169 research outputs found

    A Comprehensive Overview on 5G-and-Beyond Networks with UAVs: From Communications to Sensing and Intelligence

    Full text link
    Due to the advancements in cellular technologies and the dense deployment of cellular infrastructure, integrating unmanned aerial vehicles (UAVs) into the fifth-generation (5G) and beyond cellular networks is a promising solution to achieve safe UAV operation as well as enabling diversified applications with mission-specific payload data delivery. In particular, 5G networks need to support three typical usage scenarios, namely, enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC), and massive machine-type communications (mMTC). On the one hand, UAVs can be leveraged as cost-effective aerial platforms to provide ground users with enhanced communication services by exploiting their high cruising altitude and controllable maneuverability in three-dimensional (3D) space. On the other hand, providing such communication services simultaneously for both UAV and ground users poses new challenges due to the need for ubiquitous 3D signal coverage as well as the strong air-ground network interference. Besides the requirement of high-performance wireless communications, the ability to support effective and efficient sensing as well as network intelligence is also essential for 5G-and-beyond 3D heterogeneous wireless networks with coexisting aerial and ground users. In this paper, we provide a comprehensive overview of the latest research efforts on integrating UAVs into cellular networks, with an emphasis on how to exploit advanced techniques (e.g., intelligent reflecting surface, short packet transmission, energy harvesting, joint communication and radar sensing, and edge intelligence) to meet the diversified service requirements of next-generation wireless systems. Moreover, we highlight important directions for further investigation in future work.Comment: Accepted by IEEE JSA

    A Multiband Biconical Log-periodic Antenna for Swarm Communications

    Get PDF
    In this paper, we present a specific multiband antenna design that addresses the problem of communication with unmanned aerial vehicles (UAVs). We consider a scenario where multiband single-antenna UAV communicates with the rest of the swarm members that are equipped with similar antennas. The key point in the design is that the communication does not require high or low elevation angles in most of the cases. The suggested design has a sufficient degree of freedom to select the desired features for the field pattern while keeping other features such as antenna impedance and gain relatively stable or at least in the acceptable operation region

    Adaptive Coding and Modulation Aided Mobile Relaying for Millimeter-Wave Flying Ad-Hoc Networks

    Full text link
    The emerging drone swarms are capable of carrying out sophisticated tasks in support of demanding Internet-of-Things (IoT) applications by synergistically working together. However, the target area may be out of the coverage of the ground station and it may be impractical to deploy a large number of drones in the target area due to cost, electromagnetic interference and flight-safety regulations. By exploiting the innate \emph{agility} and \emph{mobility} of unmanned aerial vehicles (UAVs), we conceive a mobile relaying-assisted drone swarm network architecture, which is capable of extending the coverage of the ground station and enhancing the effective end-to-end throughput. Explicitly, a swarm of drones forms a data-collecting drone swarm (DCDS) designed for sensing and collecting data with the aid of their mounted cameras and/or sensors, and a powerful relay-UAV (RUAV) acts as a mobile relay for conveying data between the DCDS and a ground station (GS). Given a time period, in order to maximize the data delivered whilst minimizing the delay imposed, we harness an ϵ\epsilon-multiple objective genetic algorithm (ϵ\epsilon-MOGA) assisted Pareto-optimization scheme. Our simulation results demonstrate that the proposed mobile relaying is capable of delivering more data. As specific examples investigated in our simulations, our mobile relaying-assisted drone swarm network is capable of delivering 45.38%45.38\% more data than the benchmark solutions, when a stationary relay is available, and it is capable of delivering 26.86%26.86\% more data than the benchmark solutions when no stationary relay is available

    Collision-free cooperative Unmanned Aerial Vehicle protocols for sustainable aerial services

    Full text link
    [EN] Unmanned Aerial Vehicles (UAVs) are offering many global industry sectors the opportunity to adopt more sustainable business models. They offer innovative ways of managing resources and water and offer newer opportunities to address key challenges in many areas like border surveillance, precision agriculture and search and rescue missions. All these new applications areas tend to require the cooperation of groups, or "swarms" of UAVs to provide collaborative sensing and processing solutions. These new scenarios impose new requirements in terms of safety, coordination, and operation management. This paper provides an overview of some of the technical challenges that multirotor UAVs are still facing in terms of aerial coordination and interaction. In this regard, it focusses on recent developments available in the literature and presents some contributions realised during the past few years by the authors addressing UAV interaction to achieve collision-free flights and swarm-based missions. Based on the analysis provided in this work, the paper is able to provide insight into the challenges still open that need to be solved in order to enable effective UAV-based solutions to support sustainable aerial services.Ministerio de Ciencia e Innovacion, Grant/AwardNumber: RTI2018-096384-B-I00Fabra, F.; Vegni, AM.; Loscri, V.; Tavares De Araujo Cesariny Calafate, CM.; Manzoni, P. (2022). Collision-free cooperative Unmanned Aerial Vehicle protocols for sustainable aerial services. IET Smart Cities. 4(4):231-238. https://doi.org/10.1049/smc2.120282312384

    A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles

    Full text link
    In recent years, there has been a dramatic increase in the use of unmanned aerial vehicles (UAVs), particularly for small UAVs, due to their affordable prices, ease of availability, and ease of operability. Existing and future applications of UAVs include remote surveillance and monitoring, relief operations, package delivery, and communication backhaul infrastructure. Additionally, UAVs are envisioned as an important component of 5G wireless technology and beyond. The unique application scenarios for UAVs necessitate accurate air-to-ground (AG) propagation channel models for designing and evaluating UAV communication links for control/non-payload as well as payload data transmissions. These AG propagation models have not been investigated in detail when compared to terrestrial propagation models. In this paper, a comprehensive survey is provided on available AG channel measurement campaigns, large and small scale fading channel models, their limitations, and future research directions for UAV communication scenarios

    Capacity bounds for dense massive MIMO in a line-of-sight propagation environment

    Get PDF
    The use of large-scale antenna arrays grants considerable benefits in energy and spectral efficiency to wireless systems due to spatial resolution and array gain techniques. By assuming a dominant line-of-sight environment in a massive multiple-input multiple-output scenario, we derive analytical expressions for the sum-capacity. Then, we show that convenient simplifications on the sum-capacity expressions are possible when working at low and high signal-to-noise ratio regimes. Furthermore, in the case of low and high signal-to-noise ratio regimes, it is demonstrated that the Gamma probability density function can approximate the probability density function of the instantaneous channel sum-capacity as the number of served devices and base station antennas grows, respectively. A second important demonstration presented in this work is that a Gamma probability density function can also be used to approximate the probability density function of the summation of the channel's singular values as the number of devices increases. Finally, it is important to highlight that the presented framework is useful for a massive number of Internet of Things devices as we show that the transmit power of each device can be made inversely proportional to the number of base station antennas.20
    corecore