit-vectorsy(x,...,z, 1) as algebraic symbolsX([0 :

n — 1]), raising the abstraction from bits (Boolean) to words @ets). Letf(x,y,...)
be a real differentiable function. Using the Taylor serigpansion with respect to a

variablez, the functionf can be represented as

f<x>yv) = f(aj:oay7) + xf’(sz,y,) +
(1/2)2* - f"(x =0,y,...) +--- (2.1)

The derivatives of atz = 0 are independent af, and can be further decomposed w.r.t
the remaining variables, one variable at a time. This regutecursive decomposition
can be represented using a nonbinary tree called the TED,memory requirements
much smaller than other representations. TEDs are app@i¢abmodeling, symbolic
simulation and equivalence verification, provided that lgpamial abstraction is feasi-
ble. For binary operations, the diagram reduces to a *BMDeiittimg all its limitations.
Besides, TEDs cannot model modulo operations over bit-vecidherefore, TEDs are

incapable of solving the equivalence problems presentédsrdissertation.

2.2 SAT Solvers and SMT Solvers
The SAT problem is a decision-problem. In principle, anyidable decision prob-
lem can be modeled in terms of SAT, and because of this, SAkohre used in an

enormous variety of applications.

Figure 2.2 BMD for F' = x *x y; z, y, F are all2-bit wide.
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The objective of SAT solvers is to find variable assignmentshsthat the given
constraints (formulas) can be satisfied. If this is not g@esSAT solvers have to prove
that no assignments satisfy the constraints (UNSAT).

Solving SAT-instances of any useful size was not possibtéd the introduction
of the Davis-Putnam (DP) [27] algorithm. The DP algorithmrikby eliminating
variables through deriving new constraints from the oagjronstraints containing the
variables. Still, this has its limitations: though the adnle is eliminated, the cost of
elimination can be large because of the clauses neededresesp the variable in its
absence. As a result, the algorithm did not see much use, dmiuged as a stepping
stone for a more versatile techniques based on searching.

The foundation of nearly all modern SAT solvers lies in theLDRpproach [26].
The DPLL algorithm adopts a technique called backtrackeaych, whereby variables
are recursively assigned, simplifying the formula at eaelp,sbuilding candidates to
the solutions, abandoning each partial solution that cdrpassibly be completed to
a valid solution (backtracking). The DPLL algorithm alsdinés rules such as unit-
propagation and pure-literal elimination to reduce foransize and reduce the number
of decisions needed. However, in essence, the DPLL algoighan exhaustive search
for satisfying assignment.

Based on the basic DPLL framework, many improvements have pexposed. A
major advance is conflict driven clause learning [79]. Confliiven clause learning
takes a strategy that new clauses are learned from conflicisgdbacktrack search
and the structure of conflicts is exploited during clausenieg. With this technique,
the size of problem search space is greatly reduced and S@d@rs@achieve the per-
formance improvement by orders of magnitude. Howevergetlage still many prob-
lems that are intractable for SAT solvers, such as probleam tryptography domain
where the designs often involve tens of millions of varigbléOne major drawback
that limits the capacity of SAT solvers is the lack of ability word-level reasoning.
To resolve this limitation, satisfiability modulo theori€3MT) are proposed and have
gained significant popularity sin@@03. The SMT problem is to decide the satisfiability
of a formula expressed in a first-order background theomgh s linear inequalities,
bit vectors, linear arithmetic and uninterpreted functioatc. In fact, SMT can be
considered as an extension of SAT to first-order logic. Irepthords, SMT solvers
first apply highly optimized decision procedures for diffet first-order theories and

then check the satisfiability using SAT solvers. For example> Y AY = Zis
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first interpreted intaX > Z and thenX > Z is fed into a SAT solver to check the
satisfiability.

For our problems of interest, bit-vector (BV) theories hagerbshown to be useful
and important for hardware equivalence checking. In ouecagquivalence checking
problems are first compiled into the formula. Then, decigiozcedures for bit-vector
theories, such as term rewriting techniques, are appligdi@oompiled formula to ob-
tain further optimization. Next, the optimized formula isblasted to an equisatisfiable
Boolean formula. Finally, an integrated SAT solver is usedriamerate assignments
to the Boolean formula to find a satisfying assignment.

One advantage of bit-vector theories in SMT is that all peoid are described
and operated upon word-level (bit-vector), proving to Heaive for computationally
intensive designs, such as arithmetic circuits. For examai word level, &2-bit
multiplication can be represented as one term with 3@«bit words, while at bit-level,
it is represented as thousands of Boolean variables. Moreswe instances can be
fully decided on the word-level, thus achieving a high parfance.

As mentioned above, SMT formulas obviously provide a mucher modeling
language than what is possible with Boolean SAT formulasp @l®wing word-level
representations of datapath operations. Solvers basetksa theories [31] [14] [13]
[43] have improved abilities to represent arithmetic comapans, but ultimately rely on
SAT tools to solve the verification instance, making themmprto the same limitations,
as shown in our experiments. For equivalence checking @-lgael circuits, word-
level information is not available. Then, SMT solvers haeebenefits as they have to

rely on SAT solvers to solve the bit-level verification insta.

2.2.1 Circuit-Based Solvers
The above SAT and SMT solvers do not take into consideratrenittopology, so
they are inefficient in verifying circuit designs. Insteatcuit-based solvers, such as
C-SAT [53] [54], focus specifically on the mechanics of chagkihe equivalence of
pairs of combinational circuits. The main strategy utitizezy C-SAT solvers is signal
correlation guided learning, which attempts to identifynreoon subcircuit structure. In
other words, an internal node in the first circuit may be egjent to an internal node
in the second circuit, thus combining the identical suhgtras one node. This way,
if two circuits are structurally similar, the original prigion becomes a problem with

much smaller space. To identify the common subcircuitschrtigjue calledstructural
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hashing[11] is used. This is achieved by random simulation: firstdseg random
vectors through the two circuits and then collecting pairsamdidate equivalent nodes.
Practical use [11] has shown that this technique can deweinpally many, high
probability, candidate equivalent nodes.

AIG [49], on the other hand, is a pseudo canonical representaf a circuit. One
good property of AIGs is that the operations based on AIG asg fsuch as adding
nodes or merging nodes. By representing the circuit with Ar@asny equivalent nodes
over a large circuit can be identified quickly.

When coupled with AIG as the circuit representation and teghes used in C-SAT,
circuit-based SAT solvers can achieve remarkable speedgp$ving a wide variety of
circuit equivalence checking problems.

When two circuits are structurally very dissimilar, struetthashing is able to iden-
tify the common subcircuits, thus reducing the problem.dti@vever, these techniques
are infeasible when verifying structurally dissimilaratiits. For example, in our ex-
periments, we have shown that equivalence checking of E\agirversus Montgomery
multipliers using ABC [11] and C-SAT [53] is infeasible beyoh@-bit circuits.

2.3 Computer Algebra-Based Approaches

Computer algebra-based approaches were first proposeidénfor SAT solving
and formal verification [23] [4]. The principle idea of theapproaches is to reason
about the existence of solutions in the polynomial domairification problems are
first formulated as polynomials; then the polynoial systsrfed into a Gobner basis
engine to check the existence of solutions. There have beey @ttempts to solve
verification problems using this @lbner basis formulation [87]. Instead of analyzing
the entire problem for proof-refutation, the work of [24]lized Grobner bases to
preprocess SAT instance to obtain additional informatiboua the problem. This
information is then fed back into the SAT solver, thus bemmgfithe SAT solving.

One limitation of these approaches is that thélirer basis computation is known
to have worst-case double-exponential complexity in tipaiirdata. Besides, in prac-
tice, the implementations of @bner basis algorithm have not been capable of satisfac-
torily solving problems derived from real-world applicais.

Recent advances [88] [73] suggest a new direction of utdgiziomputer algebra

theory to conduct hardware verification. It is feasible ter@ome the complexity of
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Grobner basis algorithm by efficiently engineeringd@mner bases theory and integration
of circuit analysis techniques.

The work described in [88] addresses verification of finiecigion integer datapath
circuits using the concepts of &sner bases over the rir&y:. They model the circuit
constraints by way of arithmetic-bit-level (ABL) polynonsa({G}), and formulate
the verification test as an equivalent variety subset probl&o solve this, first they
derive a term order that already makigs} a Giobner basis. Then, they compute a
normal form f of the specificatiory w.r.t. {G}. If f is a vanishing polynomial over
Zqx [76], circuit correctness is established. In [73], the awhfurther show that the
vanishing polynomial test can be omitted by formulatingghablem directly ovef) :=
Zok[X]){2? —x: 2 € X).

However, such approaches are effective only over zipgwhile our problems are
derived from finite fieldd,.. The mathematical theories differ significantly in these

two domains. Therefore, these approaches cannot be ajpmliedr problems.

2.4 \ferification of Finite Field Applications

There has not been much research by the design verificatmmaaity to verify
finite field applications. The following works specificallgrgeted automated decision
procedures for verification of finite field applications: [§@9] [74].

The theorem-proving approach of [67] verifies a finite fiéld implementation
against a given polynomial specification. They devise agil@tiprocedure-based on
polynomial division, variable elimination, term rewrignetc., and demonstrate a cor-
rectness proof of a sub-block of a Reed-Solomon decoder.r @keision procedures
were partly built upon BDDs (requiring decision ov&s), and that is infeasible for
large circuits.

The work of [69] solves similar problems as those of [67]. ldwer, they make use
of OKFDDs [29] to canonically represent the circuit constt&a Moreover, instead of
verifying circuit overF,. directly, [69] verifies the circuit over its equivalent coogite
field Fomy» representation, wherenmnprimek = m - n. Their approach has no benefit
if k£ is prime — say, wherh = 163 for elliptic curves. Moreover, the size-explosion of
FDDs limits their approach to 16-bif¢:s) circuits, as shown in their experiments.

MODDs [42] were proposed as a canonical representation efcttaracteristic

function of a circuit over finite field®,x. However, as each node in the DAG may
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have up tok children, MODDs have been shown to be exponential in the rurob
variables, thus infeasible beyond 32-bit circuits.
None of the above approaches provide a scalable and effsnériton to the prob-

lem of verification of large finite field arithmetic circuits.



CHAPTER 3

PRELIMINARIES

This chapter gives an account of basic communicative atégebiects, such as
modular arithmetic, groups, rings, fields and polynomialEmphasis is placed on
finite fields and hardware design over such fields as thesécapphs are the focus
of this dissertation. The material is referred from [62]][[%L] for finite field concepts
and [61] [65] [48] [89] [46] for hardware design over finiteltis.

3.1 Rings, Fields and Polynomials

Definition 3.1 Anabelian groupis a setS and a binary operatior+’ satisfying:

e Closure Law: Forevery,,b € S,a+b € S.

Associative Law: For every,b,c € S,a+ (b+c¢) = (a+b) + c.

Commutativity: For every,b € S;a +b =0+ a.

Existence of Identity: There is an identity elemert S such that for alla € S;

a—+0=a.

Existence of Inverse: i € S, then there is an element! € S such thata +

a!l=0.

The set of integer&, for instance, forms an abelian group under addition.

Definition 3.2 Given two binary operations+’ and’-” on the sefR as well as two
distinguished elements 1 € R, the systen® is called aring if the following properties
hold:

¢ R forms an abelian group under the '+’ operation with additivientity element
0.

e Distributive Laws: For alla,b,c e R,a- (b+c¢)=a-b+a-c.
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e Associative Law of Multiplication: For every,b,c € R,a - (b-¢c) = (a-b) - c.

If there is an identity elemerite R such thatforalb € R,a-1=a =1"-a, then
R is said to be aing with unity .

The ringR is commutative if the following law also holds:
e Commutative Law of Multiplication: Foreveryb € R,a-b=1b-a.

Henceforth, we consider only commutative rings with uraty,defined above. The
set of integersZ, and the set of rational number®, are examples of commutative

rings with unity.

Definition 3.3 Themodular number systemwith basen is a set of positive integers
Z, = {0,1,...,n — 1}, with the two operations+’ and’.” satisfying the properties

below:

(a+b) (modn) = (¢ (modn)+b (modn)) (modn) (3.1)
(a-b) (modn) = (¢ (modn)-b (modn)) (modn) (3.2)
(—a) (modn) = (n—a) (mod n) (3.3)

Example 3.1 The setZg = {0, 1, ..., 7} denotes the modular number system with base

8. Examples of some operations performéaiod 8) are:

346 = 9 (mod8) =1 2-4 = 8 (mod8) =0
547 = 12 (mod8) =4 3.5 = 15 (mod8) =7
(=3) = 8-3 (mod8) =5 3-(=3) = (3-5) (mod8) =7
The modular number syste), = {0,1,...,n — 1}, wheren is a natural number,

forms a commutative ring with the identity elementand1. This type of aring is a
finite integer ring where addition and multiplication are definewdulo n (mod n).
Many hardware and software applications perform bit-vearithmetic. Arithmetic
over k-bit vectors manifests itself as algebra over the finitegataingZ.x, as ak-bit

vector represents integer values fréfy...., 28 — 1}.

Example 3.2 Consider the following hardware description given in Verilttgakes as
inputs two4-bit vectors, and computes the sum, which is also represewtada 4-bit
wide vector. Therefore, addition is performed modzfo

module Adder(A, B, sum);
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input [3:0] A;
input [3:0] B;
output [3:0] sum;
reg [3:0] sum;

always @ (A or B)
begin

sum <= A + B;
end

endmodule

This code exemplifies arithmetic computations over the #rpgimplemented at

bit-vector level.

Definition 3.4 Afield IF is a commutative ring with unity, where every non-zero element

in F has a multiplicative inverse; i.ev,a € F — {0}, 3 a € F such thatz - a = 1.

Afield is defined over a ring with an extra condition: the preseof a multiplicative
inverse for all non-zero elements. Therefore, a field must bag while a ring is not
necessarily a field. For example, the Zgt = {0,1,--- ,2% — 1} forms a finite ring.
However,Z,: is not a field because not every elemeriZin has a multiplicative inverse.

In general, fields can be infinite, or contain a finite numbeglements. For exam-
ple, fractionsQ, complex numberg&, are infinite fields. In our applications, we focus

on finite fields, which are described later in Section 3.2.

Definition 3.5 Let R be a ring. Apolynomial over R in the indeterminater is an

expression of the form:

k
aop + a1z + asx? + -+ 4 apat = Z a;x',Va; € R. (3.4)

=0
The constants; are the coefficients ankl is the degree of the polynomial. For

example4z? + 6z is a polynomial inz overZ, with coefficientst and6 and degreé.

Definition 3.6 The system consisting of the set of all polynomials in theterthinate
x with coefficients in the rin®, where addition and multiplication are defined accord-
ingly, forms a ring called theing of polynomials R[z]. Similarly, R[z, xo, -, x,]

represents the ring of multivariate polynomials with coedfits inR.
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For exampleZ,s[z| stands for the system of all polynomialsarwith coefficients

in Zys; 42 + 6z is an instance of a polynomial belongingZe: [].

3.2 Finite Fields
Finite fields find widespread applications in computer eegimg, such as in error
correcting codes, elliptic curve cryptography, digitgrel processing, testing of VLSI
circuits, among others. We describe the relevant finite tielttepts [62] [75] [51] and
hardware designs over such fields [61] [65] [48] [89] [46].

Definition 3.7 A finite field, also called a Galois field, is a field with a finite number
of elements. The number of elementd the finite field is a power of a prime integer —
i.e.,q = p", wherep is a prime integer, and: > 1. Finite fields are denoted d8, or

F .

p

Definition 3.8 Thecharacteristic of a finite fieldF with unity element is the smallest

integern such thatl + --- 4+ 1 (n timeg = 0.
Lemma 3.1 The characteristic of a finite fiell . is the prime integep.

Lemma 3.2 The finite integer rindZ,, forms a finite field if and only it is prime. Such

fields are customarily denoted ds = I,

Example 3.3 Consider the fieldZ;. The additive and multiplicative inverses of each
element irZ; (excep®) are also elements id;, as shown in Table 3.1. In contra&t,

is not a field, a® does not have a multiplicative inversein.

While Z,x is not a field, there do exist fields,. with nonprime cardinality. Such
fields are called extension fields. We are interested in eidarfieldsF ., wherep = 2

andk > 1. As these are algebraic extensions of the binary figldhey are generally

Table 3.1 Additive and multiplicative inverses iAs.
element|| additive inverse multiplicative inverse

0 0 undefined
1 4 1
2 3 3
3 2 2
4 1 4
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termed asbinary extension field&,.. Such fields are most widely used in digital
hardware applications as the computation can be univgrsattoded in binary form

for practical reasons.

3.2.1 Construction of Finite FieldsF,x
To construct and describe the properties of finite fidlds the concept ofrre-

ducible polynomialsis required:

Definition 3.9 A polynomialP(x) € FF, [z] is irreducible if P(z) is nonconstant with

degreek and it cannot be factored into a product of polynomials of lowegree in
FQ [IE]

Therefore, a polynomial with degrées irreducible ovei, if and only if it has no
roots inlF,. For exampleg?+2z+1 is an irreducible polynomial, becaugé+z+1 = 0
has no roots if¥,. Irreducible polynomials of any arbitrary degree alwayist&r F[z].

To construct,., we take the polynomial rin§j»[=] and an irreducible polynomial
P(z) € Fy[x] of degreek, and construcF,. = Fylz| (mod P(x)). Let«a be a root of
P(z), i.e., P(ar) = 0. Note thatP(x) is irreducible inF,[z]; however, the root lies in
the algebraic extensidi,:. Any elementA € [F,: can therefore be represented as:

k—1
A= (ai-ai):ag—l—al-a—{—---—l—ak_l-ak_l (3.5)
=0
wherea; € F, are the coefficients anl(«) = 0. The degree of any elemeatin F,. is
always less thah. This is becausel is always computed modulB(z), andP(z) has
degreé:. The remainder (mod P(x))) can be of degree at mast- 1. For this reason,
the field[F,» can be viewed as/adimensional vector space oVBs. The equivalent bit

vector representation for elemests given below:
A= (ap—1a5-2- - ap) (3.6)
The example below explains the construction of the finitelfigk.

Example 3.4 Let us construck,: asFy[z] (mod P(z)), whereP(z) = 2zt + 23+ 1 €
[Fy[x] is an irreducible polynomial of degrele = 4. Leta be the root ofP(x), i.e.,
P(a) =0.

Any elementd € Fy[z] (mod x* + 2® + 1) has a representation of the type: =

azz®+ a2 +a 7+ ag (degree< 4) where the coefficients, . .., ag arein F, = {0, 1}.



22

Since there are only6 such polynomials, we obtair6 elements in the fiel#,:. Each
element inF,:« can then be viewed as4bit vector overFy: Fy:={(0000), (0001), . ..
(1110),(1111)}. If « is the root of P(z), then each element also has an exponential
representation; all three representations are shown in @&hR. For example, consider
the element'2. Computinga'? (mod a* + a® + 1) = a + 1 = (0011); hence, we

have the three equivalent representations.

There may exist more than one irreducible polynomials weirde:. In such cases,
any degreé: irreducible polynomial can be used for field constructionr Example,
bothz3 + 22 + 1 andx® + = + 1 are irreducible irF, and either one can be used to

constructFys. This is due to the following result:

Theorem 3.1 There exists ainique field F ., for any primep and any positive integer
k.

Theorem 3.1 implies that finite fields with the same numbetehents are isomor-

phic to each other up to the labeling of the elements.
Lemma 3.3 Let A be any element iff,, thenA7~! = 1.

As a consequence of Lemma 3.3, the following is a very immbntesult that we

will use to investigate solutions to polynomial equatiom'j.

Theorem 3.2 [Generalized Fermat's Little Theorem| Given a finite fieldF,, each

elementd € I, satisfies:

Table 3.2 Bit-vector, exponential and polynomial representationetdments in
Fy1 = Fy[z] (mod z* + 23 + 1)

asasaiag | Exponential| Polynomial| azasaiag | Exponential Polynomial
0000 0 0 1000 a’ a’
0001 1 1 1001 at a’+1
0010 a a 1010 a'Y o+ o
0011 al? a+1 1011 a’ S +a+1
0100 a? a? 1100 a'l o’ + o?
0101 o’ o +1 1101 all ad+a?+1
0110 al3 o’ + o 1110 a® ad+ao?+a
0111 a’ a’+a+1 1111 ab a4+’ +a+1
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As a polynomial extension of the above consequencefletx be a polynomial in
[F,[z]. Every elementd € F, is a solution tax? — z = 0. Thereforez? — = always

vanishesn F,, and such polynomials are callednishing polynomialsof the fieldF,.

Example 3.5 GivenF,: = {0,1,a, o« + 1} with P(z) = 2% + = + 1, whereP(«a) = 0.

0¥ =0
17 =1
o = a (moda®+a+1)

(a+1)% = a+1 (moda®+a+1)

3.2.2 Hardware Implementations of Arithmetic Operations Over [F,x

In some cases, finite field (primitive) computations suctnes, MUL, etc., are
implemented in hardware, and algorithms are then impleedkintsoftware (e.g., cryp-
toprocessors [84] [47]). In other cases, the entire desagnbe implemented in hard-
ware — such as a one-shot Reed-Solomon encoder-decode66hipQ], or the point
multiplication circuitry [38] used in elliptic curve crypsystems. Therefore, there has
been a lot of research in VLSI implementations of finite fiefdhanetic. We describe
the design of such primitive computations below to shed sagheon the architectures
and their design and verification complexity.

Addition in Fy is performed by correspondingly adding the polynomialstbgr,

and reducing the coefficients of the result modulo the chieristic 2.
Example 3.6 GivenA = o® + a? + 1 = (1101) and B = o + 1 = (0101) in Fyu,
A+B=(@*+a?+1)+(@®+1) =)+ (a®>+a?) + (1 +1) = a® = (1000).

Example 3.7 A 4-bit adder inF,. is given in Figure 3.1. It takes as inputs twebit
vectors: A = (asasaiag), B = (bsbab1by) and computes the resulf = (2322212).

Note, an adder circuit is trivial and only consists of XOR gate

Conceptually, the multiplicatio = A x B (mod P(z)) in Fy. consists of two

steps. In the first step, the multiplicatiohx B is performed, and in the second step,



Figure 3.1 4-bit adder oveif,..
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the result is reduced modulo the irreducible polynoriiét). Multiplication procedure

is shown in Example 3.8.

Example 3.8 Consider the fieldf,.. We take as inputsd = ag+a;-a+as-a?+as-a?

andB = by + by - a + by - a® + b3 - o, along with the irreducible polynomidP(z) =

' + 2% + 1. We have to perform the multiplicatioh = A x B (mod P(x)). The

coefficients ofA = {ay,...,as}, B = {by, ..

can be performed as shown below:

as a2 a1 Qg
X bg bQ b1 bo
az-by az-by ay-by ag- by
a3'b1 as-by a;-by aO'bl
as-by az-by aj;-by ag- by
as-bs az-bs a;-bs ap-bs
S6 S5 S4 53 52 S1 S0

The resultSum = sop+ 51 - a+59- 0?2 +5s3- 0 +54-a* + 55 -a° + s -

Sop = Qo
S1 = Qo
S92 = Qo
S3 = Qo
S4 = a1
S5 = 043
Sg — ds

- bo

‘b1+CL1'

by + ay
-bs + aq
-bs + as
< by + as
- by

by + as
by + as
-b1 + a3
- by

'b2+a3'b1
'bl

.,bs} areinFy = {0, 1}. Multiplication

Here the multiply “” and add “+” operations are performed modulo 2, so they can

be implemented in a circuit using AND and XOR gates. Note thigtaumteger mul-

tipliers, there are no carry-chains in the design, as thefftaents are always reduced
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modulop = 2. However, the result is yet to be reduced modulo the primgolgnomial
P(z) = 2* + 2 + 1. This is shown below, where higher degree coefficients areceztiu
(mod P(x)).

S3 S22 S1  So

ss 0 0 s4|s4-a* (mod Pla)) =sy-(a+1)

s5 0 s5 85| 85-a° (mod P(a)) =s5-(a®+a+1)

s¢ S Se¢ S¢ | S6-a’ (mod P(a)) =s6-(a®+a?+a+1)
Z3 Z2 21 20
The final result (output) of the circuit isZ = 25 + z1a + 20% + 2303, where

20 = S0+ S4+ 85+ Sg; 21 = S1+ S5+ S, 22 = So+ Sg; 23 = S3 + Sg4 + S5 + Sg-

The above multiplier design is called thdastrovito multiplier[61], which is the
most straightforward way to design a multiplier ov&y.. A logic circuit for a4-bit
Mastrovitomultiplier overfinite fieldFs. is illustrated in Fig. 3.2.

Modular multiplication is at the heart of many public-keyptosystems, such as
Elliptic Curve Cryptography (ECC) [64]. Due to the very largedisize (and hence
the datapath width) used in these cryptosystems, the aldastrovito multiplier ar-
chitecture is inefficient, especially when exponentiatma repeat multiplications are

performed. Therefore, efficient hardware and software emgntations of modular
80
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Figure 3.2 Mastrovito multiplier oveft'y.
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multiplication algorithms are used to overcome the compleaf such operations.
These include the Montgomery reduction [65] [48] and the &areduction [46].
Montgomery Reduction: Montgomery reduction (MR) computes:

G=MR(AB)=A-B-R' (mod P(x)) (3.8)
where A, B are k-bit inputs, R = o*, R~! is the multiplicative inverse of? in Fyx
and P(z) is the irreducible polynomial foF,:. Since Montgomery reduction cannot
directly computeA - B, to computeA - B (mod P(z)), we need to precomputé - R
andB - R, as shown in Figure 3.3.

Each MR block in Figure 3.3 represents a Montgomery reduction stdyich is a

hardware implementation of the algorithm shown in Algaritf.

Algorithm 1: Montgomery Reduction Algorithm [48]
Input: A(z), B(z) € Fa; irreducible polynomialP(z).
Output: G(z) = A(z) - B(x) - 7% (mod P(x)).
G(z) :=0
for i=0;i<k—1;++i) do
G(z):=G(x)+ A; - B(x) | A; is the i bit of A=/,

G(z) :=G(z)+ Gy - P(x)l G, is the lowest bit of G* 1,
G(z) := G(z)/x | *Right shift 1 bit =/
end

The design of Fig. 3.3 is an overkill to compute just B (mod P(x)). However,
when these multiplications are performed repeatedly, asch iterative squaring, then
the Montgomery approach speeds-up the computation. Asrsioy89], the critical
path delay and gate counts of a squarer designed using thegbdfoary approach are
much smaller than the traditional approaches.

Barrett Reduction: Barrett reduction is the other widely used multiplier design

method adopted in cryptography system designs. Similar eatypmery reduction,

R
‘—‘ VR A-B-R

MR MR ——G=A-B (mod P)

B-R
B——1 MR \

||1||

Figure 3.3. Montgomerymultiplier overlF,x



27

the traditional Barrett reduction, proposed in [7], needsec@mputed value of the
reciprocal/inverse of moduluB(z). This precomputation requires extra computational
time and memory space. To overcome this limitation, themeapproach of [46] avoids
such a precomputation of inverses and therefore greatlplgies the hardware design

implementation. This algorithmic computation is shown igdtithm 2.

Algorithm 2: Barrett Reduction Without Precomputation Algorithm [46]

l
Input: R(z) € Fy; irreducible polynomialP(z) = 2™ + Z m; - 2" satisfying
=0
[ = L%j,ml c {0, 1}
Output: G(z) = R(x) (mod P(x)).
Q1 (z) = 2% [ «Right shift n bit */;

)
)

G1(z) = R(z) (mod z™)/ *Keep the lower n bits of  R(x)*/;
)

Based on Barrett reduction, a multiplier can be designed with gimple steps:
multiplication R = A x B and a subsequent Barrett reduct@n= R (mod P). This
is shown in Figure 3.4. As we can see, a Barrett multiplierngilar to a Mastrovito
multiplier except for the reduction step.

One of the most influential applications of finite fields is Ipéic curve cryptog-
raphy (ECC). ECC is an approach to public-key cryptographydasethe algebraic
structure of elliptic curves over finite fields. The main ggems of encryption, de-
cryption and authentication in ECC rely point multiplications Point multiplication
involves a series of addition and doubling of points on thiptet curve. A drawback
of traditional point multiplication is that each point atildh and doubling involves a
multiplicative inverse operation over finite fields. Repres® the points in projective
coordinate systems [38] eliminates the need for multipilreainverse operation and

therefore increases the efficiency of point multiplicatogreration. In our experiments,

A~ % | AB  BR | G=A-B (mod P)

Figure 3.4. Barrett multiplier ovetfy.
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we have verified custom designs based on theelz-Dahab (LD) coordinate system
[52].

Example 3.9 Consider point addition in LD projective coordinate. Given alliptic
curve:Y? + XY Z = X37 +aX?7Z? + bZ* overF,., whereX, Y, Z are k-bit vectors
that are elements ifi,» and similarly,a, b are constants from the field. LeX(, Y3, Z1)
+ (Xs, Y3, 1) = (X3, Y3, Z3) represent point addition over the elliptic curve. ThEp,
Y3, Z3 can be computed as follows:
A=Yy - Z7+ V)
B=X,-Z1+ X,
CcC=27-B
D =B (C+aZ?
Zy=C"?
E=A-C
X;=A>+D+E
F=X35+ X573
G=X3+YsZs
Ys=FE-F+7Z;-G

Example 3.10 Consider point doubling in projective coordinate system.ve®i an
elliptic curve: Y2 + XY Z = X3Z + aX?Z? + bZ*. Let 2(X1, Y1, 7)) = (X3, Y3,

Za), then Xy = X!+ b 28

Zy= X277
Yy = b7} Zs 4+ Xy - (aZs + Y7 +0Z7)

In the above examples, polynomoial multiplication and sopgaoperations are
implemented in hardware using Montgomery or Barrett reduastiover finite fields
Fo.

The field size for such applications is generally very laagediscussed before, for
ECC, inFFy:, k = 163 or larger. The large size and complicated arithmetic nadfire
such circuits clearly shows the complexity of the formalifueation problem. Con-

temporary techniques lack the requisite power of abstra¢t model and verify such
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large systems. For this reason, we propose polynomialadigtns over finite fields to
model and verify such circuits using computer algebra teghes. This is the subject

of subsequent chapters of this dissertation.



CHAPTER 4

COMPUTER ALGEBRA FUNDAMENTALS

This chapter reviews preliminary fundamental conceptsoofmutative and com-
puter algebra that are utilized in our work. The conceptsobfpomial ideals, varieties
and Gbbner bases are described with regard to their algorithongpaitation. Finally,
the results of Hillbert's Nullstellensatz are describetijck are employed for verifica-
tion over finite fields in subsequent chapters. The matesiaiastly referred from the
textbooks [25] [3].

4.1 Monomials and Their Orderings

Definition 4.1 Amonomialin zq,zs,--- , x4 IS a product of this form:
R 4.1)
wherea; > 0,7 € {1,--- ,d}. The total degree of the monomialis + - - - + .

For simplicity, we will denote a monomial* - 252 - ---z3? = 2z, wherea =

(a1, , ), 1.e.,a € Z2,.

Definition 4.2 A multivariate polynomial f in variableszy, z,,...,z4 With coeffi-
cients in any given fiel& is a finite linear combination (with coefficients i) of

monomials:

f:Zaa-xO‘, a, € K
(0%

The set of all polynomials i, z», . . ., x4 With coefficients in fieldK is denoted

byK[thQv s ,l‘d]-
Definition 4.3 Let f = ) a,z® be a polynomial irK[z, zo, . . ., z4].
1. We refer to the constant, € K as the coefficient of the monomialx©.

2. Ifa, # 0, we calla,z* aterm of f.
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As an example2z? + y is a polynomial with two termz? andy, with 2 and1 as
coefficients, respectively. In contrasty y ! is not a polynomial because the exponent
of y is less tharb.

An important fact of polynomials is that a polynomial is a safrterms and these
terms have to be arranged unambiguously so that they caniputeted in a consistent
manner. Therefore, we need to establish the conoeptomial ordering (or term
ordering). A term ordering, represented by, defines how terms in a polynomial are
ordered. Term orderings are totally ordered, i.e., antiagnic, transitive, total, with

constant terms last in the ordering. More formally, we h&eefollowing definitions:

Definition 4.4 LetT? = {2* : a € Z,} be the set of all monomials im, ..., z4. A

monomial order > on T is a total well-ordering satisfying:
e Foranyz® € T?, 2% > 1
o Forall a,3,v, 2% > 2° = 2% - 27 > 2% - 27

A total-ordering ensures that there is no ambiguity witlpees to where a term is
found in the term ordering. Total-orderings for monomialee in different forms, no-
tably lexicographic orderings (lex), and its variantsdegree-lexicographic ordering
(deglex) andeverse degree-lexicographic orderingrevdeglex).

A lexicographic ordering (lex) is a total-ordering- such that variables in the terms
are lexicographically ordered. Higher variable-degresd tprecedence over lower

degrees (e.ga® = aaa).

Definition 4.5 Lexicographic order: Letx; > x5 > --- > x4 lexicographically. Also

letar = (ay,...,aq); B=(B1,...,Ba) € Z,. Then we have:

Starting from the left, the first coordinates®f, 3;

%> 1 — . . (4.2)
that are different satisfyw; > 5;

A degree-lexicographic ordering(deglex) is a total-ordering such that the total
degree of a term takes precedence over the lexicographéciogd A degree-reverse-
lexicographic ordering (degrevlex) is the same as a deglex ordering. However, terms

are lexed in reverse.
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Definition 4.6 Degree lexicographic order:Letz; > x5 > --- > x4 lexicographi-
cally. Also letor = (ay, ..., aq); = (B1,...,5) € ZL,. Then we have:
S o> or
2* > 1P = it i . s (4.3)
Y0 = Biandz® > 27 w.rt. lex order
Definition 4.7 Degree reverse lexicographic orderLetz; > x5 > --- > x4 lexico-
graphically. Also letv = (o, ..., aq); = (P1,...,84) € Zgo. Then we have:
E?:l Q; > Z?:l Bi or

2 > a2’ = {7 o, =37 5 and the first coordinates (4.4)

a;, 5; from the right, which are different, satisfy < 5;

As a consequence of these term orderings, we have the fatjoreiations, where

a>b>c.
lex:a®b > a® > abc > ab > ac® > ac > b’c > b* > bc® > 1 (4.5)
deglexbc® > a®b > abc > ac® > b*c > a* > ab > ac > b* > 1 (4.6)
degreviexbc® > a?b > abc > b*c > ac® > a®> > ab > b* > ac > 1 4.7)

The difference between thex and twodeg-orderings is obvious, while the differ-
ence between the two degree-based orderings can be seendigerong from which
direction the term is lexed, e.gu?> > b?c (deglex, left-to-right) versus?c > ac?

(degrevlex, right-to-left).

Example 4.1 Let f = 222yz + 323> — 223, Effects of different term orderings gare

shown below:
o lexz >y >z f = —22% + 22%yz + x93
o deglexz >y > z: f = 22%yz + 3ay® — 223

e degreviexs >y > z: f = 3xy® + 22%yz — 223

Definition 4.8 Theleading term is the first term in a term ordered polynomial. Like-
wise, the leading coefficient is the coefficient of the leadémm. Finally, a leading

power product is the leading term lacking the coefficient. ¥¢éetbe following notation:

It(f) — Leading Term (4.8)
le(f) — Leading Coefficient (4.9
Im(f) — Leading Monomial (4.10)
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Example 4.2
f = 3a’b+2ab+ 4bc (4.11)
it(f) = 3a% (4.12)
le(f) = 3 (4.13)
Im(f) = a2b (4.14)

4.2 Varieties and ldeals
In verification applications, it is often required to anay&he presence or absence
of) solutions to a given system of constraints. In our agpians, these constraints are

polynomials and their solutions are describedaseties.

Definition 4.9 LetK be afield, and lefi, ..., fs € K|z, 2o, ..., x4. WecallV (fy,..., fs)
theaffine variety defined byfi, ..., f; as:

V(fi, . fs) ={(lay,...,aq) €K: filay,...,aq) =0,Vi, 1 <i <s}. (4.15)
V(fi,..., fs) € Klisthe set of all solutionsof the system of equationg; (z1, . .., z4) =

o= fol@n ) = 0,

Example 4.3 GivenR [z, y], V(2% +y?) = {(0,0)}. Similarly, inR [z, y], V (22 +y* —
1) = {all points on the circle : z* +y? —1 = 0}. However, varieties depend on which

field we are operating on. For the same polynomial- 1, we have:
e INR[z], V(z*+1) =0.
e INClz], V(z* +1) = {(+:1)}.

The above example shows the variety can be infinite, finita¢npty set) or empty.
It is interesting to note that we will be operating over firfitdds F,, and any finite set
of points is a variety. Consider the poirft§uy, ..., aq) : ay,...,aq € Fy} inFe. Any
single point is a variety of some polynomial system: e(@,, ..., ay) iS a variety of
T1—a, = r9—ay = --- = xg—ag = 0. Moreover finite unions and finite intersections

of varieties are also varieties. LEt= V (f1,..., fs) andW =V (g1,...,9:). Then:

L UﬂW:v(flw-'ufs;glu"'7gt)

e UUW =V(figj:1<i<s,1<j<t)
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Another important concept related to varieties is that theety depends not just
on the given system of polynomial equations, but rather endéal generated by the
polynomials.

Definition 4.10 A subsell C K[zy,zs,...,z4] is anideal if it satisfies:
e el
e [isclosed under additiont,y € [ =z +y € [
o If x € K[xy,29,..., 24 andy € I, thenz -y € Taswellasy - = € I.

Any ideal is generated by itsasisor generators

Definition 4.11 Let f1, f5, ..., fs be the given elements &f{z;, xo, ..., z4]. Let] be

anideal inK|[zy, xo, ..., x4). If:
IF={gifi+gfot...+9sfs:g1,...,9s € Klwy,z,..., 24} (4.16)
then,f, ..., f, are called thebasis (or generators)f the ideall and correspondingly

I'isdenoted as = (f1, fo, .-, [s)-

Example 4.4 The set of even integers, which is a subset of the ring of irgégdorms

an ideal ofZ. This can be seen from the following;
¢ 0 belongs to the set of even integers.
e The sum of two even integerandy is always an even integer.

e The product of any integer with an even integey is always an even integer.

Example 4.5 GivenR [z, y|, I = (x,y) is an ideal containing all polynomials gener-
ated byx andy, such ast? + y, v -y + . J = (2%, y?) is an ideal containing all
polynomials generated hy* and 32, such asz? + 42, 2% - y*> + 2'°. Noticel # J

becauser + y can only be generated ky

Any ideal may have many different bases. For instance, itossiple to have
different sets of polynomial§fi, ..., fs} and{g, ..., ¢} that may generate the same
ideal, i.e.,(f1,..., fs) = {g1,...,9:). Since variety depends on the ideal, these sets of

polynomials have the same solutions.
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Proposition 4.1 If f1,..., fsandgy, ..., g; are bases of the same idealitiz,, . . . , 4],
sothat(fi,..., fs) = (g1,...,gc), thenV (fi,.... fs) =V(g1,..., )

Example 4.6 Consider the two basds, = {(22* + 3y* — 11,2* — y* — 3} and F, =
{z* —4,y*—1}. These two bases generate the same ideal{Eg),= (F}). Therefore,

they represent the same variety, i.e.,

V(F) = V(F) = {£2,+1}. (4.17)

An important fundamental problem that we need to solve isobideal membership

testing.

Definition 4.12 Letf, fi,..., f; be polynomials ifK [z, ..., z4). Letideall = (f,..., fs) C
K[zq,...,x4). If f can be written ag = f1hy + - - - + fshs, then we say is a member
of the ideall.

Our verification problems are formulated as ideal membprgbsting. For this
purpose, we require a decision procedure to unequivocaltyde ideal membership.
Grobner basis provides such a decision procedure, and thissiiled in the next

section.

4.3 Grobner Bases

As mentioned above, different generating sets may cotestitie same ideal. How-
ever, some generating sets may be better than others — ttiayisnay be a better
representation of the ideal. @rodbner basisis one such ideal representation that has
many important properties that allow us to solve many patyiab decision questions.
By analyzing the Gibner basis, one can deduce the presence or absence abrs®luti
(varieties), find the dimension of the varieties and alsoudeddeal membership. A
Grobner basis, in essence, is a canonical representation wfeah Buchberger’s
work [17] laid the foundation for computing a &wner basis of an ideal. This section
provides a synopsis of some of these concepts.

Among many equivalent definitions of &sner bases, we start with the definition

that can best describe the properties obl@rer bases:

Definition 4.13 A set of non-zero polynomials = {¢1, ..., ¢} contained in an ideal
1, is called aGrobner basisfor I if and only if for all f € I such thatf # 0, there
existsi € {1,...,t} such thatm(g;) dividesim(f).
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G = GrobnerBasi§l) < Vfel: f#0,3g; € G:lm(g)|Im(f) (4.18)

Given a set of polynomial$’ = {fi,..., fs} that generate idedl = (f1,..., fs),
Buchberger gives an algorithm to compute &Brer basisz = (gi,...,g:;). This
algorithm relies on the notions &f-polynomials and polynomial reduction, which are

described below.

Definition 4.14 For a field K, f,g € Klzy,...,z4,L = lem (It(f),lt(g)), an S-
polynomial Spoly(f,g) is defined as:

L L
Spoly(f,g) = W f = @ g9 (4.19)

Note,lcm denotes least common multiple.

Definition 4.15 Thereduction of a polynomialf, by another polynomiad, to a re-
duced polynomiat is denoted:

f sy
Reduction is carried out using multivariate, polynomiaidpdivision.

For sets of polynomials, the notation
/ i>+ r

represents the reduced polynomiatesulting fromf as reduced by a set of non-zero
polynomialsF' = {f1, ..., fs}. The polynomiat is considerededucedif » = 0 or no
term inr is divisible by am(f;),Vf; € F.

For all intents and purposes, the reduction progfessF—>+ r, of dividing a poly-
nomial f by a set of polynomials of’, can be modeled as repeated long divisiorf of
by each of the polynomials iR’ until no further reductions can be made—the result of
which isr, as shown in Algorithm 3.

The division algorithm keeps cancelling the leading terfngatynomials until no
more leading terms can be further cancelled. So the keystepip — It(p)/lt(f;) - fi,

as the following example shows.

Example 4.7 Givenf; = y*> — x and f, = y — x in Q[x, y| with deglex: y > x. Then

filfo=f =0(f)/1t(fo) fo=v* -2~ (¥*/y) - (y—2) =y -z —=z. Theny -z —z
can be further divided by,: (y - = — x)/ f, = 2* — 2, which is the final result.
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Algorithm 3: Polynomial Division

InpUt:f>f17'-->fs
Output: r,ay,...,as, suchthatf =a, - fi +--- +as- fs + 7.
a1:a2:...:aszo;,’,:0;
p=f
while p # 0 do
i=1;

divisionmark = false;
while i < s && divisionmark = falsedo
if f; can dividep then
a; = a; + lt(p) /1E(f;);
p=p—Iltp)/lt(f) - fi
divisionmark = true;
else
i=i+1;
end
end
if divisionmark = falsehen
r=r+lt(p);
p=p—It(p);
end
end

Algorithm 4: Buchberger’s Algorithm
Input: FF ={f1,..., fs},suchthatl = (f,..., fs)
Output: G = {g1,...,9:}, a Gbner basis of
G =F,
repeat
G =G,
for each pair{f;, f;},i # 7 in G’ do

Spoly(fi, f;) G

if r # 0then
G:=GU{r};
end
end
until G = G

We now present Buchberger’s Algorithm [17] for computing@mer bases.

For Gidbner basis computation, a monomial (term) ordering is fweghsure that
polynomials are manipulated in a consistent manner. Bugelbsralgorithm then takes
pairs of polynomials f;, f;) in the basisi and combines them intaS=polynomials”

(Spoly(f;, f;)) to cancel leading terms. The&-polynomial is then reduced (divided)
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by all elements ofG to a remainder, denoted asS(f;, f;) i>+ r. Multivariate
polynomial division is used for this reduction step. Thi®gess is repeated for all
unique pairs of polynomials, including those created bylp@added elements, until no

new polynomials are generated, ultimately constructiregGiobner basis.

Example 4.8 Consider the ideal C Q|x,y|, [ = (f1, f2), Wwheref, = yx —y, fo =
y* — x. Assume a degree-lexicographic term ordering with x is imposed.

First, we need to comput8poly(fi, fo) = x - fo —y - fi = y*> — 2% Then, we
conduct a polynomial reductioy? — 22 LI BEpSE LN S Let f3 = 22 —x. Then,
G is updated aq f1, fo, f3}. Next, we comput8poly(fi, f3) = 0. So there is no new
polynomial generated. Similarly, we compteoly( fo, f3) = = - y*> — 23, followed by
x-y?—ad LN y? — a3 LRSS JEL N} Again, no polynomial is generated. Finally,

G ={/1,f2 I3}
Grobner basis now gives a decision procedure to test for meshipein an ideal.

Theorem 4.1 LetG = {¢,-- - , g:} be a Gibbner basis for anideal C K[xq,- -, z4]
and letf € K[zy,...,x4). Then,f € I if and only if the remainder on division gfby

G is zero.

In other words,
fel «— f-%.,0 (4.20)

Example 4.9 Consider Example 4.8. Let = y%x — x be another polynomial. Note
that f = yfi + fo, SOf € 1. If we dividef by f; first and then byf,, we will obtain
a zero remainder. However, since the §ét, f»} is not a Gibner basis, we find that
the reductionf LT SR LT # 0; i.e., dividing f by f; first and then byf;
does not lead to a zero remainder. However, if we compute tiidriigr basis of 7,
G = {2* — z,yx —y,y* — z}, dividing f by polynomials inG in any order will always
lead to the zero remainder. Therefore, one can decide ideatlpership unequivocally

using the Gobner basis.

Definition 4.16 A minimal Gr dbner basisfor a polynomial ideall is a Groebner
basisG for I such that

e lc(g;) =1,Vg, € G
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o Vg € G, 1t(g:) & (It(G — {gi}))

A minimal Grobner basis is a ®bner basis such that no leading term of any element
in G divides another irtz. A minimal Grobner basis can be computed by removing any
polynomial whose leading term can be divided by another iivengGiobner basis.

A minimal Grobner basis can be further reduced.

Definition 4.17 A reduced Gobner basis for a polynomial idedlis a Grobner basis
G =A{aq,...,g} suchthat:

o lc(g;) =1,Vg, € G
e Vg; € G, no monomial ofj; lies in (It(G — {g;}))

G is areduced Gibner basis when no monomial of any elemernt¥idivides the leading
term of another element.
For a given monomial ordering, the reduced@mner basis is a canonical represen-

tation of the ideal, as given by Proposition 4.2 below.

Proposition 4.2 Let I # {0} be a polynomial ideal. Then, for a given monomial

ordering, I has a unique reduced @bner basis.

4.4 Hillbert's Nullstellensatz
In this section, we further describe some correspondentwecka ideals and vari-
eties in the context of algebraic geometry. The celebragedlts of Hillbert's Nullstel-
lensatz establish such correspondences, and these resggther with Gbbner bases,

provide a basis for our verification solutions.

Definition 4.18 A field K is an algebraically closed field if every polynomial in one

variable with degree at leadt, with coefficients ifK, has a root ink.

In other words, any nonconstant polynomial equation &Ver| always has at least one
root in K. Every fieldK is contained in an algebraically closed die For example,
the field of real<R is not an algebraically closed field, becauser 1 = 0 has no root
in R. However,z? + 1 = 0 has roots in the field of complex numbefs which is an
algebraically closed field. In fac€ is the algebra closure &. Every algebraically

closed field is an infinite field.
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Theorem 4.2 [Weak Nullstellensatz| Let I C K[z, zs,- - - , 24 be an ideal satis-

fyingV(I) = 0. Then,l = K[zy,zs,- - - ,z4], Or equivalently,
V) =0 <= 1=Kz, z9, --,24 = (1) (4.21)

Corollary 4.1 Letl = (fi,..., f,) C Klzy, 2o, -, 14]. LetG be the reduced Gibner
basis of/. ThenV (/) =0 <= G = {1}.

The Weak Nullstellensateffers a way to evaluate whether or not the system of
multivariate polynomial equations (ided) has common solutions i&’. For this
purpose, we only need to check if the ideal is generated byutiieelement, i.e.,

1 € I. This approach can be used to evaluate the feasibility otcaimts in our
verification problems. Another interesting result that wé @mploy is one ofStrong

Nullstellensatz to describe which we need the concepts of “ideals of vasétand
radicals.

LetK be any field and lea = (a4, ..., a4) € K% be a point, and € K|y, ..., z4]

be a polynomial. We say thdgtvanishenaif f(a) = 0, i.e.,ais in the variety off.

Definition 4.19 For any varietyl of K¢, the ideal of polynomials that vanish dn,
called the vanishing ideal of, is defined ad (V) = {f € Flz1,...,24) : Va €

V. f(a) = 0}.
Proposition 4.3 If a polynomialf vanishes on a variety, then,f € I(V).

Example 4.10 Let ideal J = (22, y?). Then,V(J) = {(0,0)}. All polynomials in
J will obviously agree with the solution and vanish on this virieHowever, the
polynomialse, y are not in.J but they also vanish on this variety. Therefar@y (.J)) is

the set of all polynomials that vanish &f(./), and the polynomials, y are members
of I(V(J)).

Definition 4.20 Let J C Klzy,...,z4) be an ideal. The radical of is defined as
VI={feKlzy,...,zq): IMmeEN, f™ e J}.

Example 4.11Let J = (2%,9*) C K[z,y]. Note, neitherr nor y belongs toJ, but
they belong to/.J. Similarly,z -y ¢ .J, but since(x - 4)? = 22 - y*> € J, therefore,

-y e V.
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When.J = +/J, thenJ is said to be aadical ideal Moreover,I(V) is a radical
ideal. The Strong Nullstellensatz establishes the cooredgnce between radical ideals

and varieties.

Theorem 4.3 (Strong Nullstellensatz [3]) LeK be an algebraically closed field, and
let J be an ideal iNK[z1, . .., 24). Then, we havé(V(.J)) = V/J.

4.5 Concluding Remarks
For verification, we have to analyze constraints correspgntb the circuit func-
tionality. Solutions to these constraints are viewed asetias and the constraints
themselves are analyzed as polynomial ideals. Since Midissatz defines the cor-
respondences between ideals and varieties, the verifigatatolems are modeled using
Nullstellensatz. These are subsequently solved usidpiéar basis techniques. While
Nullstellensatz applies over algebraically closed fieks] finite fields are not alge-
braically closed, our approach requires modifications tooaur problems, as described

in the subsequent chapters.



CHAPTER 5

IMPLEMENTATION VERIFICATION USING
IDEAL MEMBERSHIP TESTING

This chapter describes our approach to the problem of fomerdication of hard-
ware implementations of arithmetic circuits over finite d®lof the typeF,., using a
computer-algebra/algebraic-geometry-based approadven@ specification polyno-
mial f and a circuitC, we have to prove that the circuit correctly implementsf.
Otherwise, we have to generate a counter example that exbigebug in the design.
The arithmetic circuit is modeled as a polynomial systenffinzy, z,, -+ ,z4] and
the verification problem is formulated using Strong Nullstesatz over finite fields as
a membership test in a corresponding (radical) ideal. Téugires the computation
of a Gidbner basis, which is computationally expensive. To ovekethis limitation,
we analyze the circuit topology and derive a term order toasgnt the polynomials.
Subsequently, using the theory ofd@ner bases over finite fields, we prove that this
term order renders the set of polynomials itself &l@rer basis of this (radical) ideal —
thus significantly enhancing verification efficiency. Usmgy approach, we can verify
the correctness of, and detect bugs in, up to 163-bit cganiff,:es, corresponding
to the NIST-specified ECC standard. In contrast, contempa@pproaches, including
SAT, SMT, BDD and AlG-based techniques, are infeasible.

5.1 Problem Statement

The following is our problem statement:

e Given a finite fieldF,, i.e., givenk (datapath size), along with the corresponding

irreducible polynomialP(x), let P(«) = 0, i.e.,« be the root ofP(z).

e Given aword-level specification polynomigil= F(A!, A%,..., A") (mod P(x)),
where each!’ represents a word-levétbit input; S, A, A%, ..., A" € Fo; Fis

a function describing the input-output relation.
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e Given a gate-level combinational circdit the bit-level primary inputs of the cir-
cuitare{a},al,...,al_,},forj =1,...,n;the primary outputs argz, ..., 21} =
Z.Heread!,z € Fy,i=0,... k— 1.

e The word-level and bit-level correspondences are theviatig:

1 1 1 1 k—1 1 1,1
A :a0+a1a+"'+ak_1a :(ak_l---alao),

A" =al +ata+ - +al ofF = (al |- alad),
and the primary outputs are related as:

Z =z + za+ ZQO[2 + 4 zk_lo/“*1 = (zk_l s 222120).

Our goal is to formally prove thatA’, Z € F,x, the circuit outputZ correctly imple-
ments the specificatiofl = F(A*, A%,..., A") (mod P(z)) overF,.. Otherwise, we

have to produce a counter-example that excites the bug itetsign.

Example 5.1 Consider the verification problem instance for a multipliércait over
FQk.

e Given the finite field,» and the corresponding irreducible polynomid(z), let
P(a) =0.

e Given a word-level multiplier specification polynomial= A - B (mod P(x)),
where A, B, S € Fy (k-bit vectors), functionF corresponds to multiplication
operation: A - B (mod P)).

¢ Given a gate-level combinational circuit, the bit-leveilrpary inputs of the circuit
are {ag, ..., a1, bo,...,bk_1}, and {z,...,z_1} are the primary outputs;
herea;, b;, z; € Fy,i = 0,...,k — 1. Therefore, A = ag + a1 + axa® + - - +
ap_1057 1 B = bog+bia+bya®+- - +bp_oFtandZ = zg+zia+- - 4250871

We need to check whether the circuit implementation matdteesgecification, i.e.,
whetherS = Z,Va;, b;.

Our approach is generic enough to verify the implementaifcany combinational
finite field arithmetic circuit against the given polynomsgecification. Without loss
of generality and for the purpose of exposition of our preubapproach, we use finite
field multiplier circuits for our verification objective, @key form the core of most

computations and are notoriously hard to verify.
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5.2 \Verification Setup and Polynomial Modeling

Our verification setup is depicted in Fig. 5.1. Given the dp=tion polynomial
S = A-B (mod P(zx)), and the circuit implementation with, B as inputs and’ as
output, we want to verify the property = Z overFyx.

Specification: Given two k-bit inputs in bit-vector formA = (ax_1ax_2- - - aiap)
andB = (by_1bx_2 - - - b1bo), the specification can be modeled in polynomial forms in
F,. as follows:

A=ay+ar-a+- - +apq- a1
B=by+b-a+- - +by !

S=A-B (mod P(x))

Implementation: Given a gate-level circuit netlist, we map the gate-levellBan
operators (AND, OR, NOT, XOR) to polynomials ovBs(C F,:) using the following
one-to-one mapping ové — ¥ :

—a—a+1

(5.1)

( )
aVb—a+b+a-b (mod2)
aANb—a-b ( )

)

a®b—a+b (mod?2
wherea, b € Fy = {0,1}. Note that the equation= F(a, b) is written in polynomial
form asc — F(a,b) = ¢+ F(a,b), as—1 = +1 (mod 2).
Example 5.2 Consider the equation with Boolean operators:
z=a® (bVc).
The equation modeled ovEs is:

z+a+b+c+b-c=0

Specification: S

S=A*B mod P(x)

AT Verification Property

S =27

Implementation:

Circuit Equations

Figure 5.1 The verification setup.
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The left-hand side expression is a polynomidFira, b, ¢, z] C Fox [a, b, ¢, 2]:
z+a+b+c+b-c

Therefore, we can transform the entire circuit implemeoiteas polynomials over
F,.. Let Z denote the word-level result of the circuit.

The Verification Property: The propertyS = Z is modeled as a polynomial
f S+ Z = 0overFy. Overall, our verification constraints can be modeled as a

polynomial system as follows:

fi(zy, o, 2g) =0
fQ(xlva""7$d):O ) . .
Circuit implementation
f22Z+ZU+Zl'Oé,"' ,Zkfl'Oék_l:O’

\

fA:A+a0+a1'a+--~+ak_1.ak*1:0

fe:B4+by+b-a+---+bq-aF1=0 Word-level specification

fspec:S—f—A-B:O)
f:S+Z=0} Property:S = Z ?

Example 5.3 Consider a 2-bit multiplier ovelFy2, whereP(z) = 2% + x + 1, as given
in Figure 5.2. Variablesi, a1, by, by are primary inputs;zg, z; are primary outputs and
co, C1, Ca, C3, T Are intermediate variables. The gatecorresponds to AND-gate, i.e.,
bit-level multiplication modulo 2. The gate corresponds to XOR-gate, i.e., addition
modulo 2.

The circuit can be described using the following Boolean équa:
co = ap N by,
c1 = ap A by,
co = aq N by,
c3 = aq N by,
rog = 1 © g,
20 = o D C3,

z1 =T D cs,
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a, R ¢,

D =z,
a, Q€
b — ® C2 @ zl
’ ®Hr,
b, X,

Figure 5.2 A 2-bit multiplier overF(22).

With the mapping rules given in Equation 5.1, the above eguostare transformed

into the following polynomials:

Cco + ap 'bo,
C1 +a0-b1,
Co + ap 'bo,
c3 + ap 'bl,
To + €1 + C2,
Zo+60+03,

21 +7“0+Cg,

Therefore, our overall polynomial system is:
fiico+ag-by )
forer4ag-by
faica+ay- by
Jiiceg+ag-b o _

Circuit constraints

fsiro+c+c

Jo:zotcot+cs

frizi+ro+cs

leZ—i-Z(]—i-Zl'Oé)
fA:A+a0+a1-a‘

fB:B4+by+b -« specification

fspee 1 S+ A-B)
f:S+7} Property to verify:S = Z ?
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With the polynomial model given above, we formulate our peab as(radical)

ideal membership testing which is described next.

5.3 \Verification Formulation as Ideal Membership Testing

To formulate our verification test, we first analyze the dirand model the Boolean
gate-level operators as polynomials o¥&r (C F,.), as given by the mappings of
Equations 5.1. To this set, we then append the polynomiategmonding to the word-
level specification. Lef fi, fo,..., fs} denote this set of polynomials derived from
both specificationand implementation Let {xy,zs,..., 24} denote all the variables
in the polynomial system. As a consequengA,, fo, ..., fs} € For[zq,...,24]. Let
J = {f1,..., fs) C Faxy,...,24] denote the ideal generated by these polynomials.
Our verification propertyS = Z is also modeled as a polynomidl : S + 7 €
For[x1, ..., z4).

To prove that the specification polynomigl)(matches the implementatiod (=
(f1,..., fs)), we need to check whethgr: S + Z = 0 agreeswith all the solutions of
J over the fieldF,:. In computer algebra terminology, we need to cheblether or not
f vanishes on the variety: , (), whereVg , (J) denotes the variety of idedlover the
given fieldFF,.. This is because for all points (solutionsk Vg, (J), if f(p) = 0, then
f:S+7Z=0 = S = Z.0nthe other hand, if(p) # 0 for some poinip, thenp
corresponds to the bug in the design.

Now if f vanishes ofvy,, (/), according to Proposition 4.3, we know thashould
be a member of the radical ide&(Vr,, (J)). Therefore, our verification test can be
modeled as membership testing ofin the (radical) ideall (Vx,, (/)). To solve this
problem, we need to first derive the generatord @f: , (/)) (note that we are only
given the generators of), and then perform the ideal membership testing using the

Grobner basis algorithm.

5.3.1 Generating/(Vr,, (J))
Strong Nullstellensatz establishes correspondencesebatideals and their radi-
cals. As given in Theorem 4.3(Vi(J)) = +/J, where the variety/ is taken over
the algebraically closed field. Finite fields are, howevenot algebraically closed, as

shown by the following result from [62]:

Theorem 5.1 Given finite field¥5» andF,» such that, dividesm. ThenFy. C Fom.
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ThereforeFy C Fyo C Fos C Fys C ... andFy C Fos C Fos...; and so on. The
algebraic closure df,. is known to be an infinite field obtained as the union of all such
finite fields.

Therefore, Nullstellensatz needs to be suitably modifiecfiplication over finite
fields. We revisit the notion of vanishing polynomials foistpurpose.

Over the finite fieldF,, any element satisfies the property2* — A = 0. There-
fore, polynomiak:2* — z vanishes at all points ifi,., andz2" — z is called the vanishing
polynomial of the field. As a consequence, the variEft(yr?k —x) = Fo. Over
multivariate polynomial rin@ox[z1, . .., 4], V(2 — a1,..., 22" — 2,4) isF,.

In the sequel, we use the following notation: L&t= (22" — zy,..., 22 — 2,)
denote the ideal of vanishing polynomials o&.. Also, if J = (fi,..., fs) then,
the sum of ideals/ + J, = (f,..., fs, 22 —x1,..., 22 — 2,). LetF,: denote the

algebraic closure df .

k

Lemma 5.1 LetJ C Foi[z1, ..., x4 be anyideal and lefy = (22" —xzy, ..., 22 —2,).
Then,V]sz, (J) = V@(J + Jo)

Proof. SinceFy: O Fyr, we have :

J)N

E]

VFQk (J) =

Qk

|
*’T

J) N Vi k(J(])

||
S

J) N Vg— k(JU)

ok

(

2k<

(
= %2k (J + Jo)

|

As a consequence of the above lemma, variety of any ideafer a finite fieldFx

can be equivalently analyzed over its algebraic clofyreby just appending to/ all

the vanishing polynomialg,. These vanishing polynomials do not change the zero-set

of J but allow the same analysis over the algebraic closure.
Lemma5.2 I(Vg,, (/) = I (Vi k(J +Jo)) =V J + Jo.

Proof. As shown abovelr , (J) = Vg(J + Jo). Therefore(Vz , (J)) = I(VF—k(J+

ok

Jo)). According to Strong NuIIsteIIensati(V ~(J+Jo)) =V J + Jy. Thus:

I(Ve, (7)) = IVl + J0)) = VT + (52
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Lemma 5.3 LetJ be any arbitrary polynomial ideal if¥yx[z1, ..., z,] and J, be the
corresponding vanishing ideal. Thew,+ .J; is radical. In other wordsy/J + Jy =
J + Jo.

Proof. This is a well-known result, a proof of which is given in [36]. H
Putting together the above results, we finally arrive at tdlewing application of

Nullstellensatz over finite fields.

Theorem 5.2 [Strong Nullstellensatz in Finite Fields| LetJ C For[z1, 29, - , 2]

be an ideal and/, be the ideal of vanishing polynomials. Then,
I(Vey, (J)=J+Jo=J+ <x%k — xl,xgk — Xg, - ,x?lk — Zq) (5.3)
Proof. Combining Lemma 5.2 and Lemma 5.3,

I(Vr, (J)) = I(V@(J + Do) =vVJ+Jo=J+ Jy (5.4)

whereJy = (22" — xy, 2% — 29, 22 — 24). |
Overall Verification Problem Formulation: Through Strong Nullstellensatz over
finite fields, given an ideal, we can directly constructide&(Vz , (J)) = J + Jo. For
our verification problem, we take the polynomidls, ..., f.} representing the circuit
constraints and the specification polynomials to genecdetali/. Then, we append the
vanishing polynomialgz?" — z;, ..., 2% — z,} of ideal.J,. Our verification problem
can now be formulated as testing whether the verificatiopgnty polynomialf is in
J+ Jo. If f € (J+ Jy), correctness of the circuit is established. Otherwisegtie
a bug in the design. To test jff € (J + Jy), itis required to compute a Gbner basis
G of the idealJ + Jy. Then, we reduc¢g w.r.t. G: i.e., f ﬁnr r. If r =0, then, the

circuit is correct; otherwise, there is a bug in the design.

Example 5.4 Let us reconsider Example 5.3. First, polynomials are etegd from
the circuit implementation and the specification, as showixample 5.3. These
k

polynomials represent the idedl Along with the ideal/, = <x%k — Ty, .., X8 —Tg),

the following polynomials represerit+ J, for the multiplier circuit.
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Jiico+ag-bo )
f21C1+CL0'b1
faica+ar-by
farces+ay-by
implementation (C J)
fsirg+c+c
fo 120+ co+cs
friz+ro+cs

fZiZ‘i‘Zo—'—Zl'Oé)
fa:A+ag+a;-a)

fB:B+by+b -« specification (C J)
fopee 1S+ A-B=0)

2 2 2 2 )
ag — Qp, ay — Qq, bo—bo, bl —b1
2 2 2 2
, , , vanishing polynomials/, )

A'— A B*-B, 7' -7 8*"—-8S

Now we need to compute the dhiner basisG of this ideal J + J,. Once the
computation of is completed, we simply need a polynomial reduction to testnehe

f : S+ Z can be reduced bg. In other words, we need to test whettser 7 inr 0.

While our approach seems reasonably simple, the complekitgrobner basis
computation can make verification infeasible.
Complexity of Grobner Basis Over Finite Fields: For our specific problem of

computing a Gobner basis for + .J, overF,, the following result is known [36]:

Theorem 5.3 Let] = (fi,..., fs, 2§ —x1,..., 295 —xq) CFylzy,..., 24 be anideal
over any finite field",. The time and space complexity of Buchberger’'s algorithm to
compute a Giobner basis of is bounded by,°@, assuming that the length of input
fi, ..., fs is dominated by©@.

In our case; = 2%, and wherk andd are large, this complexity makes verification
infeasible. In what follows, we show that a variable/terndesrcan be derived by

analyzing the circuit topology, which makes the set of polymls{fi, ..., fs, x%k —
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Ty, .. ,xﬁk — x4} itself a Gibbner basis of/ + J,, thus obviating the need to apply

Buchberger’s algorithm.

5.4 Obviating Buchberger’s Algorithm

Just as variable orderings play a critical role in consingcBDDs and solving
SAT feasibly, the Gibner basis computation is also highly susceptible to tha te
orderings imposed on the polynomials. Therefore, a key &igmprove/avoid the
high complexity of Gobner basis computation is to derive a “good” term order.

Buchberger’s work [17] initially laid the foundation for cqmating Gidbner’s bases.
Subsequently, many improvements were introduced to ingptioe efficiency of Buch-
berger’s algorithm. Two of the most important improvemertesthe chain and product
criteria. For our particular circuit verification applicat, we exploit the product crite-

ria.

Lemma 5.4 [Product Criterion [18]] Let F be any field, andf,g € Flxy, -, z4]
be polynomials. If the equalityn(f) - im(g) = LCM(Im(f),lm(g)) holds, then
Spoly(f,g) ~+ 0.

The above result states that when the leading monomiglsyadre relatively prime,
then Spoly(f, g) always reduces to 0 modul@. Thus, Spoly(f,g) need not be con-
sidered in Buchberger’s algorithm. Modern computer algebngines perform this
check to avoid unnecessafypoly(f, g) computations. If we could analyze the given
circuit and derive a term order such that every polynomial @ ¢) in the generating
set has relatively prime leading monomials, then for alldBapomials, the subse-
guent reduction would not add any new polynomials in thesadn other words,
Spoly(f,g) —=». 0 for all pairs f,g. Consequently, the polynomialsfi,..., f,}
extracted from the circuit (corresponding idegland represented using such a term
order would themselves constitute adBner basis of/. In [88], the authors derive
exactly such a term order, and a similar concept can be apiplieur case.

Note that in our case:

e since the circuit constraintsfy, . . ., f,} are modeled as polynomialsia C Fox,

they contain only multilinear monomial terms;

e the output of a gate is uniquely computed, and it always appas a “single

variable term” in the polynomials;
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e the circuit is acyclic.

Letz; be the output variable of any gatg in the circuit, and let,,, ..., z,, denote
variables that are the inputs to the gate If we can represent the polynomigissuch
thatz; > every monomial in the variables,,, ..., , then all(f;, f;),i # j have

relatively prime leading monomials afdf, . .., f;} is a Gbbner basis.

Proposition 5.1 LetC be any arbitrary combinational circuit. L€try, ..., 24} denote
the set of all variables (signals) in the circuit, i.e., theénpary input, intermediate and
primary output variables. Perform geverse topological traversalof the circuit and
order the variables such that; > z; if x; appears earlier in the reverse topological
order. Impose a lex term order to represent the Boolean agme for each gate as a
polynomial f;; then, f; = z; + tail(f;). Then, the set of all polynomialsfy, ..., fs}
forms a Gbbner basis, a#(f;) andlt(f;) for i # j are relatively prime.

Example 5.5 Consider the circuit of Figure 5.3. Variables, a,, by, b; are primary
inputs, zg, 21 are primary outputs and,, c¢1, cs, c3, o are intermediate variables.

We perform a reverse topological traversal of the circutar8ng from the primary
outputs, traverse the circuit to the primary inputs, andesrthe gates according to the
their (reverse) topological levels. The primary outpuisz, are both at level-0, vari-
ablesrg, g, c3 are at level-1, ¢;, ¢, are at level-2 and the primary inputs), a;, by, b,
are at level-3. We order the variabldsy > 2z} > {ro > ¢y > 3} > {c1 > &} >
{ag > a1 > by > b1 }. Using this variable order, we impose a lex term order on the

monomials. Then, the polynomials.ball have relatively prime leading terms.

Figure 5.3 A 2-bit multiplier overF(22). The gatex corresponds to AND-gate, i.e.,
bit-level multiplication modulo 2. The gate corresponds to XOR-gate, i.e., addition
modulo 2.
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co + ag - by, Im = cy;
c1+ag - by, Im = cq;
ca +ay - by, Im = cy;
c3+ ay - by, Im = c3;
T0+01+32, lm:TQ;
20 + ¢o - €3, lm = 2p;

z1+1o-c3, Ilm =2

In our overall problem formulation, we also have variablésB, S, Z € F,.. They
can also be accommodated in this term order by imposing Z > A > B > z;, >

21>7‘0>co>63>01>02>a0>a1>b0>bl.

Thus, using the result of Proposition 5.1, the set of polyiatsr{ f1, ..., fs} is

a Giobner basis for/. Note that{z?" — z1,...,22 — x4} is a Gibner basis for
Jo. However, we have to compute adbner basis of/ + Jy = (f1,..., fs, x%"' —
z1,..., 22 —x,). Notall polynomial pairs i f1, . . ., fs, 22 — a1, ..., 2% — x4} have

relatively prime leading monomials.

Consider an arbitrary polynomigl € J. Using our term order, we havg =
x; + tail(f;); i.e., the leading monomial of; is a single variable term;,. Clearly, the
pairs(z; +tail(f;), 22" —;), f; € J, 22" —x; € J, do not have relatively prime leading
monomials. In fact, the paits; + tail(f;), 22" — ;) are the only ones to be considered
for Grobner basis computation, as all other pairs have relatpeiye leading terms.
This motivated us to investigate further the question “whahe result of the reduction

Spoly(z; + tail(f;), 22" — ;) ﬂ+ r”. We state and prove the following:

Theorem 5.4 Letqg = 2%, and letF [z, . . ., z4] be a ring on which we have a monomial
order >. Let[ be a subset ofl,....d}. Foralli € I, let f; = z; + P, (where
P, = tail(f;)) such that all indeterminates; that appear inP; satisfyz; > ;. Then,

theset; = {f,:i € I} U{z{ — x1,..., 2% — x4} is a Grobner basis.

Proof. According to Buchberger's Theorem (Theorem 1.7.4 in [3]),need to show
that for all f, g € G, Spoly(f, g) §>+ 0. LetGy; = {f; : i € I}. Lemma 5.4 shows that
if f,9 € G, have relatively prime leading terms, thefmoly(f, g) §>Jr 0. So the only

case where Lemma 5.4 does not apply is wifea z; + P, andg = =] — z;. Then,
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Spoly(f,g) = 27" f — g = Pa?' + z;. In what follows, it is important to note that
the indeterminates appearing/hare all less than;.

First of all, Pz’ " + 2, — Pa?*(z; + P,) = P?x%* 4 z,, which shows that
Pz-xg_l + x; itk PZ-ZI;?_Q + ;.

Next, P2z % 4+ x; — P2z97(z; + P;) = P?2%"° 4+ z,. Continuing in this fashion, we

getP! 'z +a;, — P (v 4+ P) = x; + PY, and finallyz; + P? — (z;+ P,) = P! — P

)

Hence,

-1 z;+P; -2 ;i +P; -3 z;+P;
Pt 4 x5 P2 gy, T p3gaT gy T

i i
T +P; i+ P;
Lt pa g g R pe  p

Over the finite fieldF,, P! — P, is a vanishing polynomial. Therefor&! — P, €
I(V(Jy)) = (af —x1,...,2% —z4). By Lemma 5.4Gy = {a — x1,..., 2% — x4} is
Grobner basis. Therefor@! — P, G#+ 0, which gives that?! — P, %+ 0, asGy C G.

In conclusionyf, g € G, Spoly(f,g) §>Jr 0 and hence( is a Gbbner basis. W

As a consequence of Theorem 5.4, thél@rer basig- for our verification instance
(ideal J + Jy) can be obtained directly by construction using a reverpeltgical
traversal of the circuit. Whil&7 is indeed a Gibner basis, it is neitheninimal nor
reduced We now show that this basis can actually be madi@malby considering the

vanishing ideal of only the primary inputs of the given citcu

Corollary 5.1 Letq = 2% and F,[xy,...,z4] be the ring on which we impose the
monomial order> obtained via Proposition 5.1. Ldtbe a subset ofl,...,d}. For
all i € I, let f; = z; + P, (where P, = tail(f;)) such that all indeterminates; that
appear inP; satisfyz; > z,. Let Xp; denote the set of all primary input variables of
the circuit. Then, the s&t = {f; : i € I} U {z}; — x,,;} is aminimal Grobner basis,

Whel’expi € Xpy.

Proof. According to the Definition 4.16 of a minimal Gbner basis, two conditions
have to be satisfied: i) all polynomials in the basis are marec, their leading coeffi-
cient is 1; and ii) the leading monomial of any polynomial so®t divide the leading
monomial of any other polynomial in the basis. We have alyesttbwn thatG is a
Grobner basis. Moreover, iR,:, the coefficient of every non-zero term is always 1.
Therefore, all polynomials are monic.

Furthermore, our ideal basis consists of two sets of polynomials: i) polynomials

derived from the circuit, which are of the forifa = =, + tail( f;); and ii) the vanishing
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polynomialsﬁk—xi fori =1,...,d. Ourterm order ensures thatfpn= x;+tail(f;), x;
corresponds to either the primary output variables or ttezrimediate variables. Primary
input variables:{; € Xp;) will never occur as leading terms @fbecause a primary in-
put is not an output of any gate in the circuit. Therefate, € ({z1,...,zs} —{Xpr}),
there always existg; with Im(f;) = x;, which will divide the vanishing polynomial
x?k — x;. In such casesxfk — x;, ; ¢ Xp; can be removed from the basis. By
eliminating all vanishing polynomials corresponding tanfrimary-input variables,
we will obtainG = {f; : 1 € I} U {:rf,f — x,;} as a minimal Gobner basis, where
Tpi € Xpr.

Finally, sincez,; € Fy C For, 27 — 2; = 0, we obtainG' = {f;} U {z2; — z,,,} as
the minimal Gbbner basis. |

While we can obtain a minimal @bner basisz directly by construction, un-
fortunately, wecannotobtain areducedGrobner basis without actually performing
the reduction. This is because in a reducedliBer basis, the tail (taif()) of every
polynomial f; is also reduced w.r.tit( f;), for all i # j. However, a reduced Gbner

basis computation is not necessary for ideal membershipges

5.5 Our Overall Approach

We set up the verification problem i [z;,..., x4, on which we impose the
monomial order- as derived above. We extract the set of polynon@éls= { f1,. .., fs}
from the circuit. We generate the s6t = {22 — z,,}Va,; € Xp;. Then, the set
G = G1UG, forms a minimal Gobner basis of the idedH-Jy = (f1, . .. ,fs,xf,f—xpi).
We take our specification polynomigaland computef E>+ r.Ifr =0,thenf € J+Jy
and the circuit is correct; otherwise, if # 0, then we have a bug in the design.
Moreover,if r # 0, then the monomial order ensures thatontains only the primary
input variables To show this, assume that# 0 andr contains either an intermediate
or a primary output variable,;. As there always exists a polynomig) in G' with
Im(f;) = x;, r can be further reduced bfy. Continuing in this fashion, all the terms
with non-primary-input (intermediate or primary outpugriables can be eliminated.
Finally, in the presence of a bug, any assignment to the (primarytjnriables that
makesr # 0, provides a counter-example for debugginy SAT or SMT-solver can
find such an assignment in no timesas simplified by Gbbner basis reduction. Our
results therefore obviate the need to construct@@er basis, and the verification can

be performed only by reductiory: E>+ T.
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Our overall approach is described in Algorithm 5. It first ug the given circuit
implementation as Boolean equations. Each equation thesnsformed to polynomi-
als G; using Equations 5.1. All polynomials are then normalized i sum-of-term
form using the distributive lawA - (B + C) = Ax B + A x C. Subsequently, our
verification problem is formulated as a radical ideal mersbigrtesting. We conduct
a reverse topology traversal of the circuit to generate #r@able ordering. Then, we
append vanishing polynomials, = {z* + z} for all = € primary inputs. Finally, we
compute the reduction of (property polynomial) modul@-; U G,. If the reduction
resultisr = 0, the circuit is correct. If there are bugs in implementatitven the result
r is a polynomial that encodedl input vector assignments that excite the bug(s) in the

design.

Algorithm 5: Proposed Verification Algorithm
Input: Circuit Implementation Equations.
Specification Polynomia$.

Output: True if S = Z. Bug polynomial- if S # Z.

for (i=0;1 < number of egns ; i++)do
/ *Each equation is transformed to polynomials */,
poly[i] = Egn-to-Poly(eqnli]);
/ *Each equation is transformed to sum-of-term form

*/;
newpoly[i] = Sum-of-term(poly[i]);
end
/ * Obtain circuit-based variable order * [

orderedvar=T Traversal(newpoly);

for var € {PI} do
/ = appending vanishing polynomials */,
vanpoly[i]=2? + z;

end

r=reduce(S,Z,vanpoly,ordereaar);

if r={0} then
return True,

else
return Bug polynomiat;
end

5.6 Experimental Results
Our algorithm is implemented in' + + with calls to the SNGULAR computer

algebra tool [v. 3-1-2] [28] to perform polynomial reductgd Our experiments are
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conducted on a desktop wihd0 GHz Intel Core(TM2 Quad CPU and GB memory
running64-bit Linux.

We conducted verification experiments on several largeooustesigned circuits,
including Mastrovito multipliers, Montgomery multipligrBarrett multipliers and ECC
point addition and point doubling circuits. The designs @iken in equation (EQN)
format and then translated to different formats: CNF, SMTLE,|F, Polynomials
that are used by SAT, SMT, BDD/AIG-based solvers, and Singwspectively. All
our circuit benchmarks have been made available to therlasgéication community
through the SMT-LIB benchmark suite [55].

5.6.1 Evaluation of SAT, SMT, BDD, AlG-Based Methods

We evaluated the performance of many SAT solvers [83] [9] [BR SMT solvers
[31] [6][68][14][13][2] [1] [11] and BDD-based technique82], on our benchmarks.
For these experiments, using the conventional equivaleineeking approach, we cre-
ated a “miter” circuit to compare the specification agaih& implementation. The
implementation was given as a Montgomery multiplier as &-¢gtel netlist. Since
BDD/SAT/AIG-based approaches cannot operate upon wosl-fepresentations di-
rectly, the specification is given as a Mastrovito-stylesgavel circuit implementation.
For SMT experiments, the designs were modeled at bit-véet@ using quantifier-
free bit-vector (QF-BV) theories, maintaining a bit-veetevel abstraction whenever
possible. Table 5.1 shows that none of the BDDs, AIG/ABC, SATMiTSolvers can

verify the correctness of circuits beyom6@-bit.

5.6.2 Evaluation of Our Approach

Our approach takes as inputs a gate-level circuit impleatiemt and word-level
specification. Note the difference in the input requireradmttween our approach
and SAT/BDD/SMT/AIG-based approaches. Our approach omjyires a word-level
specification while SAT/BDD/SMT/AIG-based approaches mexjan inherently large
gate-level specification. Therefore, there is an inherdmhatage of our method in that
it maintains a high-level abstraction whenever possible.

Verification Using Grobner Basis Computations inSINGULAR: Conceptually,
our approach requires first computing adGmner basis and then conduct a polynomial
reduction (ideal membership testing). If we use&UILAR to compute a Gibner basis

using our term order derived from Proposition 5.1, but withdeducing the results
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Table 5.1 Runtime for verification of Montgomery versus Mastrovitoltipliers over
F,« for BDDs, SAT, SMT-solver and AIG/ABC-based methods. TO = tinneaf 10hrs.
Time is given in seconds.

Word size of the operandsbit
Solver 8 | 12 | 16
MiniSAT 22.55 TO TO
CryptoMiniSAT || 7.17 | 16082.40 TO
PrecoSAT 7.94 TO TO
PicoSAT 14.85 TO TO
Yices 10.48 TO TO
Beaver 6.31 TO TO
CvC TO TO TO
Z3 85.46 TO TO
Boolector 5.03 TO TO
Sonolar 46.73 TO TO
SimplifyingSTP || 14.66 TO TO
ABC 242.78 TO TO

| BDD | 010 [ 1414 | 1899.69 |

of Theorem 5.4 and Corollary 5.1, we can verify the correcregsonly up to48-bit
multipliers. Beyond that, the @bner basis engine runs into memory explosion. This
result is shown in Table 5.2.

Evaluation of Our Approach: Our approach only requires a polynomial reduction
(division) for the verification test.S + Z Ci(—;f+ r and to check ifr = 0. For
this polynomial reduction, we use tmeEDUCE command in SNGULAR. Results for
verification of Mastrovito multipliers using our term ordey and only this reduction
are shown in Table 5.3. With our approach, we can verify theeoctness of up to
163-bit Mastrovito multipliers. We also experimented with beatching in incorrect

designs; the bugs were introduced by arbitrarily swappnegnaires (variablesy; with

Table 5.2 Verification of Mastrovito multipliers by computing Gbner bases using
SINGULAR. M O=out of 8G memory. Time is given in seconds.

Size 16 32 48 64 96 128 160 163
#variables || 323 | 1155 2499 4355 | 9603 | 16899 | 26243 | 27224
#polynomials|| 609 | 2241 4897 8577 | 19009 | 33537 | 52161 | 54117
#terms 2415 | 9439 | 21071 | 37311 | 83615 | 148351 | 231519 | 240261

Time 0.94 | 93.80 | 1174.27 | MO | MO MO MO MO
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Table 5.3 Runtime for verifying bug-free and buggy Mastrovito mui&ps using our
approach. TO = timeout of 10hrs. Time is given in seconds.

method 16 32 48 64 96 128 160 163
#variables 323 | 1155 | 2499 | 4355 9603 16899 | 26243 | 27224
#polynomials|| 291 | 1091 | 2403 | 4227 | 9411 | 16643 | 25923 | 26989
#terms 1793 | 7169 | 16129 | 28673 | 64513 | 114689 | 179201 | 185984
Bug-free 0.04 | 1.41 | 24.00 | 112.13 | 758.82 | 3054 9361 16170
Bugs 0.04 | 1.43 | 25.11 | 114.86 | 788.65 | 3061 9384 16368

x;, for some gate # j. In such cases, we obtained a non-zerdve used a SAT solver
to find a SAT assignment to# 0. These run times are shown in Table 5.3.

Results of the verification of Montgomery multipliers arewhon Table 5.4. Mont-
gomery multipliers are significantly larger than Mastrowuiultipliers. If we represent
a polynomial for every gate in the design, then we create taoynwvariablesd) in the
system, exceedingISGULAR’S capacity ( < 32767). For this reason, we partition
the circuit, and construct the polynomials for each cir@attition — and we ensure
that our term ordering constraint is not violated. With sedforts, we are able to
verify Montgomery multipliers up td 28-bit datapaths, beyond which we still exceed
SINGULAR'’S capacity. Similarly, results for the verification of Barrettltipliers are
shown in Table 5.5.

Table 5.6 and Table 5.7 show the results of verifying ECC padidition and point
doubling circuits, respectively. There are several regrgion systems for ECC point
addition and point doubling. We choose thépez-Dahab coordinate system [52] to
represent point addition and point multiplication. We omstdesigned these circuits,
where the polynomial computations were implemented usimgthdvito multipliers.
Our approach is able to verify up 163-bit ECC operations, whereas SAT, SMT, BDD

and AlG-based techniques cannot even veréfybit ECC circuits.

5.7 Conclusions
This chapter has presented a formal approach to model aifig wedtiplier circuits
over finite fieldsF,x using a computer algebra-based approach. We show how the ver
fication test can be formulated as membership testing ofgleification polynomialf
ina (radical) ideall +.J, = (f1,..., fo, 22 —21,..., 2% —x,), whereJ = (f1,..., f.)

corresponds to the ideal generated by polynomials exttdaten the circuit, and/,
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Table 5.4 Runtime for verifying bug-free and buggy Montgomery muigps using
our approach. TO =timeout of 10hrs. Time is given in seconds.

method 16 32 48 64 96 128
#variables 319 | 1194 | 2280 | 4395 6562 14122
#polynomials|| 287 | 1130 | 2184 | 4267 6370 13866
#terms 2262 | 10741 | 18199 | 40021 | 55512 134887
Bug-free 0.03 | 1.50 | 11.03 | 27.70 | 1802.75 | 10919.35
Bugs 0.03 | 1.52 | 11.10 | 28.18 | 1812.15 | 11047.10

Table 5.5 Runtime for verifying bug-free and buggy Barrett multipiiensing our
approach. TO = timeout of 10hrs. Time is given in seconds.

method 16 32 48 64 96 128 160 163
#variables || 305 | 1103 | 2389 | 4146 9216 | 16072 | 24643 | 26847
#polynomials|| 276 | 1041 | 2263 | 4004 8986 | 15008 | 24318 | 25746
#terms 1777 | 6757 | 15228 | 26452 | 60824 | 107454 | 16386 | 174571
Bug-free 0.03 | 1.31 | 22.12 | 103.30 | 724.14 | 2865 9024 | 14048
Bugs 0.03 | 1.32 | 23.06 | 106.02 | 734.63 | 2947 | 9207 | 14836

Table 5.6 Verification of ECC point addition. Run-time given is secont® = timeout

of 24hrs.
Size 16 32 48 64 96 128 160 163
#variables 548 1615 | 3623 6854 13986 | 28468 | 30237 | 31384
#polynomials|| 10812 | 30826 | 86482 | 123544 | 288720 | 509660 | 604740 | 646129
Runtime 0.26 | 4.82 118 557 3598 | 15346 | 47290 | 81016
Table 5.7. Verification of ECC point doubling. Run-time given is secondgO =
timeout of 24hrs.
Size 16 32 48 64 96 128 160 163
#variables 528 | 1598 | 3321 | 6409 | 12230 | 26493 | 29015 | 30442
#polynomials|| 4640 | 14523 | 42324 | 61274 | 142733 | 243452 | 297465 | 313145
Runtime 0.10 | 2.21 54 263 1532 8012 21493 | 36439
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= <x§k — x;) corresponds to the ideal of vanishing polynomials of thelfiBly analyz-
ing the circuit topology, we derive a monomial order that esthe sef 1, .. ., fs, x%k—
T1,. .. ,xff — x4} itself a GBbner basis of + Jy. Subsequently, the verification can be
formulated by simply carrying out the reducti¢n‘]’—‘]>°+ r. Using our approach, we are
able to verify the correctness of upt@3-bit multipliers and ECC point addition circuits
overFsyi63, Wwhereas conventional techniques based on SAT, SMT, BDD #Gebased
solvers are infeasible. A conference paper based on thisagipwas presented in [57],

and a journal version of this paper has been submitted foewev



CHAPTER 6

GATE-LEVEL EQUIVALENCE CHECKING OF
ARITHMETIC CIRCUITS OVER  Fox

This chapter describes our approach to equivalence chgeokitnvo combinational
circuits designed for finite field computations. Combinatilequivalence checkingis a
fundamental problem in hardware verification, and it hasbeieely investigated over
the years. Canonical decision diagrams (BDDs and their va)iaimplication-based
methods, SAT solvers, and And-Invert-Graph (AlIG)-basetlicions are among the
many techniques employed for this purpose. When one circgignthesized from the
other, this problem can be efficiently solved using AlG-liassluctions (e.g., the ABC
tool [11]) and circuit-SAT solvers (e.g., CSAT [53]). Synsieed circuits generally
contain many subcircuit equivalences, which AlG- and CSA3dd tools can identify
and exploit for verification. However, when the circuits &ractionally equivalent but
structurally very dissimilar, none of the contemporaryhtaques, including ABC and
CSAT, offer a practical solution. Particularly, foustom-designed arithmetic circuits
this problem largely remains unsolved today. Since thestoowdesigned circuits are
prevalent in industry, it is therefore imperative to deyesralable methods to verify
such circuits.

Focusing on finite field arithmetic circuits, we utilize conter algebra techniques
and formulate the equivalence verification problem a&eak Nullstellensatz proof
and solve it using Gibner bases. This requires the computation of a reducédrn®r
basis, which can be expensive for large circuits. To overcthis complexity, we again
wish to exploit the circuit topology-based term orderings (escribed in the previous
chapter) for polynomial manipulation. Unfortunately, ikelin the previous case, the
set of polynomials corresponding to this verification inst&(the miter circuit) does not
constitute a Gwbner basis. However, using @mer bases theory, we ident&ymini-
mum number of S-polynomial computatidingt are necessary and sufficient to prove or

disprove equivalence. Experiments demonstrate the pff@etss and efficiency of our
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approach — we can verify28-bit structurally very dissimilar implementations, while

none of the contemporary methods are feasible.

6.1 Problem Statement and Modeling
In this application, we are given two combinational arithimeircuitsC; andCs, as
gate-level flattened netlists. We have to prove or disprbeée functional equivalence.
Our approach is generic enough to perform equivalence amngdt any arbitrary
combinational arithmetic circuit ovéf,:. However, without loss of generality, we will
again consider finite field multiplier circuits as examplegxplain our approach.

Our problem can be formally described as:

e Given afinite fieldF,, i.e., givenk (datapath size), along with the corresponding

irreducible polynomialP(x), let P(«) = 0, i.e.,« be the root ofP(z).

e Given two k-bit combinational circuits”; and Cy, the common primary inputs
of both circuits ar€|ay, ..., ax_1, bo,-..,bx_1}. The primary outputs of’; are
{zo,...,x;_1}; the primary outputs of’; are{vo, . . ., yx_1}, wherea;, b;, z;, y; €
Fo,i=0,...,k—1.

e The word-level representation of inputsds = ay + aja + -+ - + ap_1a* 71,
andB = by + bya + --- + b_1aFL. Correspondingly, the outputs aré =
To+ i+ -+ oo tandY =y + i+ -+ gL

Our goal is to formally prove thata;, b; € Fy C Fay, the outputsX andY of circuits
C; and(C; are equal to each other, i.e; = Y always holds. Otherwise, there must
exist a bug in one of the given circuits.

The equivalence verification setup is shown in Figure 6.YecircuitsC; andCs,
we want to prove that for all possible inputs, the outiuof circuit C| is always equal
to the output” of circuit C5 . This can be, conversely, modeled as proving ftigt Y
has no solutions. Such a setup is called a “miter” circuit] proving infeasibility of
the miter is a standard practice in combinational circuiifietion. This is mostly
because it enables the usecohstraint-solvergsuch as SAT solvers) to prove/disprove

equivalence.
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The constraints for circuit§’; andC, are modeled as polynomials ovéj: using
Equations 5.1. Th& # Y constraint corresponding to the miter is also modeled as a

polynomial inFFy. as follows:
t(X —Y) = 1,wheret is a free variable iffyx (6.1)
The correctness of the above constraint modeling can bershsviollows:
e WhenX =Y, X—-Y =0, sot-0 = 1 has no solutions, and the miter is infeasible.

e WhenX # Y (X —Y) # 0. Over any field, every non-zero element has a
multiplicative inverse. Let™! = (X —Y). Then,t - t~! = 1 will always have a

solution overFyy.

The abovet(X — Y) = 1 model for the miter can also be employed o¥er i.e.,
the Boolean ring. Sincé is the only non-zero element iy, ¢ = 1, and theX # Y
constraint is specified as + Y + 1 =0 (mod 2).

Overall, the entire miter circuit can be modeled as a polyiabaystem oveif',: in
Equations 6.2.

f%(x17$27"' 7'Td) )

Circuit 1
fA:A+a0+a1a+...+ak_1ak—1

fX:X+a:0+x1-oz+~'+xk,1'ozk’1)

f12(x17$27“' ,l’d) - O\

Circuit 2 (6.2)
fB : B+b0+b1a+...+bk_1ak—1

froY gty ot oty ot
Jm it (X =Y)+1=0} Miter: X # Y

Subsequently, we need to check whether or not there are &mjoss to the set of
polynomials in Equations 6.2. The following example ilhasés our polynomial system

modeling.

Example 6.1 Consider two functionally equivalent circuits ovBs.. The miter is

shown in Figure 6.2.



Circuit1: X
Circuit Equations
A
B
Circuit2:
Circuit Equations Y

Figure 6.1 The equivalence checking setup: miter.

Figure 6.2 Miter for 2-bit circuit equivalence.
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The miter is modeled as a system of polynomials, where theitsubpC’,, C;, are

expressed at word-level asl + z + z; - candY + yo + vy - o

To = ag D by = xo + ag + by )
co=ag Nby = cog+ag- by
cp=agPb = c +ag+ b Circuit 1
T =CDcy =1 +co+ 1

X+zo+o -« J
dozﬁ(ao/\bo)ido—i‘ao'bg—i‘l\

d1:—|(a1/\b1):>d1—|—a1-b1+1

dgzao/\b0:>d2+a0'b0

dy = —(ay Ady) = ds +ay - dy + 1
dy=—=(by ANdy) = dy+by-dy +1
ds = =(ap Ndy) = ds + ag - dy + 1 Circuit 2
dg = —(bg A do) = dg + by - do + 1
d7 ==(ds Ndy) = dr +ds-dy + 1
Yo = —(ds Ndg) = yo +ds - dg + 1

ylzdg@d7:>y1+d2+d7

Y +yo+uy -« )
t-(X=-Y)+1=0 } Miter: X #Y (6.3)

With the polynomial model given above, we formulate our peaib as aWeak

Nullstellensatzproblem, which is described next.

6.1.1 Verification Problem Formulation as Weak Nullstellersatz
As described in Equation 6.2 and Example 6.1, to formulateverification test, we
first analyze the miter circuit and model the Boolean gatetlegerators as polynomials
overF, —i.e., two sets of implementation polynomials represgntinandCy, and the
miter polynomials: X # Y (X,Y are outputs of”; andC;). Subsequently, we can
reason whether or not solutions exist to this polynomialesyis
For this purpose, we wish to use techniques from computebadgand algebraic

geometry to reason about the solutions (variety) to thermotyial equations (ideal).
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Notation: Let I}, F;, represent the set of polynomials generated from cirCluit
andCs, respectively. Letf,, represent the miter polynomial. Lét = {Fy, Fy, f,} =
{f1, f2, .-, fs, fm} denote this set of polynomials derived from the miter circliet
{z1,..., x4} denote all variables occurring in. LetJ = (Fy, Fy, fin) C Forlzy, ..., 24
denote the ideal generated by these polynomials. Substyjuen, (/) denotes the
variety (solutions) of/ overF,.

Our verification problem can be formulated as the evaluation
Ve, () = 07 (6.4)
Weak NullstellensafB9] explicitly specifies the condition when a variety is dgp

Theorem 6.1 [Weak Nullstellensatz] Let J C K[z, o, -+ ,24] be an ideal satis-
fying Vie(J) = 0. Then,l = Klxy, 7, - ,x,] <= {1} € J.

Recall that a reduced Gloner basis is a canonical representation of an ideal. We
know that the unitidea]l) can generate the entire set of polynomial&im,, x5, - - - , z,,].

Therefore, Weak Nullstellensatz can be further describe@Gvwbner basis as:

Corollary 6.1 [Weak Nullstellensatz] Let C K[z, 2, - ,z,4] be an ideal satis-
fyingV'(I) = (). Then the Reduced GbnerBasis(l)- {1}.

The Weak Nullstellensatmow offers us a way to evaluate whether the system of
multivariate polynomial equations has a common solutioR in

However,Weak Nullstellensatis stated over an algebraically closed fi&d Our
problem is modeled ovefF,., which is not algebraically closed. TherefoMeak
Nullstellensatzs bound to fail when applied directly, without modificatjcio finite
fields.

Let us explain whyWeak Nullstellensatails when applying it to the field, C Fyx

by an example.

Example 6.2 We are given an implementation of a circuit o¥&rc Fyx:
ry=aV (-aAb) (6.5)
Its corresponding specification is :

yp=aVb (6.6)
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wherex; andy; are symbolically different but functionally equivalenhéen, we trans-

form the circuit equations into their polynomial forms:

ry=aV(-aAb) — zi+a+b-(a+1)+a-b-(a+1) (mod?2)
y1=aVb — y1+a+b+a-b (mod?2)

r1#Yy — x1+y+1 (mod 2)

Then, the reduced @bner basis of above polynomials with term orderiegz; >

Yy > a > bis:

a’ b+a-b+1
y1+a-b+a+b

rr+a-b+a+b+1

which is not equal td1), even though their variety is empty. The reason for this @n b
explained as follows.

As shown in Figure 6.3F, is the algebraic closure @,.. If there is no solution
to idealJ in the algebraic closurg,:, then there is no solution iFi,. either. However,
what happens when there is a solutiorfin, i.e.,1 ¢ GB(J)? In this case, it means
that there is anonempty set of solutiorte the polynomial system iiﬁ_gkd. There are

two possibilities:
e The solution(s) may lie withif¥ .
e The solution(s) may lie ifif'y:, but outsideF,:, as depicted in Figure 6.3.

We are interested in finding out whether or n6t# Y overF,: — i.e., whether the

circuit has bugs over the given field,.. We do not care if the solution is outside

Algebraic Closure @

X «——1  Solutions here?
Do not care.

Figure 6.3. A solution (bug) in(F,x — Fyx) is a “don't care”.
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the fieldF,x, in which case the bug is really a “don’t care” condition (ako a “false
negative” in design verification parlance).
To address this problenVeak Nullstellensatneeds to be suitably modified for

application over finite field& .

Theorem 6.2 [Weak Nullstellensatz in Fx|

Givenfy, fo, -+, fs € Forlxy, xo, -+, xq4]. Letd = (f1, fo, -+, fs) C Forlxy, x0, -+, 24]
be an ideal. Letl, = (22" — 1,23 — x,--- 2% — 2,) be the ideal of vanishing
polynomials inFy.. Then,Vg , (J) = V@(J + Jo) = 0, if and only if the reduced
GrobnerBasisJ + Jy) = {1}.

Proof. According to the definition of vanishing polynomials oWk, we have\/@(Jo) =

F4,. From Lemma 5.1, we know:
Vi (J + o) = Vi, (). (6.7)
Combining with Corollary 6.1, we conclude:
Vi, (J + Jo) = 0 & reduced GibnerBasi§/ + .Jy) = {1} (6.8)

Example 6.3 Revisiting Example 6.2, we need to append the vanishing qaiyahs

a’ —a,b* — b, z? — x,y? — y; to the given ideal. Now, when we compute the reduced
Grobner basis, we get: reduced-GB +a+0b-(a+1)+a-b-(a+1),y1 +a+b+
a-b,xy+y +1,a% —a,b®> —b,2? — x1,y? — y1) = {1} which provesr; = y;.

Verification Problem Formulation: Through Weak Nullstellensatz ovés:, given
an idealJ € Fox[zy,..., x4, we can determine whether the variety.bfs empty by
analyzing the corresponding reduced@mer basis off + .J;.

For our verification problem, we take the polynomifls, F, f..} = {f1,-- -, fs; fim}
representing the miter circuit constraints to generatalide Then we append the
vanishing polynomials{xfk — T, .. ,xflk — x4} of ideal J. We compute the reduced
Grobner basigr of J + J, and check ifG equals to the unitidedll }. The two circuits
are functionally equivalent if and only @ = {1}.

The critical issue in the Weak Nullstellensatz formulati®the computational com-
plexity of a Gbbner basis (as given in Theorem 5.3). To overcome this caxiip| we

again wish to exploit our circuit topology-based term ondgifrom Proposition 5.1 for
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polynomial representation. Note that according to the terdering from Proposition
5.1, the set of polynomials ifif'}, >} does constitute a @bner basis — a€'; andC;

are independent circuits. However, with the miter polyralryij,, the set of polynomials

F = {F\, F, f,,} does not constitute a Gbner basis. This is because there always
exists one polynomiaf, € F,(f, # fm) corresponding to the output of eith€f or

C5 with a leading term that is not relatively prime w.r.t. thadéng term of the miter
polynomial f,,,. Their corresponding S-polynomial computation also dasreduce

to zero. This is shown in Example 6.4.

Example 6.4 Let us reconsider Example 6.2. Based on our topological teaering

of the circuit, we impose a lex term order with:

1>y >dy>ds>dy>dy > dy >y > o> ag > ap > by > by,

Then, the set of polynomials of the miter circ{ifty, I, f,,} does not constitute a

Grobner basis. This is because the miter polynonfjal: tX — tY + 1 and output

polynomial fx of circuit Cy, fx : X + z¢ + 21 - o, has a common variabl¥ in their

leading terms X and X, respectively. Thereforét(f,,) andit(f,) are not relatively
Fy,Fo, fm

prime. Moreover,Spoly(fm, fx) —" r, r # 0, thus violating the property of a

Grobner basis that all S-polynomials should reduce to zero.

This suggests that we may have to compute a reducédr@r basis. However,
in the next section, we describe our results that can ideatiminimum number of
S-polynomial computatiorthat are sufficient and necessary to prove equivalence or to

detect bugs.

6.2 Verification Using a Minimum Number
of S-polynomial Computations
To identify a minimum number of S-polynomial computationsBuchberger’s al-

gorithm, we make use of the following lemma.

Lemma 6.1 Letr € Fylxy,..., 24 be a multilinear polynomial expression; i.e., r is
a nonconstant polynomial such that every monomial term aontains variables of

degreel. Then, has a root inF4.

Proof. Let [(r) denote the number of nonzero monomials appearing iWe will
perform induction ori(r). Note that inF,, the coefficient of all nonzero monomials is
1.
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The caséd(r) = lis trivial, asr = =z, . .. x;, for somet < d. A polynomial with
one monomial term always has a solution.

For the general casé,-) > 2. Then, we can always write = ' + M where M
is a product of monomials. After appropriately relabelihg variables, we can assume
thatz,; dividesM, i.e.,z; appears inV/. If z; dividesr’ too, thenz; dividesr as well.
As a consequence, we obtain= 0 as a solution for = 0. So,r has a root irFs.

If 21 does not divider, then it does not divide’. So variabler; does not appear in
r’. Then, letr” = F(0,xs,...,z4). Note that/(r”) < I(r), as monomiall/ does not
appear in”. By induction, there is a solutiofx., . . ., z4) for »” = 0, which also gives
a solution(0, xs, . . ., z4) for r. Thusr always has a root if%. [ |

Now we state and prove the following theorem.

Theorem 6.3 Let Fy, 5 correspond to the set of polynomials derived from circuits
4, Cy, respectively. Lef,, be the miter polynomial. Let' = {F}, F>, f,,} andJ =

(F) C For[xq,...,x4] be the ideal of polynomials corresponding to the miter dgtrcu
Impose the circuit topology-based monomial ordefrom Proposition 5.1. Lef, =
{22 — xy,... 2% — 2,4} be the vanishing polynomials &:; and J, = (F). Let

fo € F (f, # fm) be the only polynomial such that the leading termg,pf f, are not

relatively prime. Thewr , (J) =0 <= r = 1, wherer is computed aspoly(fu, f,)

F,F
44_ T.

Proof. Let ¢ = 2%, and letG andG,..q, respectively, denote the &wner basis and the
reduced Gobner basis ofJ + .Jy). Let T represent the set of all variables occurring in
F,and letT},; C T denote the set of all primary inputs.

Our objective is to deduce whether or not the variéty (/) = (), without actually
computing a reduced ®bner basis Recall, according to Theorem 6.25 (J) =
) <= G, eqa = {1}, sowe only need to check wheth@r., = {1}. Based on our term
ordering, we will try to identify the polynomials that conste G,..

In the first iteration of Buchberger’s algorithisipoly( f,., f,) is the only polynomial
that needs to be computed and reduced to obtaas all other S-polynomials reduce to

zero, due to Theorem 5.4. We need to consider three cases:

e Case 1y = 1.

e Case 2r = 0.
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e Case 3:r is a nonconstant multilinear polynomial consisting of oplymary

input variables of the circuit.

Case 1is the trivial case: Ifr = 1, thenl € G, soG,.; = {1} and therefore,
V(J + Jo) = 0. The miter is infeasible and the circuits are equivalent.

Case 2 Whenr = 0, no new polynomial is created in Buchberger’s algorithm.
Therefore,G = {F, Fy}. While the set{F, F},} is itself a Gbbner basis, it is not
reduced. So, what is the reduced basjs;? We will show that,.; # {1} and this
will imply that V' (J + Jy) # 0.

To reduce a Gibner basiss, we take all polynomialg € G and reducef %+ 1.

All such f’ constituteG,..;. We will consider such a reduction fé¥ = {F, Fy}. For

all f; € F,letf; = z; + P;, whereP; = tail(f;) andim(f;) = z; wherez; ¢ T),.
This is due to our term order where only gate output$ &ppear as leading terms of all
polynomials. Let be any variable inP;. If v € {T" — T,,} (non-primary-input), then

v =Im(fy) (k # ). Thusf, 070,
contains only primary inputs. From a circuit-structuregpective, this reflects that any

f;» wheref; = x; + P;. In such a caseP;

internal gate output; can be expressed in terms of primary inputs.

Similarly, ! — z; with z; € {T — T,;} will reduce to zero, and only vanishing
polynomials of primary inputs will remain id,. Moreover, since circuit inputs are
bit-level, 2, = x,;; S0z, — p;, 1, € {T},:}, are the vanishing polynomials remaining
in the reduced basis. Lét = {x; + P]} wherex; € T'. Then, the reduced Gbner
basisG,q of {F, Fy} = reducedGB({F} U{z! — x;}) = {F'} U{a?, — z,,;}. Clearly,
Grea # 1. We conclude, ifr = 0, G,eq # {1}, andV (J + Jy) # 0. The miter
constraints are feasible and the circuits are not equitialen

Case 3 If r is a nonconstant polynomial, then due to our term order andlfaoy
5.1, will contain only the primary input variables of the circuiMoreover, as these

variables are Boolean;; = = -+ = x,;, all variables in the monomials efhave

"=
degree 1, and is multilinear.

After the first iteration of Buchberger’s algorithm, we olotd#", Fi,, r} in the basis.
Because- contains only primary inputs¢(r) is relatively prime w.r.t. leading terms of
all polynomials inF. Therefore, the Gibner basis of F, r} is { I, r} itself.

However,{ F,r} U{Fy} is nota Gidbner basis, because:(r) andim(z{ — =) are

not relatively prime whenx;, € 7,,. ThereforeG = GB({F,r} U{Fy}) = {F} U
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GB(r U{Fy}). Insuch a case, if we can show that¢ GB(r U {Fp}), thenl ¢
GB({F, Fy,r}).

To showl ¢ GB(r U {Fy}), we utilize the Weak Nullstellensatz Theorem 6.2: if
V(ru{Fo}) # 0, thenl ¢ GB(rU{Fy}). In Lemma 6.1, we showed thatiis a multi-
linear polynomial, it always has a root. This means iat U {F,}) # 0. Therefore,

1 ¢ GB(r U{Fy}). This proves Case 3: ifisnotOor 1, theq1} ¢ G = GB(F, Fy).

So, we conclude that:

Vi, (J) =0 <= r=1 (6.9)
|

Combining with Corollary 5.1, the above theorem can be restaésed on a mini-

mum Gidbner basis.

Corollary 6.2 LetJ = (F) C Fax[xy,..., 24 on which we impose our circuit-based
monomial order>. LetJJ’ = (2, — x,,), wherex,; € PI. Letf,, f, be the only

polynomial pair such thatm(f..), im(f,) are not relatively prime. Ther , (J) =

PI
) < r =1, wherer is computed a$poly(fm, f.) J’i>+ r.

Theorem 6.3 and Corollary 6.2 provide the foundation of ouifieation formula-
tion. We only need one S-polynomial computation to identtyether or not the two
circuits are equivalent. Our overall approach is describebe following algorithm.

Algorithm 5 first inputs the Boolean expressions of the giveautt implementa-
tion. Each expression is then transformed into a set of pohyals £’ using the map-
pings shown in Equation 5.1. All polynomials are then noirgal into a sum-of-term
form using the distributive lawA(B + C) = AB + AC. Then, we perform a reverse
topology traversal of the circuit to derive our variable amdering. Then, we append
vanishing polynomials, = {z? + z} for all z € primary inputs. Subsequently, we
identify the two polynomialsf,, and f, that have common variables in their leading
terms. Finally, we conduct a polynomial reductionSpfoly( f,., f,) modulo{F U Fy}.

If the reduction result is = 1, the two circuits are equivalent. #f=£ 1, the circuits are
not equivalent. Again, any assignment to the variablesrntatesr # 1 provides an

input vector that can be used as a counter-example for detmigg

6.3 Improving Polynomial Division Using F}-style Reduction
Through the results described above, the need for Buchteajgorithm is obvi-

ated and verification can be performed by analyzing the resjust one S-polynomial
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Algorithm 6: Our Proposed Equivalence Checking Algorithm
Input: Two Circuit Implementations with outpuf§ andY (Boolean equations).
Output: 1if X =Y. Bug polynomial- if X #£ Y.
for (i=0;1 < number of egns; i++)o

/ * Each equation is transformed to polynomials */;
poly[i] = Egn-to-Poly(eqnli]);
| *Each equation is transformed to sum-of-term * /[
newpoly[i] = Sum-of-term(poly[i]);

end

/ = Obtain circuit-based variable order */;

orderedvar=T Traversal(newpoly);
for x e {PI} do

/ »append vanishing polynomials */,
vanpoly[i]=z2 + z;
end
/ = Identify polynomials that need to be reduced * /[

for fm=Ildentify(newpoly, vanpoly);
To_Be_Reduced = Spoly,, f,.);
r=reduce(ToBe_Reduced, vanpoly, orderagr);
if r={1} then

returni;

else
return Bug polynomiat;

end

reduction. Therefore, the most intensive computatioreg & that of polynomial divi-
sion Spoly(fm, fo) ﬂ+ r. When the two circuits’;, C, are very large, the polyno-
mial set{ ', F,} also becomes extremely large. This division procedure fe@momes
the bottleneck in verifying the equivalence. To further moe upon our approach,
we exploit the relatively recent concept Bf-style polynomial reduction [34], which
implements polynomial division using successive row-gigums on a matrix.

Let us first describe the matrix representation for polyradigebra operations.

Matrix Representation of Polynomials: Each row: of the matrixA/ corresponds
to polynomialf;, whereas each columjncorresponds to monomiat;. If the j* entry
on row in matrix is 1, i.e., M (i, j) = 1, it means thej’* monomial is present in the
i" polynomial. Similarly,M(i,j) = 0 denotes the absence of; in f;. Since we
are operating irf,:, coefficients are alway$0, 1}, and no specific representation of
coefficients is required. Note, however, that the entrieows and columns have to

satisfy the imposed term ordering.
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Example 6.5 Given two polynomialsyf; = ag +a; -by +1and fo = ag-bg+ by + 1
with term ordering lex withuy, > a; > by > b;. First, we sort all monomials occurring
in f; and f, w.r.t. term ordering:ag - by > ag > aq - by > by > 1.

Then, we associate these sorted monomials with the columhg @hatrix. The
polynomials are also sorted according to the term order leefoey are associated with
the rows of the matrix. For example, sinke(f,) > Im(f,), f» appears on row and

f1 appears on rov2. The generated matrix is shown in Table 6.1.

Polynomial reduction requires operations of additionfsadiion and cancellation
of leading terms. We demonstrate how the addition/submaeind division operations
are implemented on the matrix.

Matrix Subtraction for Polynomials: The subtraction of two polynomials can
be formulated as a row-eduction in the matrix. Since coeffits of polynomials are

computed (moa) in our case, row-reductions are also performed (12)od

Example 6.6 Again considerf; = ag + a1 - by + 1 and fo = ag - by + by + 1 with lex
order: ap > a; > by > by. Letus performf; — for fi — fo = fo — fi (mod 2) =
ag - bg + ag + ay - by + b;. On the matrix, each entry on roWvis subtracted from the

corresponding entry on row and the result is stored in ro®, as shown in Table 6.2.

Matrix Reduction for Polynomials: Polynomial division is implemented as can-
cellation of leading terms. The reduction step in AlgoritBrtinat cancels leading terms

is:
Im(f1)
Im(fs)

filfa=hH— - Ja (6.10)

Table 6.1 Matrix representation for polynomials.

agp - bo Qo | A1 * b1 bl 1
fa 1 0 0
fi 0 1 1 0|1

=

Table 6.2 Matrix subtraction of polynomials.

Qo - b(] Qg | A1 * bl b1
fa 1 0 0

fo—fi 1 1 1 1|0

'_\
| =
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In matrix representation, we create two rows, one eacfflfcand% - f2, and

then perform subtraction on the matrix; this is shown in Egkn6.7.

Example 6.7 Given two polynomialsf; = aq - b1 + ag + 1 and fo = ag + 1 with term

order lex: ag > a; > by > b;. Consider the polynomial reduction:

(Zo'bl

fl/fzzfl— “fao=fi—bi- fo

We create two rows in matrix fof, andb; - fo and insert monomials fronfi; and

Qg

b - fo into the matrix columns, as shown in Table 6.3.
Then, we conducf; — b; - f2, as shown in Table 6.4.

Finally, row 2 represents the reduction result Hf/ fo = ag + b1 + 1.

With the above basic polynomial operations formulated afirmaperations, we
now describe our algorithm to create the matrix of polynds@rresponding to our
verification instance (miter circuit). The algorithm is shoin Algorithm 7. The main
idea behind this algorithm is to set up the rows of the mapbiynomials) in a way

that polynomial division can be subsequently performedubtraicting rowi from row

i — 1. In the algorithm, the computatiah := L U lx("ﬁ) - fx In the while-loop actually
corresponds t mgjﬁ;; - fo in Equation 6.10.
To better understand the algorithm, we describe the mabistcuction procedure

in Example 6.8.

Example 6.8 Suppose that two functionally equivalent circuits and theenare rep-

resented by the following polynomials at bit-level (i.e erdl)).

Table 6.3 Matrix reduction for polynomials: representation.
ap-by | ag | by |1
by - fo 1 0|10

fi 1 [1]01

Table 6.4 Matrix reduction for polynomials: subtraction.
ap-by | ag | b1 | 1

by - fo 1 0O(1]|0
fi—0bfs 0 1111
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Algorithm 7: Generating the Matrix for Polynomial Reduction

Input: f,F = {fi,...,fywith f{ > fo > --- > f..

Output: A matrix representing MJF r

/+Let L be the set of polynomials corresponding to
rows of matrix */;

L:={f};

/ *The index of polynomials in Fx;
=1,

[ xLet M; be the set of monomials * [

M :={ monomials of § ;
mon:= thei*® monomial of M} ;
while mon¢ Primarylnputs do
ldentify f;, € F satisfying:im( f;) can dividemon ;

/ *add new polynomial to L as a new row in matrix */,
L= LUgG - i
[/ * Add monomials to M; as new columns in matrix * [
Mp:=My U {monomials ofl%f;) “fr}s
1:=1+1;
mon:= the;*” monomial of M/ ;

end

Note thatiy, . .., i3 denote the primary inputs of the circuits. The circuit taypl-
based monomial order is derived as lex with> y > ng > ny > nyg > ny > ng >
ns > ng > ng > ig > i1 > i > i3. All polynomials above have already been sorted
(ordered) according to their leading terms in descendindeor All monomials in each

polynomial are also ordered.

fm - $+y+1,

fo = x4+ mno+ng,

fi = y+no,

fo = mng+ig-is,

fs = ng+ig-i,

fi = ni+ng,

fs = n7+ng+ny-io,
fe = ng+ns+ng-ii,
fr = ns+ng-ns,

fs = ng+i+1s,

fo = ng+ i+ ig;
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In this case f = Spoly(fm, fo) =y+mno+ne+1landF = {fi,..., fo}. We want

to show the algorithm’s operation to construct a matrix floe reductionf £>Jr T

Initialization:
L = {f}
ML = {yanOan%l};
mon = ;
lteration: = 1:
fr = fi=y+nyo;
L = {f>f1}7
ML = {y7n07n27n1071};
1 o= 2
mon = nyg
lteration: = 2:
fe = fa=mno+1g-is;
L = {f7f17f2};
My = {y,ng,n2,no, i i3, 1};
1= 3
mon = ng
lteration: = 3:
fr = [s=mng+io-is;
L = {faflaf?af?)};
My = {y,no,na, o, %0 - 01,92 - i3, 1};
1 = 4
mon = MnNjo

lteration: = 4:
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Jr = Ji=mnw+ng
L = {f, fi, fo, f3, fa};
My = {y,no,n2,nig, N7, ig - 1,12 - i3, 1};
1 = b
mon = ng
Iteration: = 5:
fr = fs =n7+mne+ny-iop;
L = {f fi,fo, f3. fa. 5 };
My = {y,no,n2, nig, N7, Mg, Ny - Gg, o + i1, 02 « i3, 1};
1 = O0;
mon = ng
Iteration: = 6:
fr = foe=ne+ns+ns- iy
L = {f fi, fo, f3, [a, f5, fs };
My = {y,no,n2, n10, N7, N6, N5, Mg~ g, M3+ i1, %o ~ G, 42 + 43, 1};
1= T,
mon = ns
Iteration: = T7:
fx = fr=mn5+ny- ng;
L = {f, fi, fo, f3, [, f5, o, fr}s
Mr = {y,n9,n2,n10, N7, N6, N5, Mg N3, Mg~ G0, M3+ G, g~ G182 13, 1}
1 = 8§
mon = ng4-ng
Iteration: = &:
fe = fs=n4+1i1 +1is3;
L = {f, fi,fo, fs, fas f5, fo, fr.m3 - fs}
My = {y,no,ng, N1g, N7, NG, M5, Mg+ Mg, Mg = gy Mg - 1, Mg - i3, G - i1, B - i3, 1}
1 = 9

mon = ny-io



lteration: = 9:

fs = na + 11 + i35

U fus fas £ fas fss fos froms - fsodo - fo)s

{y, 0, n2, M0, N7, M6, M5, Mg - M3, Mg T, M3 - A1, M3 - A3, T ¢ 1,
ig - 13,99 - 13, 1};

10;

ngz - i1

lteration: = 10:

Jo = ng + g + ia;

U fos fos fas fas s fos faoma - fsodo - fsvin - fols
{3/7710,”2,”10,”7,”6,715,”4 N3, Ny - Lo, N3+ 11, N3+ 13, U0 - U1,
Qg - 13,11 - dg,dg - U3, 1}

11;

7”L323

lteration: = 11:

Jo = nz + g + ia;

U fus for f3, fas fso fo, froms - fodo - fao i1+ fo, 03 - fo}s
{y,m0,n2, 010, N7, N6, M5, Mg - M3, My - G, Mg - T, M3 - G, G0 - D,
ig - 13,11 - To, 7 * 13, 1 };

12;

10 - 11

Termination: Because - i; contains variables Primarylnputs only.

Each polynomial inL corresponds to a row in the matrix and each monomial

corresponds to a column. The generated matrix is shown ireTabl.

With the generated matrix, the polynomial reduction candsentilated as a series

of matrix subtractions, i.e Row; — Row;_,. After all row subtractions, the reduction

result corresponds to the polynomial represented in thertas.

Two important points to be noted:



Table 6.5 Matrix created for polynomial reduction for Example 6.8.

1

19+ 13

11 - 19

10 - 3

10 - 11

Tlg'ig

ng‘il

n4-i0

NNy - N3

nsy

Ng

ny

N0

ng

0

no

0
0
0

0/ 0

S

fo

fs

Ja

f5

fo

7
ns - fs

i - fs
i1+ fo
i3 - fo
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e All subtractions are computed modulo

e If polynomialsf; and f;_; have no common leading monomials, then they cannot
conduct a reduction. Correspondingly, in the matrix, whendeaning Row; —
Row,;_;, if the first non-zero entries aRow,; and Row,_; are not in the same
column (leading monomials), then we move on to the next rowpanfbrm

ROU)H_l - Rowi_l.

This procedure is shown in Table 6.6 for- fo —io - fs: herelm(iy - fo) = ng - n3
while Im(ig - fs) = n4 - ip. These leading monomials are not equal and they cannot
divide each other. Thus, we skip the current ray- (fy). Instead, we move to the next
row (is - fo) and computes - fo — ig - fs. Finally, the last entry in Table 6.6 corresponds

tor = 1, and that denotes infeasibility of the miter circuit.

As shown in the above example, the polynomial reductionltestan be computed
by successively subtracting rowfrom rows: + 1. Finally, the last row represents If
the last row only contains the monomiglthe two circuits are equivalent. Otherwise,

the polynomial corresponding to the last row representdtigegpolynomial.

6.4 Experimental Results
The above verification approach usihgstyle reduction has been implemented in
C + + as an efficient equivalence checking engine. Using thispsete performed
experiments to verify equivalence between different fifiéd multiplier implemen-
tations. Our experiments are conducted on a desktop 2vtiGHz Intel Core(TM2
Quad CPU an@GB memory running4-bit Linux.

6.4.1 Equivalence Checking of Structurally Similar Circuits

To evaluate the performance of structurally similar citguive conduct a equiv-
alence check between Mastrovito and Barrett multipliers. sAswn in Chapter 3,
Mastrovito and Barrett multipliers are somewhat structyrsiimilar. Table 6.7 shows
the results of verifying Mastrovito multipliers against Bett multipliers. SAT solvers,
ABC and CSAT can solve them reasonably fast. Singular can alsty ¥hese circuits
within a matter of seconds. However, since Singular has gdiion on the number of
variables it can accommodate (65535 variables), it cannot verify circuits larger than
96-bit circuits. The results also show that our approach isiibst efficient in verifying

circuit equivalence over finite fields.



Table 6.6 Subtraction result of the matrix created for polynomiauetion.

1

19 - 13

11 - 19

10 - 13

1+ 11

ng"ig

Tlg'il

n4-z'0

Ty - N3

N5

Ng

ny

N1o

na

0

N

0
0
0

0|0

0

S

fo

fs

Ja

f5

Jo

7
ns - fs

io - fs
i; - fy
i3 - fo
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6.4.2 Equivalence Checking of Structurally Dissimilar Cirauits

As the experiments in Table 5.1 depict, given two structyrdissimilar circuits
(such as a Mastrovito versus a Montogmery multiplier), noh8AT, SMT, BDD and
AlG-based methods are able to verify the equivalence otitgdeyondl6-bit. The
reason why ABC and CSAT are infeasible is that the structurahing utilized by
ABC and CSAT is not beneficial for structurally dissimilar aiits. It is unable to
find common subcircuit nodes as they do not really exist. @dtimerging internal
subcircuit equivalences, these tools are unable to rechesize of the verification
instance.

Our experiments perform verification between Montgomeritipiiers on one hand,
and Mastrovito and Barrett multipliers on the other hand.l& &8 shows the runtimes
of equivalence verification of Barrett versus Montgomerytipliers. Table 6.9 shows
the runtimes for Mastrovito versus Montgomery multipli@rification. Singular can
only verify 64-bit multipliers because of the limit on the number of vakebit im-
poses. In contrast, our approach can successfully verify up8-bit multipliers with
dissimilar structures. In the tables, note that the vetificetime for 128-bit multipliers
is significantly less than that @6-bit ones. These experimental results are correct: we
reran the experiments and also checked the circuit desgyresifors — no errors were
found. The reason for this anomaly may lie in the irreducpgm&/nomials we selected

to construct the circuits.

6.5 Limitation of Our Approach

While our approach is efficient verifying modulo-arithmeticuits over finite fields
F,x, our approach cannot be applied to verify multiplier citswver integers or over
the finite ringZ,x. This is due to the polynomial function representation ofwits over
integers. The polynomial representation of circuits ovatdifields has a much simpler
form than that over integer rings. For example, circuitsrdirgte fields are mainly
constructed b)XORandAND gates which can be transformed into simple polynomials
(mod 2):

aANb—a-b (mod 2)

a®b—a+b (mod?2)

However, circuits over finite integer rings involve a largember ofORgates which

are transformed into polynomials as:
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Table 6.7. Verification of Mastrovito multiplier vs. Barrett multigr. 7TO=10hrs.
*=0ut of variable limitation. Time is given in seconds.

Size 8 16 32 64 96 128 163
#variables 412 | 1445 | 4587 | 18953 | 42576 | 110543 | 195124
#gates 1446 | 6846 | 25846 | 101401 | 227499 | 403036 | 653021
MiniSAT 0.02 | 0.27 | 0.36 1.60 17.54 5.10 28.97
PicoSAT 0.02 | 0.15 | 0.78 3.90 6.58 41.89 | 130.56
PrecoSAT 0.05 | 0.40 | 1.61 22.98 91.90 90.25 | 187.53
CryptoMiniSAT 0.07 | 0.82 | 1.31 4.75 16.81 | 128.22 | 42.78
ABC 0.12 | 1.07 | 0.82 2.79 5.72 9.79 18.67
CSAT 0.03 | 3.02 | 0.58 0.87 1.83 5.97 5.49
Singular 0.03 | 0.17 | 0.41 1.12 * * *
Ours (correct design)) 0.00 | 0.01 | 0.01 0.02 0.03 0.05 0.12
Ours (buggy design) 0.00 | 0.02 | 0.02 0.02 0.04 0.06 0.13
Table 6.8 Verification of Barrett multiplier vs. Montgomery multil.
TO=10hrsx=0ut of variable limitation. Time is given in seconds.
Size 8 16 32 64 96 128 163
#variables 942 | 3426 9478 | 40059 | 98452 | 197841 | 286357
#gates 1968 | 8784 23548 | 86017 | 188121 | 330528 | 528903
Singular 0.05 | 486.74 | 3210.30 * * * *
Ours (correct design)) 0.00 | 0.13 3.39 125.88 | 1407.86 | 59.18 TO
Ours (buggy design) 0.00 | 0.13 3.41 127.03 | 1435.14 | 59.86 TO

Table 6.9 Verification of Mastrovito multiplier vs. Montgomery migtier. 7O=10hrs.
Time is given in seconds.

Size 8 16 32 64 96 128 163
#variables 934 | 3387 9346 | 39654 | 99163 | 204972 | 294578
#gates 1958 | 8694 | 23318 | 86132 | 188526 | 331188 | 530278
Singular 0.05 | 446.83 | 3646.12 * * * *
Ours (correct design) 0.00 | 0.12 3.29 126.01 | 1463.95 | 59.37 TO
Ours (buggy design) 0.00 | 0.13 3.31 127.45 | 1511.82 | 60.10 TO
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avVb—a+b+a-b (mod?2)

Polynomial representations f@R-dominated functions include more monomial terms
and also more occurrences of variables among the terms. eVaigually results in
size-explosion of the intermediate (remainder) polyndsniathe reduction. Therefore,
our approach becomes infeasible in verifying integer arétic circuits over ring%..

A conference paper that corresponds to the initial thezaktnodel for this problem was
published in [58] and a paper describing the efficient im@satation of our approach

is under submission [59].



CHAPTER 7

VERIFICATION OF COMPOSITE FIELD
ARITHMETIC CIRCUITS

As an effort to reduce the high implementation costs, a nutlogy that designs
arithmetic circuits over a composite field is proposed [v#tjere the finite field,: is
decomposed d8§,n», for ak = m-n, and the arithmetic operations are then performed
overF,m).. The decomposition introduces a hierarchy (modularitythia design by
lifting the ground field fromF, (bits) toF,» (words). This results in impressive area
and delay savings over large finite fields [71] [72] [86].

The hierarchy of composite field circuits also introducesallenge to verify such
problems: both word-level and bit-level information aretned in the designs, which
are not able to be solved by any contemporary technique.

This chapter addresses the implementation verificatiomo srithmetic circuits.
We formulate the verification problem as an (radical) ideahmhership test at different
abstraction levels and then apply approaches presentedapt&hb to solve it, i.e.,
conducting a polynomial reduction.

Our approach is based on the known field decomposition irdtiam and the circuit

hierarchy. We utilize this information to:

o first verify the correctness of lower-level building-blecfadders and multipliers)

over the ground field s ;
o then verify the overall function at the higher-level oveg txtension field zmn.
Using our approach, we are able to prove the correctnessitf field circuits for

up to 1024-bit with decompositiorF s2ys:.

7.1 Circuit Designs over Composite Fields
The finite fieldF,x is a k-dimensional vector space over the subfigld If £ =

m - n, the fieldF,. can be decomposed Bg-. Such a field representation is called a
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composite field and it is constructed asradimensional extension of the subfiéigh..
The subfieldF,. is called the ground field. Note that we haeC Faom C Famn.
According to Theorem 3.1, there exists an unique field of gize This implies
that Fy is isomorphic taF ;m)» whenk = m - n, and due to this isomorphism, it is
possible to derive one field representation from the othiee drinciple of constructing
a composite field is described in [71]. Here we derive corcs&tps for circuit design

purpose.

Definition 7.1 A primitive polynomial P(x) is a polynomial with coefficients iR,
which has a rootr € F,. such that{0, 1, o, o2, - - -, a® =2} is the set of all elements in

Fyr, Wherea is a primitive element of Fyx.

The only difference between primitive polynomials anddeible polynomials is
whether they can generate all distinct elements of a finitd filg.. Primitive poly-
nomials can generate all elements with a primitive elemérit,e while irreducible
polynomials cannot generate all element& of.

Recall that to construct a finite field,:, we need a primitive polynomiaP(z) €
Fy[z] of degreek. Similarly, to construct(,=)., we require a primitive polynomial,
of degreen, with coefficients from the ground fiel,~. GivenF,. and P(z), the
primitive polynomial of the composite field can be easilyided. We will use the

following notation:

e Let P(z) denote the given primitive polynomial of general fi€ld, anda be the

primitive root, i.e.,P(«) = 0.

e Let Q(z) denote the primitive polynomial of ground fielg,», and g be the
primitive root of Fom, i.e., Q(8) = 0. Note thatQ(z) is a degreen primitive

polynomial overF, so it is also known.

e Let R(x) denote the primitive polynomial of composite fiégh- -, andy be the

primitive root, i.e.,R(y) = 0. This polynomialR(z) has to be derived.

Lemma 7.1 From [86]: Let[F» be decomposed @&,~)» wherek = m - n. Lety be

the primitive root of the field my.. Then

i=n—1

R(z)= [ (& ++*") (7.1)

=0
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SincelFyx is isomorphic tdf,»y», o and+ are actually the same elements. Now, let
us consider the representation of an elemémnt [F,» and its corresponding representa-
tion in the composite field.

e Any elementA € F,. is represented as:

i=k—1
A= a; - ozi, a; € F27 andP(Oé) =0 (72)

1=0
e The same element € (- is represented as:

i=n—1
A= )" A+ A € Fym,andR(y) = 0 (7.3)

1=0

e Now, we have to represent the eleméntrom above in the ground field; :

j=m—1
Ai= > a;- B a; € Fy,andQ(B) =0 (7.4)
=0
Now, we need to find the relationship between the primitivetsex and 5 (or
betweeny and 5, sincea = 7), so as to be able to map the elements fri@n to

[Fomyn. We have the following result [86]:

Theorem 7.1 For v € F(omy», and 8 = v*, wherew = (2" —1)/(2" — 1), then we
havegs € Fyn. In other words:

B = @™ D/Em1)  mn)/(2m ) (7.5)

The above result states the following: Singés a primitive root, it can be used
to generate all the non-zero elementsgf.).. Moreover,3 is a primitive root of the
ground fieldF,~, which is a subfield off 3m)» (i.€.,Fom C Fam)n); S0 € Famyn.
Therefore, an exponent efcan be used to generateasg = v, wherew is given in
Theorem 7.1. Now, we know all the relationships betweefi, v, and we are ready to

perform the decomposition.

Example 7.1 As an example, let us reconsider the field and decompose it d§2)q.

Let P(z) = 2* + 2® + 1 and P(a) = 0. We need to perform the following steps:
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1. Derivation ofR(z):

R@) = [+

= (z+7) @+7")

o

= 2+ () a+
Notice thatR(y) =2+ (v* +7) - v ++° = 0.

2. Representation of elemente [F(y2):

i=1

A = ZAi"Yi7Ai€F22
i=0
= A0+A1"Y

3. Representation ofy, A; in Fom:

Ay = ago +am - B

Ay =app+an-p

wherea;; € Fy. Q(z) can be any degree: = 2 primitive polynomial in the

ground fieldF,:. Let us take)(z) = 22 + z + 1.

4. Now, we can substituté,, A, into A as follows:

1 j=1

A = () ay-p)-+
i=0 j

= ap +an - B+ (a0+a-B) -7

%

I
o
I
o

where eachy;; € F,. From Eqn. (7.5), we haved = o® = 4°. We then substitute

£ and~ with o to obtain:

=1 =1

A = (Zaz’j'ﬂj)"Yi
0

J=0

1=

= (100+(101 'Oé5+((110+(111 '055) e
SinceP(x) = z* + 2* + 1 with P(«) = 0, we have
A (mod P(Oé)) = a00+a01+a11—|—(a01+a10—|—a11)«a+a11~a2+(a01 —i—a11)~a3

5. The same elemente F.. is represented as:

A=ag+a;-a+as-a®+as-a®
0 3
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6. Since Egns. 7.6 and 7.6 represent the same element, we tanthacoefficients

of the the polynomials to obtain:

ap = apo + ap1 + an
a; = app + ap+an
Gy = dan

as = Qo1+ a

This mapping can also be reversed and represented as a natrix

aoo 1 0 0 1] [ag
Qo1 | 0011 aq
a1 N 01 01 a9
a1y 0 010 as

Now, we have successfully derived the composite field refeg&snkF 2y from
Foi. The elementl € F.. is represented asl = ag + aja + asa? + asa®, where

P(a) = 0. The same elemertis represented iff ). as:

A = A +4 -«

5
Ay = ap +ap -«
A . 5
1 = Qpo+tap-«
Qoo = Qo+ as
apy — Q9 + as
alg = aq —+ as
11 = Qg

In the above equations, = v and R(v) = 0.

Multiplication A - B (mod P(x)) over Fy: can now be performed over the de-
compositionlF(y2)2, whereA = Ay + Ay, B = By + By and the modulus is taken
over R(vy). Such a design is shown in Figure 7.1, whegea,, as, as, by, by, ba, by are
primary inputs. After a suitable transformatiocpmposite fieldnputs are obtained
asag, ao1, a10, a11, boo, bo1, b1o, b11. Ao, A1, By, By are2-bit buses. Correspondingly,
each block in Figure 7.1 internally represent&-hit operation: x represent-bit
multiplication and + represent2-bit addition over the ground field. A logic circuit

for a 4-bit Mastrovitomultiplier overfinite fieldF,. is illustrated in Figure 7.2.
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a
gz bz ?)Z:D_ZO
se et

Figure 7.2 Mastrovito multiplier ovefts..

Its corresponding composite field design with decompasitig:y. is shown in
Figure 7.1. Each block in Figure 7.1 representslat operation internally, where

represents am-bit multiplier and+ represents am-bit adder.

7.2 Problem Formulation and Hierarchy Verification

Let us again take the multiplier verification problem as egban Thespecifica-
tion S = A- B (mod P(z)) is already given in polynomial form (word-level). The
implementationis available at two different abstraction levels: one at iitelevel
(ground fieldF,~ adders and multipliers) and one at the higher-levé at,.. Using
this information, we derive constraints (polynomial$)corresponding to the circuit.
Our verification problem is to prove/disprove that for allues of the inputsd =
{ag,...ax_1}, B = {by,...bx_1}, the circuit implementatior¥ correctly computes
the multiplications$.

As we can notice from Figure 7.1, the entire composite fieldudi is constructed
on lower-level building-blocks (adders and multiplierSherefore, we have two verifi-
cation objectives: low-level circuits and higher-leveigrconnection of the lower-level

blocks.
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Verification of Low-Level Circuits over Fom:

Low-level building-blocks consist of adders and multiptieverF,.. These circuits
are implemented at gate-level and are nothing special agthtar finite field circuits
we verified before. Therefore, we can simply employ the sare¢hads described
in Chapter 5 to formulate the verification test as membersstirtg of the property
polynomial (5 + Z = 0). When the correctness of low-level circuits is certified,caa
conduct the high-level verification ov&famn.

Verification of Higher-Level Interconnection over [F(,»).: The difficulty of veri-
fying the composite field circuits lies in the verificationfogh-level interconnection of
low-level building-blocks. Specifically, due to the preserof hierarchy of composite
field circuits, the constraints derived from the high-lewgerconnection contain both
gate-level and word-level abstractions. For example,gufd 7.1, the circuit hierarchy

can be described as follows:

Qoo = Qo + a3
CL01:CL2+CL3
a10:a1+a3
ail = a2

A _ 5
0 = Qgp + Qo1 - &

5
Al =ajo+an -«

boo = bo + b3
bor = by + bs
biop = by + b

bi1 = by

By = bgo + boy - @

By = by + by - a°

Co= A0 B
Ci=4,-By
Cy=Ay- By
Cs=A4,-B

04200“—01
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Cs=0Cs-a°
Cs=Cs-a°
Zy=0Cy+Cs
71 =Cy+ Cy

whereay, . .., as, by, ..., by are variables irf¥, (bits) while Ay, Ay, By, By, (Y, ..., Cs,
Zy, 7, are variables iff,2 (words). Therefore, bit-level variables and word-leveiiva
ables co-exist in the design. As far as we know, there areafmigues that can verify
design with different levels of abstraction. This is maiblgcause BDD/SAT/AIG-
based approaches can only handle bit-level problems. SW&rspon the other hand,
have no advantages to solve problems at bit-level. Besidd3, ®lvers formulate
every problem over rings instead of finite fields. Take Eaqumai.6 for example(, =
Ay - By represents a-bit finite field multiplication. In SMT,Cy = Ao - B represents
a2-bit integer multiplication. As we know, the multiplicaticver rings and over finite
fields differs significantly.

Fortunately, due to the fact that both bits and words infdiomecan be formulated
as polynomials, this verification problem is algebraic ituna and therefore, can be
easily formulated as a system of polynomials and solved beglichembership testing,

which is described in Algorithm 5.

Example 7.2 Our high-level verification problem is illustrated in Tablel. LetF
denote all the polynomials representing implementatigecgication and vanishing
polynomials. Lef;, denote the vanishing polynomials for primary inputs. Aéthe
polynomials in{ /'} are available, we just need to check wheter Z is a member of
the ideal(F, Fp).

7.3 Experimental Results
With the approach presented above, we have conducted ees to hierarchi-
cally verify Mastrovito multiplier implementationd/ against the specificatiof =
A - B (mod P(z)). Our verification setup is shown in Table 7.1. The implemgona
is given as a circuit oveF ;.. With the given hierarchy information, we construct the
polynomials representing high-level desigig; overlF o). and low-level designs/;,

overFyn separately.



96

Table 7.1 Verification setup oveF (2

implementation specification vanishing polynomials
ago + ap + as A+ay+a-a+ay o +as- o’ ag — ag
ag1 + as + as B4+by+by-a+by-a?+bs-a® a? —ay
a0 + ap + as S+AxB as — as
a1 + as a% — ag
Ap + ago + agy - 2° bg — bo
Ay +ay +ap - 2° b — by
b00+b0+bg b%_bQ
bor + b2 + b3 b3 — bs
biop + b1 + b3
b1 + bo

By + boo + boy - 2°
By +big+ byy - 2°
Co+ Ay - By
Ci+ A By
So+ Ay - By
Cs+ Ay - By
Cy+Cy+ C
C5+C3'Ck5
06+C3'045
ZU+C4+C5
Z1+ Cy+ Cg
Z+Zg+Zl'Oé

Property:Z + S

For high-level designd/, the specification polynomigf = A - B (mod P(z))
is used. In contrast, for low-level designg; overF,., the specification polynomial
S, = A, - By (mod Q(x)) is used, of whichA,,, B, represents then-bit inputs
for low-level building-block circuits;Q(x) is the primitive polynomial off'y». Then
vanishing polynomials? — aq, ...,a3 | — ay_1,b% — by, b7_, — by_1 are appended to
My and M, at different levels of design. We use Singular [28] to conghatynomial
reduction. When the circuits are correctly designed, we cgeofe that the reduction
result isO, proving the equivalence.

Our experiments are conducted on a desktop wthGHz CPU and8GB memory
running64-bit Linux. The time-out limit is set a4 hours.

The verification of low-level circuits is the same as the ohewa in Table 5.3.
The number of low-level design units is shown in Table 7.2teNbat this number is
determined by:, which meang ;). andF,m,)» have the same number of low-level

design units, even ifr; # ms.
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Since high-level verification cannot be solved by any otleshhique, we only
show the results of our approach. Table 7.3 shows the rurtinmégh-level designs
verification overF ). for varying word-sizek = m - n. As shown in Table 7.3,
with our approach, we are able to prove the correctness o fileld circuits for up to

1024-bit with decompositiorF s2ys2.

7.4 Conclusions

This chapter has targeted the implementation verificatidnevarchically designed
composite finite field circuits. Decomposing the finite fi#ld asF ). introduces a
hierarchical abstraction. Our approach requires thatileigrchy information be made
available. Then, we formulate the verification problem ggime polynomial reduction
as a ideal membership testing at different levels of abstracFirst we verify low-level
adders and multipliers &, and then verify the high-level interconnections between
these blocks aF,~y.. Using our approach, we can verify the correctness of up to
1024-bit multipliers where other contemporary technigaiesnot capable of verifying

such circuits. This work was presented in [56].



Table 7.2 Statistics of designs ové.

n 24| 8 | 16 | 32
#Multipliers | 6 | 36 | 168 | 720 | 2976
#Adders | 3 | 27 | 147 | 675 | 2883
Table 7.3 Verification of Mastrovito multiplier oveF ;). using proposed approach. All times are given in seconds.
32 64 128 256 512 1024
m| n |[time|m| n| time ||m| n time m| n time m| n time m| n time
2 116|755 2 |32(87983 | 2 |64 * 2 | 128 * 2 | 256 * 2 | 512 *
4 1 810121 4 |16 | 10.81 4 |32 )1619.51 | 4 | 64 * 4 | 128 * 4 | 256 *
8 41001 8|8 | 0.46 8 | 16 | 35.04 8 | 32 |2664.56 || 8 | 64 * 8 | 128 *
16| 2 (001 16| 4 0.15 16 | 8 3.25 16 | 16 | 147.84 || 16 | 32 11510 16 | 64 *
- | - - 3212 ] 011 ([ 32] 4 2.14 32| 8 37.71 || 32| 16 | 1166.10 || 32 | 32 | 75336

86



CHAPTER 8

CONCLUSIONS AND FUTURE WORK

This dissertation presents approaches to performing alguge checking for arith-
metic circuits over finite field8,.. In particular, we target two specific problems: i) ver-
ifying the correctness of a custom-designed arithmeticudinmplementation against
a given word-level polynomial specification ovés.; and ii) gate-level equivalence
checking of two structurally dissimilar arithmetic cirtali We propose polynomial ab-
stractions over finite fields to model and represent the iticomstraints. Subsequently,
decision procedures based on modern computer algebradeaeln- notably Gibner
bases-related theory and technology — are engineeredv® tha verification problem

efficiently.

8.1 Computer Algebra-Based Approaches for Equivalence
Checking of Arithmetic Circuit over Fox

The arithmetic circuit is modeled as a polynomial systenhéringFyx [z, o, - - -,
x4), and computer algebra- and algebraic geometry-basedg¢Biilbert’s Nullstellen-
satz) over finite fields are exploited for verification. Tworfmlations are presented to
address the implementation verification and the equivalehecking problems.

Using the results of Strong Nullstellensatz over finite fielthe first verification
problem is formulated as an ideal membership testing. ksidleal membership test,
it is required to compute a @bner basis. The ®bner basis computation is known
to have double-exponential worst-case complexity in tipeiirdata, which makes this
approach impractical. Therefore, straight-forward usé&dibner basis engines for
verification is infeasible for large circuits. To overcorhestcomplexity, we analyze the
given circuit topology to get more theoretical insightitite polynomial ideals corre-
sponding to the circuit constraints. Based on this circtdidrimation, we derive efficient

term orderings to represent the polynomials. Subsequersilyg the theory of Gibner
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bases over finite fields, we prove that our term orderingseetiet set of polynomials
itself a Gibbner basis — thus obviating the need for Buchberger’s dkgori To fulfill
our verification purpose, we simply conduct a polynomialetn to test whether the
equality property is a member of the ideal representing itloalit constraints.

The equivalence checking for two structurally dissimilathanetic circuits is still
a challenge for contemporary techniques. By utilizing cotepalgebra theory, we
formulate this problem as a Weak Nullstellensatz proofgiskmbbner bases computa-
tion. Once again, this would require the computation of aiced Gdbner basis, which
is expensive for large circuits. To overcome this compigxite want to exploit our
circuit-based term ordering for polynomial representationfortunately, unlike in the
previous case, the set of polynomials corresponding tovigication instance does
not constitute a Gibner basis. Instead of computing adBner basis for the the whole
circuit, we identify a minimal number of S-polynomial comations that are sufficient
to prove equivalence or to detect bugs for the whole circuit.

The verification of composite field circuits is a successppleation of our com-
puter algebra-based approaches. To construct a compesiteificuit overF ;m)», the
finite field F,. is decomposed d&,my», for ak = m - n, and the arithmetic operations
are then performed ové&,~.. The decomposition introduces a hierarchy (modularity)
in the design by lifting the ground field frofii, (bits) toF,» (words). We formulate
the verification problem as an (radical) ideal membershsp & different abstraction
levels. By combining the circuit hierarchy information, wesfiverify the correctness
of lower-level building-blocks (adders and multipliers)eo the ground field s, then

we verify the overall arithmetic at the higher-level ovee xtension field ym ..

8.2 Future Work
The approaches and theories presented in this dissertatiobe further extended
to enhance the efficiency of equivalence checking of aritiimegrcuits. Some future

research directions are proposed here.

8.2.1 Speeding up Verification Using a Graphics Processingrit
As shown in Figure 6.2, the equivalence of “CIRCUIT1” and “CIRCUITZfor-

mulated as a single miter at word-level. However, since iheuits have multiple
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outputs £), we can creaté miters for each output bit. In such cases, we will have

to computeSpoly( fu, fo) ﬂ+ r for each of thek outputs, and check if = 1 in
each case. These are going torbedependent computations. In that regard, they will
immensely benefit from parallelization.

It is desirable to implement this technique on a hardwarelacator - particularly
on a NVIDIA Graphics Processing Unit (GPU). In the Electmbiesign Automation
(EDA) community, there has been a lot of interest in exphgitGPU computing to im-
prove synthesis and verification algorithms. Significamtesbups have been observed
in GPU implementation of circuit simulation algorithms €sier example [35]). It is
needed to further study how to efficiently implement our wireerification problem

using independerfi-polynomial reductions on a general purpose GPU.

8.2.2 Extraction of Circuit Abstraction

Suppose that we are given a circuit that implements a polyedoitnction over
For — For, but we do not know what function it implements. Can we idenéf
polynomial representation of this functionf(X,Y’) where X represents the input
bit-vector andY” the output? This problem is one of hierarchy abstractionianged
in component matching and resource allocation in hightieyethesis.

To explain this idea, let us revisit the example of Figure &.2-bit multiplier. It
implements a polynomial functiod = AxB; Z, A, B € Fy:. HereA = ag+a1a, B =
by + bia, Z = zy + z1c. Let us represent a polynomial for each gate in the circuit.
We will impose the following term orderex term order with “circuit Variables” >
“Inputs, A, B” > “Output Z”. That is, we use lex term order with > ¢; > ¢ > ¢3 >
ro > ag > a; > by > b > 2>z > A> B > Z. If we use this order to compute a

Grobner basis of the circuit polynomials, then we obtain the¥ang polynomials:

fiizo+zna+2
foibg+bia+ B
f3rag+aa+ A
faies+ro+ 2

friaa+ca+ro
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Jo:co+c3+ 20

fr:A-B+Z
fsrai-by+ay-B+b-A+ 2z
Jo:ro+ar b+ 2

fio:ca+ai-by

Notice that the polynomiaf; : A x B + Z is indeed the polynomial representation of
the function implemented by the circuit. And we were abledxgtfact” the polynomial
representation using Gbner basis.

Polynomial interpolation techniques for this problem wsttadied in [80] [81]. Fur-
ther research should be conducted to investigate if we caGudner basis techniques

to efficiently interpolate a polynomial representatiomfra circuit.

8.2.3 Simulation-Based Verification of Circuits

In our group’s previous work [78] [77], we show that given twolynomial func-
tions f, g overZ,., exhaustive simulation is not always necessary to provie ¢@iv-
alence. We identified an integarsuch that functions (polynomialg), ¢ need to be
evaluated only for\ inputs vectors{V;,...,Vi}. If f = ¢ for these\ vectors, then
f = g over the entire design space.flt£ g, then we guarantee to catch the bug within
these) vectors. In practice) << 2*.

Unfortunately, this result did not find much practical apgtion as it required
that f, g be polynomial functions. Not every function (circuif) : Zox — Zox iS @
polynomial function. Instead of modelingkainput/output circuit as a function from
f : Zox — Zqx, We conjecture the model can be viewed as a polynomial foncti
over finite fieldsf : Fy« — For. This way, we can then prove equivalence of two
polyfunctions f, ¢ : Fox — Iy without resorting to exhaustive simulation. It is
promising to solve the same problem as in [78] [77], but noeravdifferent domain:

F2k .
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