553 research outputs found

    Update On The Code Intercomparison and Benchmark For Muon Fluence and Absorbed Dose Induced By An 18-GeV Electron Beam After Massive Iron Shielding

    Full text link
    In 1974, Nelson, Kase and Svensson published an experimental investigation on muon shielding around SLAC high-energy electron accelerators. They measured muon fluence and absorbed dose induced by 14 and 18 GeV electron beams hitting a copper/water beamdump and attenuated in a thick steel shielding. In their paper, they compared the results with the theoretical models available at that time. In order to compare their experimental results with present model calculations, we use the modern transport Monte Carlo codes MARS15, FLUKA2011 and GEANT4 to model the experimental setup and run simulations. The results are then compared between the codes, and with the SLAC data.Comment: 14 pp. Presented paper at the 13th Meeting of the task-force on Shielding aspects of Accelerators, Targets and Irradiation Facilities (SATIF-13), HZDR, October 10-12, 2016, Dresden, Germany. arXiv admin note: substantial text overlap with arXiv:1502.0168

    Thermal analysis of lithium ion battery-equipped smartphone explosions

    Get PDF
    Thermal management of mobile electronics has been carried out because performance of the application processor has increased and power dissipation in miniaturized devices is proportional to its functionalities. There have been various studies on thermal analyses related to mobile electronics with the objectives of improving analysis methodologies and cooling strategies to guarantee device safety. Despite these efforts, failure to control thermal energy, especially in smartphones, has resulted in explosions, because thermal behaviors in the device under various operating conditions have not been sufficiently conducted. Therefore, several scenarios that caused the failure in thermal management of smartphone was analyzed to provide improved insight into thermal design deducing the parameters, that affect the thermal management of device. Overcurrent in battery due to malfunction of battery management system or immoderate addition of functionalities to the application processor are considered as reliable causes leading to the recent thermal runaways and explosions. From the analyses, it was also confirmed that the heat generation of the battery, which have not been considered importantly in previous literature, has significant effect on thermal management, and heat spreading could be suppressed according to arrangement of AP and battery. The heat pipe, which is utilized as a cooling device in mobile electronics, was also included in the thermal analyses. Although the heat pipes have been expected to improve the thermal management in mobile electronics, it showed limited heat transfer capacity due to its operating conditions and miniaturization. The demonstrated results of our analysis warn against vulnerabilities of smartphones in terms of safety in design
    corecore