17 research outputs found

    Mask-Based Second-Generation Connectivity and Attribute Filters

    Full text link

    Rubble detection from VHR aerial imagery data using differential morphological profiles

    Get PDF
    Rubble detection is a key element in post disaster crisis assessment and response procedures. In this paper we present an automated method for rapid detection and quantification of rubble from very high resolution (VHR) aerial imagery of urban regions. It is a two step procedure in which the input image is projected on to a hierarchical representation structure for efficient mining and decomposition. Image features matching the geometric and chromatic properties of rubble are fused into a rubble layer that can be re-adjusted interactively. The targeted objects are evaluated based on a density metric given by spatial aggregation. The method is tested on a small-scale exercise on the publically available aerial imagery of Port-au-Prince, Haiti. Performance and preliminary results are discussed.JRC.G.2-Global security and crisis managemen

    Focus Area Extraction by Blind Deconvolution for Defining Regions of Interest

    Full text link

    Efficient geodesic attribute thinnings based on the barycentric diameter

    No full text
    International audienceAn attribute opening is an idempotent, anti-extensive and increasing operator, which removes from an image connected components which do not fulfil a given criterion. When the increasingness property is dropped, we obtain a - more general - attribute thinning. In this paper, we propose efficient grey scale thinnings based on geodesic attributes. Given that the geodesic diameter is time consuming, we propose a new geodesic attribute, the barycentric diameter to speed up the computation time. Then, we give the theoretical error bound between these two attributes, and we note that in practice, the barycentric diameter gives very similar results in comparison with the geodesic diameter. Finally, we present the algorithm with further optimisations, to obtain a 60Ă— speed up. We illustrate the use of these thinnings in automated non-destructive material inspection: the detection of cracks. We discuss the advantages of these operators over other methods such as path openings or the supremum of openings with segments

    Efficient component-hypertree construction based on hierarchy of partitions

    Get PDF
    The component-hypertree is a data structure that generalizes the concept of component-tree to multiple (increasing) neighborhoods. However, construction of a component-hypertree is costly because it needs to process a high number of neighbors. In this article, we review some choices of neighborhoods for efficient component-hypertree computation. We also explore a new strategy to obtain neighboring elements based on hierarchy of partitions, leading to a more efficient algorithm with the counterpart of a slight decrease of precision on the distance of merged nodes

    Remote Sensing Image Classification Using Attribute Filters Defined over the Tree of Shapes

    Get PDF
    International audience—Remotely sensed images with very high spatial resolution provide a detailed representation of the surveyed scene with a geometrical resolution that at the present can be up to 30 cm (WorldView-3). A set of powerful image processing operators have been defined in the mathematical morphology framework. Among those, connected operators (e.g., attribute filters) have proven their effectiveness in processing very high resolution images. Attribute filters are based on attributes which can be efficiently implemented on tree-based image representations. In this work, we considered the definition of min, max, direct and subtractive filter rules for the computation of attribute filters over the tree of shapes representation. We study their performance on the classification of remotely sensed images. We compare the classification results over the tree of shapes with the results obtained when the same rules are applied on the component trees. The random forest is used as a baseline classifier and the experiments are conducted using multispectral data sets acquired by QuickBird and IKONOS sensors over urban areas

    Inf-structuring Functions: A Unifying Theory of Connections and Connected Operators

    Get PDF
    International audienceDuring the last decade, several theories have been proposed in order to extend the notion of set connections in mathematical morphology. These new theories were obtained by generalizing the definition to wider spaces (namely complete lattices) and/or by relaxing some hypothesis. Nevertheless, the links among those different theories are not always well understood, and this work aims at defining a unifying theoretical framework. The adopted approach relies on the notion of inf-structuring function which is simply a mapping that associates a set of sub-elements to each element of the space. The developed theory focuses on the properties of the decompositions given by an inf-structuring function rather than in trying to characterize the properties of the set of connected elements as a whole. We establish several sets of inf-structuring function properties that enable to recover the existing notions of connections, hyperconnections, and attribute space connections. Moreover, we also study the case of grey-scale connected operators that are obtained by stacking set connected operators and we show that they can be obtained using specific inf-structuring functions. This work allows us to better understand the existing theories, it facilitates the reuse of existing results among the different theories and it gives a better view on the unexplored areas of the connection theories

    Concurrent Computation of Attribute Filters on Shared Memory Parallel Machines

    Full text link

    Interactive segmentation based on component-trees

    Get PDF
    International audienceComponent-trees associate to a discrete grey-level image a descriptive data structure induced by the inclusion relation between the binary components obtained at successive level-sets. This article presents an original interactive segmen- tation methodology based on component-trees. It consists of the extraction of a subset of the image component-tree, enabling the generation of a binary object which fits at best (with respect to the grey-level structure of the image) a given binary target selected beforehand in the image. A proof of the algorithmic efficiency of this methodological scheme is proposed. Concrete application examples on magnetic resonance imaging (MRI) data emphasise its actual computational efficiency and its usefulness for interactive segmentation of real images
    corecore