3,433 research outputs found

    Autonomous Navigation for Mars Exploration

    Get PDF
    The autonomous navigation technology uses the multiple sensors to percept and estimate the spatial locations of the aerospace prober or the Mars rover and to guide their motions in the orbit or the Mars surface. In this chapter, the autonomous navigation methods for the Mars exploration are reviewed. First, the current development status of the autonomous navigation technology is summarized. The popular autonomous navigation methods, such as the inertial navigation, the celestial navigation, the visual navigation, and the integrated navigation, are introduced. Second, the application of the autonomous navigation technology for the Mars exploration is presented. The corresponding issues in the Entry Descent and Landing (EDL) phase and the Mars surface roving phase are mainly discussed. Third, some challenges and development trends of the autonomous navigation technology are also addressed

    Efficient Autonomous Navigation for Planetary Rovers with Limited Resources

    Get PDF
    Rovers operating on Mars are in need of more and more autonomous features to ful ll their challenging mission requirements. However, the inherent constraints of space systems make the implementation of complex algorithms an expensive and difficult task. In this paper we propose a control architecture for autonomous navigation. Efficient implementations of autonomous features are built on top of the current ExoMars navigation method, enhancing the safety and traversing capabilities of the rover. These features allow the rover to detect and avoid hazards and perform long traverses by following a roughly safe path planned by operators on ground. The control architecture implementing the proposed navigation mode has been tested during a field test campaign on a planetary analogue terrain. The experiments evaluated the proposed approach, autonomously completing two long traverses while avoiding hazards. The approach only relies on the optical Localization Cameras stereobench, a sensor that is found in all rovers launched so far, and potentially allows for computationally inexpensive long-range autonomous navigation in terrains of medium difficulty

    An innovative high accuracy autonomous navigation method for the Mars rovers

    Get PDF
    Autonomous navigation is an important function for a Mars rover to fulfill missions successfully. It is a critical technique to overcome the limitations of ground tracking and control traditionally used. This paper proposes an innovative method based on SINS (Strapdown Inertial Navigation System) with the aid of star sensors to accurately determine the rovers position and attitude. This method consists of two parts: the initial alignment and navigation. The alignment consists of a coarse position and attitude initial alignment approach and fine initial alignment approach. The coarse one is used to determine approximate position and attitude for the rover. This is followed by fine alignment to tune the approximate solution to accurate one. Upon the completion of initial alignment, the system can be used to provide real-time navigation solutions for the rover. An autonomous navigation algorithm is proposed to estimate and compensate the accumulated errors of SINS in real time. High accuracy attitude information from star sensor is used to correct errors in SINS. Simulation results demonstrate that the proposed methods can achieve a high precision autonomous navigation for Mars rovers. © 2014 IAA

    Autonomous navigation system for the Marsokhod rover project

    Get PDF
    This paper presents a general overview of the Marsokhod rover mission. The autonomous navigation for a Mars exploration rover is controlled by a vision system which has been developed on the basis of two CCD cameras, stereovision and path planning algorithms. Its performances have been tested on a Mars-like experimentation site

    Adaptive and intelligent navigation of autonomous planetary rovers - A survey

    Get PDF
    The application of robotics and autonomous systems in space has increased dramatically. The ongoing Mars rover mission involving the Curiosity rover, along with the success of its predecessors, is a key milestone that showcases the existing capabilities of robotic technology. Nevertheless, there has still been a heavy reliance on human tele-operators to drive these systems. Reducing the reliance on human experts for navigational tasks on Mars remains a major challenge due to the harsh and complex nature of the Martian terrains. The development of a truly autonomous rover system with the capability to be effectively navigated in such environments requires intelligent and adaptive methods fitting for a system with limited resources. This paper surveys a representative selection of work applicable to autonomous planetary rover navigation, discussing some ongoing challenges and promising future research directions from the perspectives of the authors

    Control technique for planetary rover

    Get PDF
    Beginning next century, several schemes for sending a planetary rover to the moon or Mars are being planned. As part of the development program, autonomous navigation technology is being studied to allow the rover the ability to move autonomously over a long range of unknown planetary surface. In the previous study, we ran the autonomous navigation experiment on an outdoor test terrain by using a rover test-bed that was controlled by a conventional sense-plan-act method. In some cases during the experiment, a problem occurred with the rover moving into untraversable areas. To improve this situation, a new control technique has been developed that gives the rover the ability of reacting to the outputs of the proximity sensors, a reaction behavior if you will. We have developed a new rover test-bed system on which an autonomous navigation experiment was performed using the newly developed control technique. In this outdoor experiment, the new control technique effectively produced the control command for the rover to avoid obstacles and be guided to the goal point safely

    Terrain-Adaptive Navigation Architecture

    Get PDF
    A navigation system designed for a Mars rover has been designed to deal with rough terrain and/or potential slip when evaluating and executing paths. The system also can be used for any off-road, autonomous vehicles. The system enables vehicles to autonomously navigate different terrain challenges including dry river channel systems, putative shorelines, and gullies emanating from canyon walls. Several of the technologies within this innovation increase the navigation system s capabilities compared to earlier rover navigation algorithms

    A practical autonomous path planner for turn-of-the-century planetary microrovers

    Get PDF
    With the success of Mars Pathfinder's Sojourner rover, a new era of planetary exploration has opened, with demand for highly capable mobile robots. These robots must be able to traverse long distances over rough, unknown terrain autonomously, under severe resource constraints. Based on the authors' firsthand experience with the Mars Pathfinder mission, this paper reviews issues which are critical for successful autonomous navigation of planetary rovers. No currently proposed methodology addresses all of these issues. We next report on the 'Wedgebug' algorithm, which is applicable to planetary rover navigation in SE(2). The Wedgebug algorithm is complete, correct, requires minimal memory for storage of its worked model, and uses only on-board sensors, which are guided by the algorithm to efficiently senses only the data needed for motion planning. The implementation of a version of Wedgebug on the Rocky7 Mars Rover prototype at the Jet Propulsion Laboratory is described, and experimental results from operation in simulated martian terrain are presented

    Numerical Efficiency of Inverse Simulation Methods Applied to a Wheeled Rover

    Get PDF
    Extending the navigational capability of planetary rovers is essential for increasing the scientific outputs from such exploratory missions. In this paper a navigation method based on Inverse Simulation is applied to a four wheel rover. The method calculates the required control inputs to achieve a desired, specified response. Here this is a desired trajectory defined as a series of waypoints. Inverse Simulation considers the complete system dynamics of the rover to calculate the control input using an iterative, numerical Newton - Raphson scheme. The paper provides an insight into the numerical parameters that affect the performance of the method. Also, the influence of varying the timestep and the convergence tolerance is examined in terms of the quality of the calculated control input and the resulting trajectory, as well as the execution time. From this analysis a set of parameters and recommendations to successfully apply Inverse Simulation to a rover is presented
    • …
    corecore