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Abstract

Component-trees associate to a discrete grey-level imdgsaiiptive data structure induced by the inclusion retati
between the binary components obtained at successivedets| This article presents an original interactive segme
tation methodology based on component-trees. It condisteaxtraction of a subset of the image component-tree,
enabling the generation of a binary object which fits at begh(respect to the grey-level structure of the image) a
given binary target selected beforehand in the image. Afmbthe algorithmic éiciency of this methodological
scheme is proposed. Concrete application examples on tiagesonance imaging (MRI) data emphasise its actual
computational fiiciency and its usefulness for interactive segmentatioealfimages.

Key words: Mathematical morphology, component-tree, grey-levelges interactive segmentation.

1. Introduction

Thecomponent-tregalso known aslendrond1l, 2], confinement tref8] or max-tred4], is a graph-based structure
which models some characteristics of a grey-level imagedbgiclering its binary level-sets obtained from successive
thresholding operations. Initially proposed in the fieldstdtistics [5, 6], the component-tree has been (re)defimed i
the theoretical framework of mathematical morphology amlved, in particular, in the development of morpholog-
ical operators [7, 4, 8].

By definition, component-trees are particularly well-sdifor the design of methods devoted to procesgaand
analyse grey-level images based @mriori hypotheses related to the topology (connectedness) ansptfic
intensity (locallyglobally minimal or maximal) of structures of interest. @ hbase of colour images is currently
under investigation [9, 10]; the involvement of componggres in fuzzy grey-level images is described in [11].)
Based on these properties, but also thanks to methodolatgealopments related to complex knowledge handling
[12, 13, 14], component-trees have been involved in thegdesf several image processjagalysis applications,
especially for filteringsegmentation applications.

It has to be noticed that several works related to compotteas have been devoted to enable théicient
computation, under specific assumptions or in more genesd<[3, 4, 7, 15, 16, 17, 18]. In particular, the ability
to compute component-trees in (quasi-)linear time opeaswdly to the development of interactive antiaent
segmentation methods, provided that the operations peeion an imageia its component-tree also present a low
algorithmic complexity.

The design of interactive segmentation methods is a quiteeaesearch field. This dynamism is in particular
justified by {) the increasing necessity to analyse images in a largerspecif application fields (medical imag-
ing, remote sensing, biometry, metrology, etdi)), the dificulty to develop fully automatic segmentation methods
(parametrisation, initialisation, etc.), and )Y the importance to develop segmentation methods as toofs#isting
the user by explicitly using its expertise.
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Figure 1: (a) A grey-level image. (b) A segmentation of (a)uassd to be the expected one.

@ (b) ()

Figure 2: Three approximate segmentations of Figure 1(ajr(dgrsegmentation, (b) oversegmentation, and (c) mixed (avéesegmentation,
with respect to the expected result of Figure 1(b).

.
@ (b)

Figure 3: The errors of the segmentations of Figure 2 (falsiiges in red, false negatives in green): (a) undersegrtientarror in Figure 2(a),
(b) oversegmentation error in Figure 2(b), (c) undersegntientand oversegmentation errors in Figure 2(c).

Most of interactive segmentation methods require the sisssistance to provide markers enabling to guide the
segmentation process, from a parametrigangleometric point of view, or to “correct” a rough segmeiatainitially
performed in a manual fashion.

In this article, we focus on this second kind of issue, eglgcin the case where the structures of interest to
be segmented are the ones of (local or global) extremalsittes,i.e., the darkest or the brightest ones, which is a
frequent case in several applications and especially iricakidhaging. In order to illustrate this issue, let us cdesi
the toy-example in Figures 1-3. The binary image depictdedgnre 1(b) is, for instance, the expected segmentation
of the grey-level image depicted in Figure 1(a) for a givenadesemantic elements. A user, when performing an
initial (manual) segmentation of the same image, in an imate but fast and easy-to-do fashion, will generally
obtain results such as the ones proposed in Figure 2 whigfhlp@pproximate the desired result. Based on the
user-dependent way this initial segmentation is performesimay obtain dferent kinds of initial segmentations:
undersegmentation (Figure 2(a)), oversegmentation (€ig(b)), or mixed undgoversegmentation (Figure 2(c)).
Such results will lead to the generation of false positiveg@ false negatives (see Figure 3). A crucial issue then
consists in removing, automatically, or at least quitelgasian interactive way, these errors in order to finally @dta
a correct segmentation result.

In this article, we propose a method enabling to tackle thidblem by considering the component-tree of the
image to be segmented, andfinding the best segmentation induced by this componeaiatith respect to an initial
approximate segmentation provided by the usdore formally, we propose to answer the following question

(Q) Letl be a grey-level image (Figure 1(a)), [etbe its component-tree, and Iet be a binary object defined on
2



the same domain ds(a manual segmentation, Figure 2); how can we determinetapar and thus a pai$
of | (Figure 1(b)) which enables to fit at bddtwith the lowest computational cost?

This “best” segmentation can, in particular, be considérech a quantitative point of view, by finding a soluti&
which minimises the amount of false positifesgatives betwee@ andM, which is actually supposed to be close to
the correct result.

Such a question can be crucial, for instance to develop iraagkysis procedures involving ground-truth data [13]
or to propose assisted-segmentation procedures such asdbevhich will be described in the last sections.

The sequel of this article is organised as follows. Sectipne®ents related works dealing with component-trees
in image analysis and with interactive segmentation methodSection 3, usual definitions related to digital imaging
and component-trees are recalled, making this articlecegifained. The contributions of this article are located i
Sections 4-6:

e A theoretical study (Section 4) is proposed to answer goeg®), and to prove the algorithmidheiency of
the proposed solution.

e An interactive segmentation methodology, based on theswetical results is described (Section 5).

e The methodology is applied on medical images, namely calelmgnetic resonance data of adults and foetuses
(Section 6). Its fiiciency is then assessed by comparison to other strategies.

Concluding remarks and perspectives will be found in Sacfio For the sake of readability and concision, all the
proofs are provided in Appendix A, at the end of the article.

2. Related works

This section presents previous works devoted to the usermponent-trees for image procesgegplysis and an
overview of interactive segmentation methods, then engltb position the proposed work in its methodological and
applicative context.

2.1. Component-trees

Component-trees have been involved in the developmentvefaleapplications related to image processing and
analysis. Most of these methods are devoted to filteringaarskgmentatioh In particular, a large part of them
have been developed for (bio)medical image processingelefl9, 20, 21] and brain structures [22] segmentation
from 3D magnetic resonance or X-ray data, melanocytic negirentation from dermatological photographs [23],
neuron filtering in 3D confocal microscopy or extraction obfein chains from 2D data [24]. Other methods have
also been developed for a large spectrum of applicatiorsfislelgmentation of video data [4], segmentation of wood
micrograph [25], segmentation of astronomical data [1d] émcument analysis [14].

Note that other kinds of image processing applications teen considered, in particular, image registration
[26, 3], image compression [4], image retrieval [27, 28]age classification [29], interactive 3D visualisation [30]
multithresholding [16] or document binarisation [31].

In the field of filteringsegmentation, all the proposed methods have been desigrastdct the structures of
interest by using information related to the value of attiils stored at each node of the tree. In such strategies,
an attribute or, more generally, a set of attributes, areseh@ccording to the hypotheses related to the applicative
context. These attributes are assumed to model some obrdgtictproperties of the structures of interest, and can be
used in diferent ways:

e the desired values of the attributes (or the number of nofle@grimal value [22]) can be chosen by the user in
order to select the relevant nodes and thus obtain the assdcegmentation [19, 20, 17, 24];

INote that the distinction between filtering and segmentaimsed on component-trees is generally not clearly definece segmentation is
performed in a filtering fashion (see Section 4.1 for more t8tai



¢ the relevant values can be determined by analysing thetsignaf the attributei,e., the evolution of their value
with respect to the grey-level of the nodes [25];

¢ the relevant values can be learnt from exampteg, by providing segmented ground-truth directly character-
ising the shape of the objects to be detected [23], or by figediclassification process, in particular when the
set of attributes becomes to large [29, 13, 14].

In these works, component-trees have then only been useatidrability to discriminate nodes with respect to
attributes, thus leading to automatearametric segmentation methods.

It is however possible to directly use the component-traecgire by taking advantage of the spapabtometric
decomposition of the image into nogesnnected components that it provides, in order to perfotieractive seg-
mentation. Methods based on such an alternative strategyydshompute a segmentation result, no longer thanks to
node attributes, but to a user-defined approximate reshithashould then be matched at best by a relevant set of
nodes, as discussed in Section 1. To the best of our knowléugenethodology proposed in the next sections is the
first one based on this strategy.

2.2. Interactive segmentation

Automatic segmentation algorithms do not always provideueate results and are sometimes ndfisiently
robust, especially in application fields in which imagesgne to variability. Moreover, it is often crucial to achée
a precise segmentation of an image (for instance, to budldrgi-truths or in the context of computer-aided diagnosis)
in a reasonable time.

The design of interactive segmentation methods is then weaesearch field and provides a solution to this
by allowing a user to guide afat refine the segmentation in an interactive fashion. Thegae of an interactive
segmentation algorithm is to speed up the time consumingegeof manual segmentations (which are, moreover,
prone to errors and imprecision in the localisation of obgamtours). Interactive segmentation algorithms can also
help to ensure the reproducibility betweeffelient segmentations of identical images, provided for gtarny dif-
ferent experts. Several ways to introduce interaction iagmentation process have been considered, depending on
the segmentation strategy:

e model initialisation, fine tuning of parameters and evelhjuateractive model refinement in the context of
deformable or level-set based models [32, 33];

¢ delineation of the object of interest by successive intaracselections of optimal boundaries between the
current cursor position and previously specified seedgipnosiin the context of intelligent scissors or live-wire
algorithms, which are based on an optimal path search inghtesi graph [34, 35];

e manual depiction of foreground and background markersdrctimtext of watershed algorithm [36, 37], seeded-
region growing based algorithms [38, 39], graph-cuts [4(,at binary-partition tree algorithms [42, 43]. A
comparative evaluation of interactive segmentation @gms based on interactive marker selection is available
in [44].

It could also be noted that most segmentation strategiebeased either in an unsupervised or semi-supervised
fashion. By contrast with the above methods, the algorithmp@sed in this paper involves only the rough delineation
of foreground objects (and not background parts) and ischasea single scalar parameter) @llowing to quickly
browse among the fierent possible segmentations. Moreover, we focus in thideon the frequent case where the
structures of interest to be segmented are the ones ofyaodtemal intensities.

3. Background notions

In this section, we recall standard notions related to carepttrees. For complementary details, the reader may
also refer to [4, 25, 15].



3.1. Definitions and notations

Letn € N*, Let us consider an adjacency relation on the discrete gfitiedd byZ", for instance, the 2 or the
(3" - 1)-adjacencyi.e. the 4- (resp. the 6-) or the 8- (resp. the 26-) adjacen&rifresp. Z%). Let X € Z" be a
non-empty set of.".

We say that two points,y € X are connected (iiX), and we notex ~x v, if there exists a sequence_, (t > 1)
of elements o such thatx; = x, X, = y andxk, X1 are adjacent for akk € [1,t— 1]. Note that~ is an equivalence
relation onX. The connected componentsXfare the elements of the quotient 3gt-x (notedC[X] in the sequel).
We say thaiX is connected i€[X] = {X}.

Let E c Z" be a finite connected set. Let< T € Z. LetV = [ L, T] c Z. A discrete grey-level imagecan be
defined as a functioh: E — V (we also notd e VFE).

For anyv € V, we define the thresholding functiofy by

X : VE = PE)
| — {XeE|v<I(X)}

whereP(E) ={Y |Y C E}.
For anyv € V, and anyX C E, we define the cylinder functioBx, by

Cxv : E - V

v ifxeX
X - .
1 otherwise

A discrete imagé € VE can then be expressed as

| = \/va(n,v = \/ \/ Cxv

veV veV XeC[Xv(1)]

where\/ is the pointwise supremum for the sets of functions.

3.2. Component-trees

Let K = Uvev CIXu(1)] be the set of all the connected components obtained frenditferent thresholdings df
at valuess € V. The inclusion relatiort is then a partial order oK. Letv; < v, € V. Let By, B, C E be the binary
images defined b, = Xy, (I) for k € {1,2}. LetC, € C[B;] be a connected componentBj. Then, there exists a
(unique) connected compone®y € C[B,] of B; such thaC, c C;.

Based on these properties, it can be easily deduced thatatbseHliagram of the partially ordered s&t €) is a
tree {.e., a connected acyclic graph), and more especially a rootedtine root of which is the supremufa(l) = E.
This tree is called theomponent-treef |.

Definition 1. Let | € VE be a grey-level image. Tlewmponent-treef | is the rooted tree = (%, L, R) such that:

® = | erx)]

veV

YCZcX=>Y=Z
R=sup,c) =X, (I)=E

L:{ (X,Y) e K2

YcXAVZeXK, }

The elements oK (resp. of L) are thenodes(resp. theedge$ of T. The element R is thieotof T. For any Ne K,
we set
ch(N) = {N" € K | (N,N") € L}

which is the set of thehildrenof the node N in T.
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Figure 4: (a) A grey-level imagk: [0,9]% — [0, 4] (from 0, in black, to 4, in white). (b—f) Threshold imag¥s(l) (white points) forv varying
from O (b) to 4 (f).

@ (b)

Figure 5: The component-tree b{see Figure 4(a)). Its levels correspond to increasinghiuieling values. The root {.e., the upper node located
at the level = 0) corresponds to the suppdt= [0, 9] of the image.

An example of component-tree defined for a 2D image is ilaistt in Figures 4 and 5.
Each node ofK is a binary connected component distinct from all the otleetes. However, such a connected
component can be an element@jiX,(1)] for several (successive) values V. For eachX € K, we set

m(X) = maxv e V| X € C[X,()]} = min{l (x)}

We then consider thaf is “associated” to the valug(X), i.e., to the highest value &f which generates this connected
component. This choice is justified by reconstruction adegitions which will be detailed in Section 4.1. An example
of such an elemenf can be observed in Figures 4(e) and (f) (on the right sideeirttages), where it corresponds to
a same binary connected component, while it generates oelyode at the level = 4 (which is the child of a node
at the level = 2) in the component-tree depicted in Figure 5.

The following definition, establishing “correlation scetdetween a node and a given binary object, will be useful
in the sequel of the article.

Definition 2. Let | € VE be a grey-level image. Let ¥ (X, L, R) be the component-tree of I. Let &% be a node
of T. Let GC Z" be a binary object. We set

pP(N,G) = INNGJ

PING) =IN\ [ ] N)Nngl
N’ech(N)

n(N,G) = IN\ G|

(NG =I(N\ [ ] N)\G
N’ech(N)

The value PN, G) (resp. (N, G)) is the number of points of N which belong (resp. do not béléogs. Note in
particular that
P(N,G) + n(N, G) = [N|



The value p(N,G) (resp. ri(N, G)) is the number of points of N which belong (resp. do not bélém& and which
do not belong to any children of N. Note in particular that

P'(NG)+m(N,G)=IN\ [ ] N
N’ech(N)

Remark 3. When building the component-tree of |, it is possible toestat each node N %K, the set of points

En=N\ | ] N (1)
N’ech(N)

This leads, in particular, to an algorithmically useful gigion {En}nex Of E. In such conditions, for a given binary
object GC Z", the computation of all the(N, G), p*(N, G), n(N, G) and (N, G) (N € K) can obviously be performed
in linear timeO(|E|). In the sequel, we will assume thgi\bG), p*(N, G), n(N, G) and ri(N, G) have been computed
and are then available for every nodedNK.

3.3. Image processing based on component-trees

Component-trees can be used to develop image procgmsalgsis procedures based on filtering or segmentation
strategies [25]. Such procedures generally consist ima@éng a subsek” € K among the nodes of the component-
treeT = (K, L,R) of a considered image: E — V.

When performing filtering, the (grey-level) resulting image: E — V induced by this set of nodes” can be

reconstructed as
It = \/ Cxmx) (2)
XeK”’

For instance, let us consider again the imagé Figure 1(a), also depicted in Figure 6(a). Oet (K, L, R) be the
component-tree of, depicted in Figure 6(b), and I&¢’ C K be a subset of nodes @f depicted in Figure 6(c). By
applying Equation (2) on this set of nodes, we will then gateesa filtered imagé; corresponding to the one depicted
in Figure 7(a). Note that in this image, the grey-levels & three nodes are preserved since each dodeK” is
associated to a cylinder function of valméX) (equal, for these three nodes, to 2, 3 and 4 respectively).

When performing segmentation, the (binary) resulting image E is defined as the union of the nodes¥f,

i.e,as
ls = U X
XeK’
By applying this equation on the set of nod&$ C K of Figure 6(c), we will generate a segmented image
corresponding to the one depicted in Figure 7(b).

In this last context, the determination of the nodes to pveses a complex issue, which can be handled by
considering attributed.€., qualitative or quantitative information related to eadd®) to characterise the nodes of
interest. An alternative solution is to search the set os@@ C K which enables to generate a binary object being
as similar as possible to a given binary targey/( an approximate segmentation obtained from a manual ghdes
the sequel of the article, we focus on this specific issueghvban be formalised as an optimisation problem.

4. Theoretical study

4.1. Problem to solve

Let| € VE be a grey-level image. L&t = (%, L,R) be the component-tree of Let M C E be a binary image.
Letd be a distance off(E). Question (Q), in Section 1, can then be reformulated dsvisl

(Q") How can we compute a set of nod&$ C K such thatd(|nes N, M) is minimal,i.e., such that the best binary
object which can be built frork is as close as possible kb?
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Figure 6: (a) A grey-level image. (b) The component-tre@& &f (K, L, R) (a). (c) A set of node¥” C K selected from the component-trégin

grey).
@ (b)

Figure 7: (a) Filtering result from Figure 6(a) based on titeo$ nodesk” depicted in Figure 6(c). (b) Segmentation result from Figi(e9 based
on the set of nodeX” depicted in Figure 6(c) (object in white).

More formally, the problem can be summarised as a minintisgiroblem, consisting in determinihg
K = arg, min {d( Ny(/ N, M)}
An intuitive solution for determining a useful distandas to consider the amount of false positilresgatives
induced byl Jnex N with respect to the considered binary object of intehdst
Definition 4. Leta € [0, 1]. Let d : P(E) x P(E) — R* be the function defined by
d*(X,Y) = X\ Y| + (1 — @)Y \ X| (3)
The pseudo-distange® constitutes a good similarity criterion between binaryeat§. Note that

d°(X,Y) =Y\ X|
d'(X,Y) =X\ Y|

i.e., dO(X,Y) (resp.d*(X, Y)) is the amount of false negatives (resp. false positiveX)with respect toy.
In the next sections, we will consider this distance. It Wil established that it leads to algorithmicalffi@ent
processes, and satisfactory applicative results.

4.2. Preliminary properties
The following property directly derives from the definit®of Section 3.2.

Property 5. Let | € VE be a grey-level image. Let E (%, L,R) be the component-tree of I. Let N ch(E).
Let®Kn = {(N" € K | N' ¢ N}. Let |y € VN be the grey-level image corresponding to the restrictiorl tf
the node N. The Hasse diagrafi(y, L) of the partially ordered setKy, C) enables to define the component-tree
Tn = (Kn, Ln, N) of Iy which is actually a subtree of T. Note in particular tH&} U {K}neche) is @ partition of K,
while {(E, N)}neche) U {LnIneche) IS @ partition of L.

The notation arg min, used here for the sake of clarity, isrity inaccurate since several sets of noBesay minimise a given distanak
3The functiond® is actually not a distance sind&(X, Y) = d*(Y, X) if and only if @ = 1/2,d*(X,Y) = 0 & X = 0 if and only ife € 10, 1[, and
d® does not satisfy, in general, the triangle inequality.

8



Definition 6. Let | € VE be a grey-level image. Let ¥ (%, L, R) be the component-tree of |. LetexE. We set
Ky ={N e K |xe N}
which is the subset of all the nodesfwhich contain x.

SinceE € K, the following property is obvious, while the next one des\from the structure of the component-
tree.

Property 7. Let | € VE be a grey-level image. Let ¥ (%, L, R) be the component-tree of |. LetexE. ThenK, is
non-empty.

Property 8. Let | € VE be a grey-level image. Let ¥ (%, L, R) be the component-tree of |. LeexE. Then (%K, C)
is a completely ordered set.

Definition 9. Let | € VE be a grey-level image. Let ¥ (%, L, R) be the component-tree of |. We define the function

G : PXK) - PE)
K = Une N

We set
Q= G(P(K)) = {G(K s

which is the set of all the binary objects which can be germelfiom the subsets of nodesof

Although there exist'#! distinct subset$(” of %, most of these subsets generate a same binary obj&gtnodre
formally, we havd@| < |P(K)| (and generally@| < |P(K)I).

Property 10. Let | € VE be a grey-level image. Let ¥ (K, L, R) be the component-tree of I. L@tbe the set of the
objects which can be generated from the subsets of nodks bét Qe Q. Then, we have

ClQl = ming Q)

Less formally, the set of the connected componen®® f actually a subset of nodes %f which is included in any
other subset of nhodes” of K generatingQ. Such set$<” are then redundant (they contain in particular some nodes
which are included in other nodes, and then useless for therggon ofQ).

4.3. Main properties

4.3.1. Smallest supersdargest subset

In this subsection, we first focus on a specific case of theidered issue, which consists in finding a subset of
nodes of the component-tree of an imageich that the object generated by these nodesligded in(resp.includeg
the binary targeG and is thelargest(resp. thesmalles} one verifying this property. This problem is equivalent to
consider a distancg which only takes into account the amount of false negatikesp( false positives) with respect
to G (the link between such a distand@nd the distancd” of Definition 4 will be discussed in the next subsection).

From an applicative point of view, solving this specific peyh makes sense when the initial rough segmentation
proposed by the user is larger than (or smaller than) theatksesult, as illustrated, for instance, by Figures 1(a,b)
2(a,b), and 3(a,b), in Section 1.

The following property establishes that there exists aqu) solution to this problem.

Property 11. Let | € VE be a grey-level image. Let ¥ (X, L, R) be the component-tree of I. L@tbe the set of the
objects which can be generated from the subsets of nod€sloét GC E. Then there exist GG~ € Q such that

G*:mcin{QeQ|GgQ}
G’=mCax{QeQ|Q§G}
9



We define now two functions which enable to compute thesdisokiG* andG~ (Definition 12, Properties 13
and 14) and we show that they authorise a computation inrlitue® with respect to the size.€., the number of
nodes) of the component-tree of the considered iniagehe size of the suppokE of this image (Property 15).

Definition 12. Let | € VE be a grey-level image. Let E (X, L,R) be the component-tree of I. Let G E. Let
F*,F- € P(K)X be the functions recursively defined, for alleNK', by

o [N if p*(N,G) # 0
Ny = { Unveeroy () if p*(N.G) = 0
N if n(N,G) = 0
F(N) = { Unveeroy () if (N, G) # 0

In particular, if ch(N) = 0, we havel nrecyny F~(N') = Unveeny & 7(N’) = 0, which guarantees the termination of
these recursive definitions.

Property 13. Leto € {+,—-}. Let | € VE be a grey-level image. Let E (K, L, R) be the component-tree of |. Let
G C E. Then we have
CIG7] = 77(E)

The following property immediately derives from Proper8: 1

Property 14. Leto € {+,—}. Let | € VE be a grey-level image. Let ¥ (%, L, R) be the component-tree of I. Let
G C E. Then we have
"= [J N
NeF7 (E)

Property 15. Leto € {+,—}. Let | € VE be a grey-level image. Let (%, L, R) be the component-tree of I. Let
G ¢ E. ThenC[G”] (and thus G) can be computed with a linear algorithmic complex@ymax|%]|, |[E[}), with
respect to the number of nodes of the tree or the size of thgeima

4.3.2. General case

We now focus on the general case of the problem stated indBettl, which consists in finding a set of nodés
of the component-tree of an imageerifying Equation (3), for the distana¥ proposed in Definition 4. The purpose
is then to find the best compromise (according to a chosenhiveig [0, 1]) between the amount of false positives
and false negatives with respect to a binary ta@et

Since the sa of the objects which can be generated from the subsets osraidecomponent-tree is finite, there
necessarily exists a solution to this problem. Hereaftershow that such a solution (Definition 16) can be computed
in linear time with respect to the sizeq, the number of nodes) of the component-tree of the consideragel or
the size of the suppoE of this image (Properties 19 and 20).

Definition 16. Leta € [0,1]. Let | € VE be a grey-level image. Let F (%, L, R) be the component-tree of I. Let
G C E. Let< € {<,<}. LetF* : K — P(K) and ¢ : K — R* be the functions recursively cross-defined, for all
N € K, by
{ F(N) = {N}
c’(N) = a.n(N,G)

if @.n(N, G) < (1 - ).p"(N, G) + Sneenyy “(N') and

{ 7 (N) = Unvecry 7 (N)
¢"(N) = (1= @)-P'(N.G) + Znveenry ' (N)

otherwise.
In particular, if ch(N) = 0, we havelyecnny 7“(N’) = 0 (which guarantees the termination of these recursive
definitions), and’ \yecnny €*(N’) = 0.
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Definition 17. Leta € [0, 1]. Let | € VE be a grey-level image. Let ¥ (K, L, R) be the component-tree of I. L@t
be the set of the objects which can be generated from thetsulfssodes oK. Let GC E. We define Ge Q as

G'= J N
NeF(E)

From a reasoning similar to (and actually simpler than) the af Property 13, we have the following result.
Property 18. Leta € [0,1]. Let | € VE be a grey-level image. Let G E. Then we have
F(E) = C[G"]

Property 19. Leta € [0,1]. Let | € VE be a grey-level image. Let ¥ (%, L, R) be the component-tree of I. L&t
be the set of the objects which can be generated from thetsulfssodes of. Let GC E. Then, we have

d*(G",G) = ¢’(E) = min{d"(Q, G)}

Property 20. Leta € [0, 1]. Let | € VE be a grey-level image. Let G E. ThenF*(E) = C[G*] (and thus @) can
be computed with an algorithmic complexiymax|XK|, |E[}), linear with respect to the number of nodes of the tree
or the size of the image.

Remark 21. The set of nodeg *(E) and its associated binary object®@nable to minimise (., G), and thus to
obtain an optimal solution to the issue considered in thiskwd{oweverF“(E) and G' are generally not unique.
To illustrate this assertion, let us consider the trivialseawhere G= 0 (resp. G= E) anda = 0 (resp. a = 1).
Obviously, in such a case, any set of nodes and any assodiataxy object minimise Y., G) (resp. d(.,G)), which

is always equal t®. However, the way to definein Definition 16 enables to break this non-determinism byoshw
to favour the smallest) or the largest €) solution (with respect to the inclusion relatiar) among all the possible
ones. In particular, if< is set to< (resp. to<) we haver * = 70 (resp.F~ = 1) (the easy proof of this assertion is
left to the reader), which enables to establish a link betwtbe studies of Sections 4.3.1 and 4.3.2.

5. Methodology/ technical details

5.1. Algorithmics

From the above study, which provides an answer to the queestaded in Section 1, we can derive the method
described in Algorithm 1. For the sake of simplicity, Algbirn 1 is described in a non-optimal but easy-to-understand
way. In particular, the method is presented in an iteratghion, while it is intrinsically recursive.

In its general form, the method corresponds to Definitionviléich solves the general case considered in Sec-
tion 4.3.2. In the specific case whare= 0 and< = < (resp.a = 1 and< = <), the method corresponds to the
computation off * (resp.¥ ) in Definition 12, which solves the specific case of the snsallesult including (resp.
the largest result included in) the rough segmentationsidened in Section 4.3.1.

From this segmentation method, we can straightforwardhveehe (naive) interactive segmentation method
described in Algorithm 2. By definition, Step 1 of this methmésents a complexit(k. max|K|, |E|}), since Algo-
rithm 1 has to be performddtimes. Once this precomputation performed, the interaathoice of the result can be
done by the user by inspection of tk@roposed binary results.

By opposition to the case of a thresholding operation on g-tpeel image, whereX,, (1) € X, () whenever
1 <v; <V £ T, we may think that sometime3*2 ¢ G* while 0 < a1 < ap < T. Fortunately, as stated by the
following property, the increasing property of threshalglis actually inherited by the developed method.

Property 22. Let | € VE be a grey-level image. Let G E. Leta; < a3 € [0, 1]. Then we have G ¢ G®.
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Algorithm 1 - Segmentation method

Input

| : E — V (image to be segmented)

R ¢ E (rough segmentation &}

a € [0, 1] (weight parameter for false positivasgatives)

< € {<, <} (order involved in the cost minimisation formula)

Output
G” ¢ E (final segmentation df)

Algorithm
1 - Component-tree computation
T = (%, L, R) (component-tree off)
forall N € K do
En = N\ Unrechny N
p*(N,G) = [EN N G
n(N,G) =N\ G|
end for
2 - Cost minimisation
for v=TtoL do
for all N € K such tham(N) = vdo
if ch(N) =0 (i.e, if N is a leaf)then
if @.n(N,G) < (1-«).p*(N,G) then
c*(N) = a.n(N,G)
F(N) = (N}
else
¢*(N) = (1-a).p"(N.G)
FEN)=0
end if
else
if (I.I’](N, G) < (1 - Q).p*(N, G) + ZN’ECI’(N) CH(N/) then
c*(N) = a.n(N,G)
F(N) = {N}
else
c*(N) = (1= @).p"(N,G) + Znvecniny ¢*(N')
F(N) = Unvechin) 7 (N)
end if
end if
end for
end for
3 - Result computation

G* = Unereg) N

Algorithm 2 - Interactive segmentation method (naive version)

Input

| : E — V (image to be segmented)

R ¢ E (rough segmentation &}

{ai }ik=1 (with k > 2) weight parameters (increasing values with respek} to
< € {<, <} (order involved in the cost minimisation formula)

Output
G* ¢ E (final segmentation of)

Algorithm
1 - Segmentation results computation
forall i € [1,k] do

ComputeG® by applying Alg. 1
end for
2 - Segmentation choice
ChooseG* € {Ga K

12



Algorithm 3 - Interactive segmentation methods (choose either Step'Rraning strategy” or Step 2-b: “Splitting
strategy”)

Input

| : E - V (image to be segmented)

R ¢ E (rough segmentation &}

{ai }ik:1 (with k > 2) weight parameters (increasing values with respek} to
< € {<, <} (order involved in the cost minimisation formula)

Output
G* ¢ E (final segmentation of)

Algorithm
1 - Component-tree computation
See Step 1 of Alg. 1
2-a -Segmentation results computation (“Pruning strategy”)
ComputerF * andS* from T by applying Steps 2 and 3 of Alg. 1
for i fromk-1to 1do
PruneT by removing fromiK all the successive children gf®i+1
Computer % andS® from T by applying Steps 2 and 3 of Alg. 1
end for
2-b - Segmentation results computation (“Splitting strategy”)
Computer 1 andS*t from T by applying Steps 2 and 3 of Alg. 1
for i from 2 tok do
Fh =0
forall N € £%-1 do
Let Ty be the subtree of induced byN (see Property 5)
Computer ' from Ty by applying Step 2 of Alg. 1
7‘(” — 7:ai U 7‘[34
end for
ComputeG* from 7 (Step 3 of Alg. 1)
end for
3 - Segmentation choice
LetSk = VK, Cs,, i (see Eq. 4)
ChooseG* € {Gi }ik=1 by a standard thresholding 8§

The first consequence of this property is the ability to stbek different results obtained férincreasing values
O0<a; <ap<...<ak1 < ak <1, induced by a method such as the one described in Algorithes 2 grey-level
imageSy : E — [1, K] defined —similarly to the filtering process proposed int®ec4.1 (Equation 2)— by

k
Sk="\/ Can, 4)
i=1

whereG“ C E is the binary result of the segmentation method (Algorithrfot the parametet;. In such a situation,
we can avoid to stork distinct binary images, and the interactive choice of theilteby the user can be performed
(of course, in real-time) by actually performing a standéwr@ésholding ofSy among the values [X] (these values
being associated to the set of parameteys_, by the trivial one-to-one mapping induced by Equation 4).

The second consequence of Property 22 is the possibilitptimse the computation of thie solutionsG* by
taking advantage of the fact th@f2 ¢ G** wheneverr; < a,. Indeed, let us suppose that fere [0, 1], a given
nodeN € K belongs to set of nodes® which generates the soluti@t, i.e., thatN is a connected component@f.
Then, for anya™ < «a (resp.a* > ), N will necessarily be included in a connected componer@of(resp. N will
include all the connected componentsGsf that it intersects). This implies in particular that twoaségies can be
considered for computingsolutionsG* withO < a; < ap < ... < ak-1 < ax < 1:

1. “Pruning strategy”, where the sefs* are computed fromn = kto 1. OnceF® has been computed, all the
nodes which are children of a node 6 are removed from the current component-tree (since thedesno
are no longer eligible for lower values a). The next set of nodeg - is then computed from this pruned
component-tree.
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2. “Splitting strategy”, where the sef§* are computed from = 1 to k. OnceF“ has been computed, the
component-tree associated to each sub-image induced mnaaed component &* (i.e., each node of *,
see Property 5) is built. The next set of nodes is then computed as the union of the results of the process on
each one of these component-trees (since the nodes whiembawode ofF * among their successive children
are no longer eligible for higher values @f.

In the worst caseie., whenG* = E for the “Splitting strategy” and>** is only composed of leaves for the
“Pruning strategy”), the algorithmic complexity of thedeagegies remains the one of Step 1 of Algorithm 2, namely
O(k-max|%]|, |[E[}). However, in real applications, we may reasonably supfuastethe complexity will significantly
decrease since the successBfewill progressively become largsmaller (enabling to reduce the size of the image
to be processed afat the number of considered nodes during the successiviésotitomputations).

The two optimised versions of the interactive segmentatiethod are described in Algorithm(s) 3.

5.2. Software

This section describes the actual image segmentation tisichwnay be developed based on the theoretical and
methodological studies presented alfove

5.2.1. Nodes selection
Component-tree computatiorthe component-tree is computed using Salembier’s algorj#j, which is based on
a recursive flooding of an image from its maxima

For each nod&l are stored two attributes related to the current ma@&ep*(N, G) andn(N, G). These attributes
are computed during the tree computation, using a minorfication of Salembier’s algorithm. Foffeciency reasons
and to avoid redundancies, each pixel is stored in only ode wbthe tree, which is the highest node containing the
pixel. Therefore, for each nodeis stored exactly the set of pixels definedy = N\ Un ecny N The computation
of p*(N, G) = |Ex N G| involves only pixels stored in nod¥: this attribute can therefore be updated each time a new
pixel is stored in a nod®& during the component-tree computation. The computatian(fG) = [N \ G| involves
pixels which are not all stored iN. Therefore, each time a new pixel is stored in a nbdis updated the value
n*(N,G) = |En \ G| during the tree computation. A second pass is then necessagmputen(N, G) for each node,
based on the property(N, G) = ¥ n-ecrvy N*(N’, G). This is achieved using a depth-first scan of the tree nodes.

5.2.2. Interactive segmentation

Interactive segmentation is based on two information: tlagker image and the value of theparameter. De-
pending on the application, the user may interact on one thr dfichem.

In the case where only theparameter is used, it can be advantageous to use the imggasperty (Property 22)
of the nodes selection procedure. This way, the resulteded to variousr sampled at regular values can be pre-
computed, in order to speed up the interactive and visu@isarocess. This method is summarised in Algorithm 3.

In the other case where both parameters (marker imageraadue) are used, it can be more advantageous to
recompute the segmentation result each time a new valuei®telected. In this case, the attribuf@gN, G) and
n(N, G) stored in each node need also to be recomputed each time maewr image is validated. An interactive
procedure can then be designed using the following scheme:

1. component-tree computation (automatic step);

manual drawing of a marker image (user interaction);

attributes computation (automatic step);

choice of anr value (user interaction) ;

result computation (automatic step);

if the result is not satisfactory, back to 2 (marker modifien) or back to 4 ¢ modification with the same
marker).

o0k~ wN

4Such a tool can be freely downloaded from the following htitp: //webloria.loria. fr/ naegelbe/index.php/software
5Another dficient algorithm is Najman’s one [15], which is based on Tasjamion-find algorithm. This latter algorithm is particulawell
suited for images having a large number dfelient values, but in our case it was slower than Salembigytgighm on our validation images.
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(a) Undersegmented marker (b) Mixed marker (c) Oversegmented marker

(d) @ = 0.05 (e) @ =0.12 () @ =099

Figure 8: (a,d), (b,e), (c,f) Examples of markers (in red) assbaiated segmentation for a given(in blue). (Image is from the Berkeley
Segmentation Dataset [45].)

Some examples of segmentation results obtained on a tegeiar@ depicted in Figure 8. They illustrate, in
particular, the dierent kinds of markers which can be considered (the widebdity of markers being authorised
by thea parameter).

6. Application to medical image analysis

The analysis of medical data (magnetic resonance imageR/l)(Momputed tomography, etc.) is required for
a large spectrum of applications, including for instanceapoter-aided diagnosis, patient follow-up, or presuigica
planning. For such purposes, segmentation is generallgpaasta complex pipeline involving both image process-
ing and expert€.g, radiologist, surgeon) handling. In particular, the rellity of the results provided by this first
segmentation step dramatically influences the quality ®fhole analysis protocol.

In this section, we consider a classical issue in medicagamanalysis, namely the segmentation of the brain
(i.e., both grey and white matter) or the whole intracranial vadufre., grey and white matter, plus the cerebrospinal
fluid) from MRI data. This choice is justified by the followitgyo arguments. First, segmentation algorithms applied
to brain MRI can be accurately assessed by using simulatagemfrom the commonly used BrainWeb database
[46], which provides MRI images with their associated anmatal ground-truth. Such assessment are proposed in
Section 6.1. Second, although the application of a segrientmethod on simulated data constitutes a necessary
prerequisite for its validation, its evaluation on realadegmains fundamental. As the segmentation of the intracra-
nial volume constitutes an important prerequisite, esflgcin foetal brain analysis from MRI data, it can then be
interesting to evaluate the adequacy of the method to thls Ehis study is proposed in Section 6.2.

In both studies (on simulated and real images), the vatidairotocol will consider results obtained by the pro-
posed method (denoted CT), and by the graph-cut method 14Qddnoted GC). We chose to restrict the comparison
with existing “high-level” methods to the only graph-cutegsince i) it has been often proved to be the moitogent
among other interactive methods (in terms of computatiore tand result accuracy) [44], ani) (it presents, for
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the user, anodus operandsimilar to the proposed component-tree mefhddote finally that, by opposition to the
graph-cut method, the component-tree method is devotdtbtoase where the structures of interest to be segmented
are the ones of (locally) extremal intensities. Such a cabewever quite frequent in several application fields, and
in particular in the ones proposed hereafter.

6.1. Simulated brain images
6.1.1. Images

BrainWel is a database, providing simulated normal brain realistRl Mata for several acquisition modalities
(T1, T2, etc.) and acquisition parameters. Each image igged with an anatomical ground-truth, which associates,
in particular, each voxel of the intracranial volume to acéfietissue class, as illustrated in Figure 9(a,b).

(b)

Figure 9: (a) A BrainWeb image (axial slice), and (b) its assed ground-truth (from light-grey to dark grey: white neaftgrey-matter, cere-
brospinal fluid, extracranial volume).

For the proposed experiments, the considered BrainWelthdatabeen chosen with classical acquisition param-
eters (with respect to a standard brain MRI acquisitioninelg by considering T1-weighting, with % 1 x 1 mm
resolution, 1 to 9% noise level, and 20 to 40% inhomogenesty fiThree (axial) slices have been chosen among the
whole 3D image, at the top, middle and bottom of the braimeetvely. For each slice, six versions wittfdrent
noise ratios and inhomogeneity fields have been considéitezly are denote8)' (wheren andi corresponds to the

noise and the intensity inhomogeneity levels, in %). Theseessions 63, S5, S5, Sio Sior @ndS)) are depicted
in Figure 10, for the middle slice.

6.1.2. Segmentation protocol

The two considered segmentation methods have been applieti@avs. For GC, the following two steps have
been performed as many times as necessgryngnual drawing of both object and background markénsyiaph-cut
processing For CT, the following two steps have been performed as miamgstas necessaryi) (manual drawing
of object markers, i) node selection by tuning af.

6.1.3. Computation times. quality

Experiments have been carried out in order to study the letlwéen the quality of the segmentation results and
the time required to obtain them.

Two measures have been used to evaluate the quality of thik res

6Note, however, that in the graph-cut method, the user has totwarkinds of areas assumed to be included in the object ametibackground,
respectively, while in the component-tree method, the usssohly to mark (and actually to roughly segment) the object.

7http://www.bic.mni .mcgill.ca/brainweb

8The graph-cuts software considered here is the one propogéd] which requires to set five parameters. The values fesé¢parameters,
determined by preliminary tests on the considered images,beem® no smoothingy = 1,0 = 1, 1 = 0, histogram quantisatioa 1.
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@ S5 (b) S5, (© S5 (d) Sjy © S3 (" S

Figure 10: BrainWeb imageS}" considered for the proposed validations (see text). Thergtdruth proposed in Figure 9(b) is the one correspond-
ing to this slice.

@ S5 (h) S3, () S5 0) S3 () S, () s%

Figure 11: Segmentation results for Figure 10, with CT (anf) &C (g—I) after 120 seconds (zoomed images). In white: trséipes. In red:
false positives. In green: false negatives.

e thex index defined by
2TP

T 2TP+FP+FN

where TP, FP and FN are respectively the amounts of trueiyesitfalse positives and false negatives with
respect to the BrainWeb ground-truth image;

¢ the mean point-to-set distanDebetween the bordetS anddG of the segmentation result and the ground-truth,
defined by

1
D= m( Z d(x, dG) + Z d(x.0S))

XedS xe0G

whered is a standard point-to-point distance (in our case, theiée@mh distance). This distanbeis expressed
in pixels in the sequel.

The evolution of the index and the mean point-to-set distance, with respecirte,tobtained for each one of the six
(n,1) configurations (by gathering the results of the three userthe three slices) are depicted in Figure 12.
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Figure 12: Quality of the segmentation results on BrainWelpgtiding on the time required to compute these segmentatiwrGT f(red full line)
and GC (green dashed line). Each dot (resp. vertical lin#)dsnean value (resp. the mean standard deviation) of thegedthined by the
different users. Left colummindex. Right columnD.
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Examples of segmentation results for the slice of Figureobfained at the end of the process (120 seconds) are
depicted in Figure 11 which emphasises in particular theefabsitives and negatives with respect to the BrainWeb
ground-truth image.

6.2. Real foetal brain images

6.2.1. Applicative context

Most of knowledge concerning brain maturation is basedast mortenstudies which do not allow joint analysis
of anatomical structure development and cognitive dewvelt. The non-invasive nature of MRI provides unique
opportunities forin vivo investigation of the developing human brain. In the caseoefises, MRI is a valuable
complement to prenatal sonography to confirm and charaetstspected brain abnormalities.

Image interpretation is generally performed based on Ffdetin atlas book and neuro-paediatricians have to
make the correspondence mentally between 3D MRI data andidEg histological images which is tedious and
error prone.

The development of ultrafast 2D acquisition sequencesduatol significant improvements in the clinical utility
of foetal MRI [47]. However, the slice acquisition time idlstery critical and has to be as short as possible to reduce
the impact of foetal motion on the exam, since foetal MRI igfperformed without sedation. As a result, sets of
thick 2D slices are generally acquired in clinical studied anterpretation remains limited by visual inspection.

In the context of foetal MRI study, removal of non-brain tiss in MR images (also known as skull stripping
[48, 49, 50]) is an important step in enabling accurate nreasent of brain structures. While this is a crucial step for
morphometry studies, it remains an open issue, especalipétal MRI where the region of interest is surrounded
by many other structures.

6.2.2. Images and ground-truth

The considered images are foetal MR scans: T2 weighted HAs®GHence (THR = 1473190 ms)ona 15T
Siemens Avanto MRI Scanner (SIEMENS, Erlangen, Germaegplution : 0.74x 0.74x 3.45 mm. An example of
foetal brain MRY is provided in Figure 13 (left column).

By opposition to the validations performed on simulatedhdatthe previous subsection, there is —by definition—
no ground-truth directly available here. The consideredigd-truth is then the one provided by manual segmentation
carried out by medical experts.

These six versions},, S5, S5, Sior S3o aNAS]) are depicted in Figure 10, for the middle slice.

6.2.3. Segmentation protocol

The CT and GC methods have been applied as in Section 6l19rstD slices, while (by opposition to the
above study) the whole intracranial volume has been predef&s each considered image. Although foetal brain
MR data are actually 3D ones, this 2D slice-by-slice apptdacactually justified by the following two factsi)(
the size of foetal brains (approximately 10 x 70mm for the considered data), and the resolution of the data
(approximately 4mm interslice distance) generate only allsmmber of slices in the 3D volume (approximately, 15
slices), andi{) the possible movements of the foetus during the acquisfirocess may result in spatial inaccuracies
between successive slicesd, translations, rotations), making the spatial continasgumption (verified for adults
brain images and justifying 3D segmentation approachesleirant here. Moreover, note that, by opposition to
Section 6.1, the considered results have been the onestingsif the areas bounded by the external curve generated
by the segmentation results of CT and GC (indeed, for skuigng, the relevant information is the boundary of the
intracranial volume).

9Note that in Section 6.1 (see Figures 9 and 10), which dealsamult brains, the white matter, grey-matter and cerebmasfilid appear in
light grey, dark grey and black, respectively, while in therent case which corresponds to foetus brains, thesetispear in light grey, dark
grey and white, respectively.
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€) ® @ (h)

Figure 13: (a—d) Foetus brain images (subset of axial slimempked in the whole image). (e—h) Zoom on the cerebral part-af)(a

@ (b) (© (d)
) ® () (h)

Figure 14: Segmentation results for Figure 13(e—h), with &3df and GC (e-h) after 60 seconds. In white: true positiveed: false positives.
In green: false negatives.
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6.2.4. Computation times. quality

The same experiment as in Subsection 6.1.3 has been cantigdarder to study the link between the quality of
the segmentation results and the time required to obtaim.tker each one of the 17 slices of the 3D image (partially
visualised in Figurel3 (left column)), several segmeatetihave been performed, by 3tdrent users, with both CT
and GC.

The evolution of thex index and the mean point-to-set distance, with respecire {pbtained by gathering the
results of the three users on the 17 slices) are depictedjimé-iL5.

Examples of segmentation results, obtained at the end girtieess (60 seconds) are depicted in Figure 11 which
emphasises in particular the false positives and negatiitegespect to the BrainWeb ground-truth image.
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Figure 15: Quality of the segmentation results on foetus imadepending on the time required to compute these segmesstetorCT (red full
line) and GC (green dashed line). Each dot (resp. vertiea) s the mean value (resp. the mean standard deviation) ofshés obtained by the
different users. (&) index. (b)D.

6.3. Discussion

From the results of these experiments, performed on botifeiio and real images, several remarks can be made.

For simulated anih vivo MR data, one may notice that the final results (obtained ats&20nds for BrainWeb,
and 60 seconds for foetuses) are generally very similarkgpees 11 and 14), despite intrinsicallyffdrentmodus
operandi(GC tries to fit at best the boundary of the object on highesdignt values of the image, thus following a
“1D approach”, while CT tries to fit at best the object markiaerthe image, thus following a “2D approach”). From
a qualitative point of view, the (intermediate and final)ulesare nearly always better with CT than with GC (with
an increase in quality for the considered critariand D which is small but however proportionnaly significant with
respect to the small gap between the obtained and optim&sjalNote in particular that BrainWeb experiments tend
to show that the quality improvement between CT and GC besdmgher when the noise ratio increases.

One may natice that CT is robust to noise (at least up to 9%sdrtiirent experiments), and to intensity inhomo-
geneity (at least up to 40% in the current experiments),anhiloes not integrate any regularisation scheme in order
to correct such image artifacts. For the robustness of Coigenthis can be explained by three facts. First, noise
cannot generate false positive results out of the markierse she process implies that a binary connected component
must, at least, intersect (and thus, for noise, “be includ®dhe marker, in order to belong to the segmentation tesul
Second, noise of value higher (resp. lower) than the strestaf interest of high (resp. low) values, included in the
markers, generally generate binary connected componéri¢hare included in relevant connected components ob-
tained by thresholding at a lower (resp. higher) value. Tkgoept in cases where the marker is a quite large superset
of the searched structure (see Figure 8(c,f) for an exam@I€)is not altered by such noise. Third, noise of value
lower (resp. higher) than the structures of interest of ifigp. low) values, included in the markers, may possibly
generate “holes” in relevant connected components oltdipehresholding at a high (resp. low) value. However, in
order to generate such false negatives, it is necessarydbrmise to have a relative valugfdrence larger than the
gap between the value of the structure of interest and the\@lits neighbouring background, which is possible, but
statistically unfrequent (see the small white points inufey8(d,e) for an example). Moreover, the robustness of CT
to intensity inhomogeneity can also be justified by the faat tnethods based on connected filtering become sensi-
tive to such &ects only when the intensity of the structures of interestthie intensity of their direct neighbouring
background have a nonempty intersection, which is the calyefar images where the contrast is quite low Ard
where the intensity inhomogeneity becomes huge (whichnegdly not the case, even in medical imaging).
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From a time cost point of view, CT and GC both converge rapadig in comparable times (asymptotic results
reached at 60s, with a low improvements —and sometimes &yjdatrease— past this time). For very low values
(here 30s), the results of CT are more satisfactory (beteammvalue), and more homogeneous between users (lower
standard deviation) than those of GC. It may however be edtibat for larger 2D images, ardfortiori for 3D
images, the computational cost of CT may become lower thaoitle of GC. Indeed, GC relies on classic techniques
of maximal flowminimal cut computation [51] (improved by optimised versd52]) which lead to obtain a result
in (low order) polynomial time [41] with respect to the sizetloe image. By comparison, as stated in Property 20,
the proposed CT method can be run in linear time with respettte size of the image (since the number of nodes
in a component-tree is generally lower than the size of thege). In such conditions, the relevance to use a CT
segmentation method increases when the size of the imagenesdigh.

Finally, since:

(i) CT presents computation times similar to GC for 2D images|, laas a lower algorithmic complexity which
may lead to better computation times for larger images;

(i) it only requires to determine one family of markers (“ol§ vs. two families of markers (“objects” and
“background”) for GC, which may in particular lead to inve\CT in the developement of example-based
segmentation strategies (for instance for the segmentafi8D images);

(i) it is parameter free (exceptwhich has to be tuned during the segmentation process, ahddsot of same
nature than the five predetermined GC parameters), by dppot GC;

it can be concluded that CT is a relevant segmentation tadhfages where the structures of interest correspond
to photometric local maxima, even in cases of noise and sitieinhomogeneity. In this context, it presents an
ergonomic alternative to the state-of-the-art GC.

7. Conclusion

In this article, an original methodological scheme, basedamponent-trees, has been proposed for segmentation
purpose. By opposition to the other existing approachesdas component-trees, it does not rely on the use of
knowledge modelled by attributes stored at each nodes dfdélee(which enables to decide which ones have to be
preserved to generate the segmentation result), but orralefeed raw segmentation from which the most relevant
nodes are extracted to obtained a refined result.

From a theoretical point of view, it has been proved that,uchsa strategy, these relevant nodes could be dis-
criminated in linear time (with respect to the size of the poment-tree). Based on this resulffi@ent algorithms
have been proposed, finally leading to an interactive setatien method. This method has been assessed in the
experimental context of both adult and foetal brain analfrim MRI slices. In the validity area of component-trees,
namely in cases where structures of interest presentyoralkimal intensity values, these experiments have empha-
sised the robustness of the method in terms of segmentatamay, its fastness and its ergonomy, in particular by
comparison to the state-of-the-art graph-cuts algorithm.

The method is currently designed to perform segmentatioiamages based on an initiaD raw segmentation
(with anyn > 1). Itis then particularly well-fitted for processing 2D ddthe raw segmentation of which is quite
easy). Inthe context of 3D image segmentation, the proposgdodological scheme may naturally be involved for
the design of example-based segmentation, where a 3D s&gfinarexampled.g, registered atlas, raw segmentation
obtained or another method, etc.) may replace the manualesggtion provided in a manual fashion in the 2D case.
Consequently, further works will now consist of providingch 3D extensions of this method.

From a more theoretical point of view, researdfoes will also be devoted to study the impact of using non-
standard connectivity (such as second-generation cawitiest [53], and in particular mask-based ones [24]) on the
behaviour of the proposed method. Moreover, an extensidgheoproposed methodology to the case of léneel
line trees[54], which provide an auto-dual representation of the ienagucture into level-sets, and is then better
suited for segmentation applications involving strucsuoéinterest which do not present locally extremal values in
the considered images, may also be considered.
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A. Appendix : Proofs

Proof of Property 11 If G = 0, by settingG* = 0 € Q, we are done. Let us now suppose tBat (0. For anyx € G,
we setNy = minc K.

LetG* = Jyeg Nx- Then we hav&s™ € Q andG € G*. Let Q' e Q suchthatG C Q. Lety € G*. If y € G, then
we havey € QY. Let us now suppose thgte G* \ G. Then, there exists € G such thaty € Ny. Sincexe G ¢ Q’,
there exist\ € K such thatN ¢ Q. But then, we havg € Ny € N € Q. Consequently, we hav@ ¢ Q’, and thus
G =minc{QeQ|GcQ}.

LetG™ = Unexancg N We haveG™ e QandG™ € G. LetQ € {Q € Q| Q € G}. Let us suppose that there
existsx € Q' \ G™. In particular, we have € G. There existdN, € K such thatNy € Q. If Nx € G then we have
X € Nx € G™: contradiction. IfNy ¢ G then we have) ¢ G: contradiction. Consequently, for alle Q, we have
xe G ,and thusG- =max{QeQ|QcG}. O

Proof of Property 13 Let X, Y € ¥7(E). By definition, we haveX, Y € K. Moreover, ifX # Y, it obviously comes
thatXNY = 0. Consequently, there exigise Q such thatF“(E) = C[Q]. By induction from the definition of * (E)
and¥ ~(E), we easily deduce that

N= [ N

NeF+(E) NeX Ap (N,G)#0
N = U N
NeF~(E) NeXK An(N,G)=0

In particular, it follows that
|J NefQeqiGeq

NeF+(E)

|J NeiQea@lQcg)
NeF~(E)

LetN € ¥7(E). Lety € Gsuchthaty € N andy ¢ Unecnny N (such a pointy exists asp*(N,G) # 0).
Then,N = minc Ky, and sincey € G*, we must haveN ¢ G*. Consequently, we hawges+) N € G*, and then
Uner+g N = G" and¥*(E) = C[G"].

Letx € G™ \ Uner-(g) N. Then, there existhl € K such thalN € G™. As X ¢ Unes-g) N, we haveN ¢ 7 (E),
and in particularn(N,G) # 0. But then, there existg € N such thaty ¢ G, and thusG~ ¢ G: contradiction.
Consequently, we hav@™ C Uner- &) N, and therG™ = Uner- g N and7~(E) = C[G™]. O

Proof of Property 15 From the definition ofF 7 (E), it is easily proved that each node is processed at most once
For each one of thes@(|'X|) processed nodes, one equality (relategtN, G) or n(N, G), which are assumed to
be precomputed, see Remark 3) is tested, and the status wddee(“in” or “out of” the resultF 7 (E)) is possibly
modified. These two operations have a constant algorithomeptexity O(1). The whole process then presents a
linear complexityO(|’K|). The generation 0&” from 7 (E) can be performed by modifying, for each nadef K

and for each poink of N (these points being stored iy for each nodéN, see Remark 3) the statusrofo indicate

that it belongs t@”. This process then presents an algorithmic compleX{ti|). Hence the result holds:
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Proof of Property 19 Let us suppose thah(E) = 0. Then we have = {0, E}, d*(0,G) = (1 - «).p(E,G) and
d*(E,G) = a.n(E, G). If we have

a.n(E,G) < (1 - a).p*(E,G) + Z c(N)
Nech(E)
=0

then it comes*(E) = {E}, ¢*(E) = a.n(E) and thus we have

d*(G",G) = d(E, G) = ¢’(E) = minid"(Q, G)}

If we have
a.n(E,G) £ (1-a).p(E,G)

then it comes *(E) = 0, c*(E) = (1 - a).p(E, G) = (1 - @).p*(E, G) and thus we have

d*(G",G) = d"(0, G) = ¢'(E) = min(d"(Q, G)}

Consequently, the property is true wheneslg(E) = 0.
Let us now suppose thah(E) # 0 and that the property holds for af{y e ch(E) (with respect tdy, Ty and
GnN N, instead ofl, T andG, see Property 5). Note that

[5‘6'8{0' (Q.G)} = min{d"(E, G), Qggl\pa{d (Q.O)H

while
d*(E,G) = a.|[E\ G| = a.n(E)

and

Qgg)l\pa{d (Q.G)} = Qg{pE}a.lQ\Gl +(1-2)IG\Q

Note also thatQ N N}inecn) is @ partition ofQ wheneverQ # E while {G \ Unecyey N} U {G N Ninecn) is @ partition
of G (by omitting the possibly empty subsets) Qf# E, we have

d"(Q.G) = |Q\ G|+ (1-a)G\ Q

with
Q\ G = Uneeng)(QNN)\ G
G\ Q= ((G\ Unechey N) U Unecney (G N N)) \ Q

Then, we have
IQ\ Gl = Xnechr) QN N) \ G
IG\ QI = (G \ Unechey N) \ QI + Znecney (G N N)\ Q)
and thus
@Q\Gl+(1-a)IG\ Q|
{ 2NechE) @-(Q N N) \ G|

+ Zneche) (1= @) (GNN)\ Q|

+(1 = @).[(G\ Unechey N) \ Q|
ZnechE) @ (Q N N) \ (G N N)|

+ Yneehg) (L= @).(GN N)\ (QN N))|
+(1-a).|G\ U N|

Nech(E)
e
=p*(E)
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From the above partition properties, it then comes that

Mingeq\(g){d*(Q, G)}

= MiNgequei{a.lQ\ Gl + (1-a).IG\ Ql}
ZNechE) @ [(QN N) \ (G N N)|

= Minge\(E} | + Znech)(1 = @)-l(GNN)\ (QN N)|
+(1-a).p"(E)

=(1-a).p(E) + Znecng) d"(QN N,G N N)

= (1-a).p"(E) + Znecne) ¢*(N)

by induction hypothesis. Consequently, we have

min(d"(Q.G)) = minia.n(E). (- a).p'(E)+ Y, c(N))
QeQ Néch(E)

and the result follows by induction from Definition 16.

Proof of Property 20 The proof is similar to the proof of Property 15. The onlyfelience lies in the fact that the
set of conditions to be tested.((N) < (1 - @).p"(N) + Xnecnny € (N)) requires at mogtk| comparison operations
(<) and 4|k arithmetic operations,(+, —), while the computation of all the ternt§(.) involves (at most) the value
c*(N’) only once for anyN’ € K, leading to less tharK| additions in the set of all thg, terms. Such supplementary
operations then do not increase the algorithmic compleQ{t§|) of the computation ofF*(E) by comparison to
F7(E). Hence the result holdsa

Proof of Property 22 Let N; € ¥t andN, € . By definition,N; € C[G*] and N, € C[G*?] are connected
components 06 andG*2, respectively, which verify eithemN; € N2) v (N2 € N1) or (N1 N N2 = 0) (see Property
8). Let us suppose th&*2 ¢ G*. Then, there exists a nod¢ € K such thatN € ¥22 while YN" € ¥91,N ¢ N’.
Let K’ € ¥ be the set of nodes forming the part@f: included inN, i.e., such that Jy.eqe N = N N G** (note
that we may possibly havk” = 0). Let G’*2 be the set defined bg’*2 = (G*2 \ N) U (N n G*), i.e,, the set obtained
by substituting the nodes &k” to the nodeN in G*2. Lett = INN G|, f = IN\ G|, t' = |[(N N G*) N G| and
f’ = |(N nG*)\ G|, with, obviously,f’ < f andt’ < t. Then, we have

d°2(G?, G) = d*2(G* \ N, G) + aa. f — (1 — a2 t
d°2(G"2, G) = d*2(G? \ N, G) + aa. f' — (1 — o).

Moreover, from the very definition @&*2, we have
d?(G*,G) < d*?(G'*?,G)

and then, it comes
a.(f—f)<(1-ap).(t-1)

Now, letG’** be the set defined b@’** = G* U N, i.e,, the set obtained by substituting the nddi¢o the nodes of

K’ in G*. We have
d® (G, G) = d (Gt \ N,G) + ay.f' = (1 — ay).t
d* (G, G) = d**(G* \ N,G) + a1.f — (1 - ay)t

Moreover, from the very definition @&**, we have
d(l]_ (G(tl’ G) < d()q (G/afl, G)

and then, it comes
Q-a).(t-t) <a.(f- 1)

But in such conditions, we have
a.(f-f)<Q-a).t-t)<(A-a).t-t) <a.(f- 1)

which straightforwardly implies thatt — f* =t —t’ = 0, a contradiction. Consequently, we h&® c G*. o
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