61 research outputs found

    Industrial flow measurement

    Get PDF
    This thesis discusses the intrinsic worth of a published work, ‘Industrial Flow Measurement’ (Appendix A), a handbook written and revised by the author over a period of 30 years. The author first discusses the need to measure flow and then moves on to the raison dâ€™Ăªtre of the handbook before looking at a brief history of flow measurement. Although not claiming that any single attribute of the handbook is unique, the author nonetheless postulates that because it incorporates several distinctive features, at a number of different levels, these agents combine to make it one-of-a- kind. The author moves on to an overview of existing flow metering technologies discussed within the handbook. Finally, he looks at what he considers is a major gap in the collected body of knowledge – the field of multiphase and water-cut metering and provides a justification, not only for its inclusion in the future but for future investigation

    Devices and methods for wet gas flow metering: a comprehensive review

    Get PDF
    Wet gas is commonly encountered in various industries, including energy, chemical, and electric power sectors. For example, natural gas extracted from production often contains small amounts of liquid, such as water and hydrocarbon condensates, which classifies it as wet gas. The presence of liquid within the gas poses challenges for accurate flow measurement. To improve the performances of wet gas flow metering methods, significant research and development efforts have been invested into the wet gas flow metering technologies due to their vital importance in the production, transfer, and trade benefits. This paper presents a comprehensive overview of the recent development of wet gas flow metering. Firstly, a comprehensive discussion of the Lockhart-Martinelli parameter (Xlm) and its relation to the gas void fraction (Ă“g) is presented, which was mostly overlooked in previous wet gas research work. The occurrence of various flow patterns in wet gas conditions at different orientations (horizontal and vertical) was explored. Following an investigation of pressure impact on the wet gas flow patterns and development of the wet gas regions, a different test matrix for further research work was suggested. After a novel classification of wet gas measurement methods, the paper offers a detailed comparison of differential pressure (DP) meters including Venturi, Cone meter, and orifice meters, by considering both liquid and gas flow rate measurements. Secondly, the paper discusses and compares vortex flow meters, Coriolis and ultrasonic meters in comparison to DP meters. Notable phase fraction meters are also examined and compared to one another. Thirdly, the paper reviewed the concept of existing and potential hybrid wet gas meters, conducting a detailed discussion and comparison with commercial solutions by evaluating their ranges and accuracies. This assessment provides valuable insights into the capabilities of these hybrid meters, highlighting their potential to enhance the measurement of wet gas flow rates

    Gas-Liquid Two-Phase Flow Rate Measurements by Flow Division and Separation Method

    Get PDF

    Two-phase slug flow measurement using ultra-sonic techniques in combination with T-Y junctions

    Get PDF
    The accurate measurement of multiphase flows of oil/water/gas is a critical element of oil exploration and production. Thus, over the last three decades; the development and deployment of in-line multiphase flow metering systems has been a major focus worldwide. Accurate measurement of multiphase flow in the oil and gas industry is difficult because there is a wide range of flow regimes and multiphase meters do not generally perform well under the intermittent slug flow conditions which commonly occur in oil production. This thesis investigates the use of Doppler and cross-correlation ultrasonic measurements made in different high gas void fraction flow, partially separated liquid and gas flows, and homogeneous flow and raw slug flow, to assess the accuracy of measurement in these regimes. This approach has been tested on water/air flows in a 50mm diameter pipe facility. The system employs a partial gas/liquid separation and homogenisation using a T-Y junction configuration. A combination of ultrasonic measurement techniques was used to measure flow velocities and conductivity rings to measure the gas fraction. In the partially separated regime, ultrasonic cross-correlation and conductivity rings are used to measure the liquid flow-rate. In the homogeneous flow, a clamp-on ultrasonic Doppler meter is used to measure the homogeneous velocity and combined with conductivity ring measurements to provide measurement of the liquid and gas flow-rates. The slug flow regime measurements employ the raw Doppler shift data from the ultrasonic Doppler flowmeter, together with the slug flow closure equation and combined with gas fraction obtained by conductivity rings, to determine the liquid and gas flow-rates. Measurements were made with liquid velocities from 1.0m/s to 2.0m/s with gas void fractions up to 60%. Using these techniques the accuracies of the liquid flow-rate measurement in the partially separated, homogeneous and slug regimes were 10%, 10% and 15% respectively. The accuracy of the gas flow-rate in both the homogeneous and raw slug regimes was 10%. The method offers the possibility of further improvement in the accuracy by combining measurement from different regimes

    Liquid Flowmeter Using Thermal Measurement; Design and Application

    Get PDF
    This thesis presents flowmeter devices which can measure flowrate, pressure and temperature offlowing liquid samples using thermal measurement method. Typical thermal mass flowmeter usesthermal properties of materials to obtain flow features only for gases. We designed and fabricatedflowmeter devices with various functionalities such as: measuring properties of flowing liquid andidentifying the type of liquid samples.Thermal measurement methods using temperature sensor is a key of our flowmeter’s workingprinciple. The thermal mass flowmeter consists of a glass capillary, a tungsten wire heater, and aresistance temperature detector (RTD) sensor. The heater and sensors are integrated on the surface ofthe glass capillary. Noncontact flow measurement between sensor and liquid sample prevents flowdisturbance and corrosion of sensors. When robustness and sensitivity are required for flowmeasurement, the thermal mass time of flight (ToF) measurement method, along with its simplereadout, make it a great candidate for industrial and vehicle applications. The heat traveling timemeasurement is the method that measures the time of flight of thermal mass from heating site tosensing site. Depending on the flowrate of fluid and thermal diffusivity of the liquid sample, the heattraveling time differs.However, low response speed and low sensitivity characteristics are drawbacks of thermalmeasurement methods, which are influenced by thermal properties of materials and structural design.To increase sensitivity of our flowmeter, we fabricated and designed the device using differentcomponent variables such as: size and thickness of RTD sensors, heating element, and glass tubethickness. Also, the flowmeter introduced in this work has two different types based on their size andthey enable large flow range measurement. Micro-flowmeter can measure flowrate less than 100μl/min and macro-flowmeter measures flowrate from 1 to 10 gallon per minute (GPM) of deionized(DI) water.In this work, we used a number of techniques to increase the functionality of our device. Bypasssystem enables to measure high range of flowrate. Also, we designed gravity-driven flowratecalibration system to generate accurate flowrates. Moreover, we developed flowrate monitoringsystem to improve the performance of calibration system

    Design of a high-pressure research flow loop for the experimental investigation of liquid loading in gas wells

    Get PDF
    Liquid loading in producing gas wells is the inability of the produced gas to remove produced liquids from the wellbore. A review of existing flow loops worldwide revealed that specialized areas of research such as liquid loading in gas wells are still lacking dedicated test facilities. This project presents the design of a new dedicated facility to be located at the TowerLab at the Richardson building with adequate operating conditions to reproduce the flow regimes encountered prior to and after the onset of liquid loading in gas wells. The facility consists of a compressed air system, pipelines for air and water, a pressure vessel containing glass beads, an injection manifold, and flow control and monitoring devices. Our results show that three compressors working in parallel is the most technical and economic configuration for the TowerLab based on the overall costs provided by the supplier, the footprint but most importantly the flexibility. The design of the pressure vessel required a cylindrical body with top and bottom welded-flat head covers with multiple openings to minimize its weight. The pipelines connecting major equipment and injection manifold located at the pressure vessel were selected based on the superficial velocities for air and water. These values also showed the need for independent injection using two manifolds instead of commingling flow through a tee joint. The use of digital pressure gauges with an accuracy of 0.05 to 25% and coriolis or vortex meters to measure air flowrate is also suggested. For the water line, installation of turbine meters results in the most economic approach

    Evaluation of a Dual Chamber Vortex Generator for a lithium bromide-water absorption refrigeration system

    Get PDF
    Absorption refrigeration systems are widely accepted as a means of utilizing waste heat from industrial processes to provide cooling to buildings. In many cases waste heat is in the temperature range from 60°C to 90°C. At these relatively low temperatures, conventional absorption refrigeration systems operate at a low coefficient of performance (COP) rendering them economically infeasible. A new concept, the Dual Chamber Vortex Generator (DCVG) has been designed to replace the conventional generator in a lithium bromide-water absorption refrigeration system. The conceptual basis of the DCVG is that a vortical flow would be established inside the DCVG creating a high speed, low pressure region that would augment the separation of refrigerant from the absorbent. The motivation of the DCVG is to improve the COP and allow for absorption refrigeration systems to be an economically feasible means of utilizing waste heat in the 60°C to 90°C temperature range. Environmental benefits would also be realized by using waste heat instead of consuming additional energy resources. A previously built DCVG was tested on a modified pre-existing test stand. Sixteen experimental trials were conducted in the Applied Fluids Laboratory at Rochester Institute of Technology to assess the DCVG\u27s performance with varying inlet temperatures and varying inlet flow rates to the DCVG. Visual observations as well as temperature, pressure, and flow rate measurements were recorded at various points on the test stand to analyze the DCVG\u27s performance. Results of this study indicate that high levels of uncertainty cause the collected data to be inconclusive in terms of determining the benefits of the DCVG compared to a conventional generator. A method of comparing the DCVG to a conventional generator is necessary as well. Also, during the experimental trials, a stable vortical flow could not be established in the DCVG. An extensive list of detailed recommendations is provided to direct this project toward its goal of determining whether or not a DCVG is beneficial to an absorption system

    Design, Fabrication, and Testing of a Micro Fuel Injection Swirler for Lean Premixed Combustion in Gas Turbine Engines

    Get PDF
    Due to growing energy demands and the need for increased fuel consumption efficiency, environmental protection agencies are imposing more stringent emissions regulations on gas turbine combustion systems with emphasis on NOx emissions reduction. Emerging technological combustion schemes to reduce NOx commonly employ lean premixed combustion. Decreases in NOx are globally obtained by flame temperature decrease and locally improved by homogeneity of the reacting mixture. A new micro fuel injection swirler, capable of providing efficient and rapid mixing over a short distance, is presented in this thesis. The conception of the Micro Fuel Injection Swirler (MFIS) was motivated by the need for enhanced mixing devices in lean premixed combustion and the capabilities of a micro manufacturing technique developed at Louisiana State University in conjunction with Mezzo Technologies. The MFIS uses a circular array of porous panels manufactured with an internal fluid cavity which allows for micro scale fuel distribution. The fuel is injected perpendicular to the blade opposing the oncoming stream of air which produces a highly turbulent swirling flow to enhance combustion stability at ultra lean operation necessary to reduce NOx emissions. A process was developed to fabricate and assemble the MFIS economically and reliably while ensuring dimensional stability. A benchmark swirler was also manufactured with similar dimensions as the MFIS but none of the inherent geometry characterizing the advantages of the MFIS. A combustion chamber was designed and fabricated to provide testing infrastructure for verifying the performance of the MFIS. Combustion results indicated that the MFIS was capable of achieving relatively lower equivalence ratios at LBO compared to benchmark cases tested. At a set equivalence ratio, the MFIS produced higher flame temperatures, higher heat release rates, and comparable NOx emissions. At equivalent operating temperatures, the MFIS produced nearly equal NOx emissions compared to the perfectly premixed case. Hydrogen testing showed that the lean blowout limits could be extended with hydrogen addition, providing further reduction in NOx while allowing stable combustion. In summary, the MFIS was capable of providing efficient air/fuel mixing over a short premixing distance, affirming its effectiveness in lean premixed combustion systems

    Fluid flow measurement using electrical and optical fibre strain gauges.

    Get PDF
    The design, development and calibration of three flow sensors to measure the speed and direction of fluid flow is presented in this thesis. The force exerted by the fluid flow on the sensors are measured using strain gauges. Multidirectional fluid flow measurement has been made possible by vectorial addition of the orthogonal flow components. The fluid speed and direction are generated irrespective of each other. Electrical resistance strain gauges are used as the force measuring device for the first version of the flow meter. These strain gauges are bonded to the four longitudinal surfaces of a square-sectioned, elastic, rubber cantilever having a drag element attached to its free end. An attempt has been made to optimise the shape and dimensions of the elastic beam to obtain a constant drag co-efficient over a wide flow range. Calibration of the electrical strain gauge flow sensor has been performed in a wind tunnel to measure air flow. The sensor has a repeatability of 0.02%, linearity within 2% and a resolution of 0.43 m/s. The most noteworthy feature of the flow sensor is its quick response time of 50 milliseconds. The sensor is able to generate a measurement of flow direction in two dimensions with a resolution of 3.6". Preliminary measurements in a water tank enabled the speed of water to be measured with a resolution of 0.02 m/s over a range from 0 to 0.4 m/s. An optical fibre strain sensor has been designed and developed by inserting grooves into a multimode plastic optical fibre. As the fibre bends, the variation in the angle of the grooves causes an intensity modulation of the light transmitted through the fibre. A mathematical model has been developed which has been experimentally verified in the laboratory. The electrical strain gauge was replaced by the fibre optic strain gauge in the second version of the flow sensor. Two dimensional flow measurement was made possible by attaching two such optical fibre strain gauges on the adjacent sides of the square sectioned rubber beam. The optical fibre flow sensor was successfully calibrated in a wind tunnel to generate both the magnitude and direction of the velocity of air. The flow sensor had a repeatability of 0.3% and measured the wind velocity up to 30 M/s with a magnitude resolution of 1.3 m/s and a direction resolution of 5.9'. The third version of the flow sensor has used the grooved optical fibre strain sensor by itself without the rubber beam to measure the fluid flow. Wind tunnel calibration has been performed to measure two dimensional wind flow up to 35 m/s with a resolution of 0.96 m/s
    • …
    corecore