2,603 research outputs found

    Evaluating Stationary Distribution of the Binary GA Markov Chain in Special Cases

    Get PDF
    The evolutionary algorithm stochastic process is well-known to be Markovian. These have been under investigation in much of the theoretical evolutionary computing research. When mutation rate is positive, the Markov chain modeling an evolutionary algorithm is irreducible and, therefore, has a unique stationary distribution, yet, rather little is known about the stationary distribution. On the other hand, knowing the stationary distribution may provide some information about the expected times to hit optimum, assessment of the biases due to recombination and is of importance in population genetics to assess what\u27s called a ``genetic load" (see the introduction for more details). In this talk I will show how the quotient construction method can be exploited to derive rather explicit bounds on the ratios of the stationary distribution values of various subsets of the state space. In fact, some of the bounds obtained in the current work are expressed in terms of the parameters involved in all the three main stages of an evolutionary algorithm: namely selection, recombination and mutation. I will also discuss the newest developments which may allow for further improvements of the bound

    A Version of Geiringer-like Theorem for Decision Making in the Environments with Randomness and Incomplete Information

    Full text link
    Purpose: In recent years Monte-Carlo sampling methods, such as Monte Carlo tree search, have achieved tremendous success in model free reinforcement learning. A combination of the so called upper confidence bounds policy to preserve the "exploration vs. exploitation" balance to select actions for sample evaluations together with massive computing power to store and to update dynamically a rather large pre-evaluated game tree lead to the development of software that has beaten the top human player in the game of Go on a 9 by 9 board. Much effort in the current research is devoted to widening the range of applicability of the Monte-Carlo sampling methodology to partially observable Markov decision processes with non-immediate payoffs. The main challenge introduced by randomness and incomplete information is to deal with the action evaluation at the chance nodes due to drastic differences in the possible payoffs the same action could lead to. The aim of this article is to establish a version of a theorem that originated from population genetics and has been later adopted in evolutionary computation theory that will lead to novel Monte-Carlo sampling algorithms that provably increase the AI potential. Due to space limitations the actual algorithms themselves will be presented in the sequel papers, however, the current paper provides a solid mathematical foundation for the development of such algorithms and explains why they are so promising.Comment: 53 pages in size. This work has been recently submitted to the IJICC (International Journal on Intelligent Computing and Cybernetics

    Stochastic Optimization in Econometric Models – A Comparison of GA, SA and RSG

    Get PDF
    This paper shows that, in case of an econometric model with a high sensitivity to data, using stochastic optimization algorithms is better than using classical gradient techniques. In addition, we showed that the Repetitive Stochastic Guesstimation (RSG) algorithm –invented by Charemza-is closer to Simulated Annealing (SA) than to Genetic Algorithms (GAs), so we produced hybrids between RSG and SA to study their joint behavior. The evaluation of all algorithms involved was performed on a short form of the Romanian macro model, derived from Dobrescu (1996). The subject of optimization was the model’s solution, as function of the initial values (in the first stage) and of the objective functions (in the second stage). We proved that a priori information help “elitist “ algorithms (like RSG and SA) to obtain best results; on the other hand, when one has equal believe concerning the choice among different objective functions, GA gives a straight answer. Analyzing the average related bias of the model’s solution proved the efficiency of the stochastic optimization methods presented.underground economy, Laffer curve, informal activity, fiscal policy, transitionmacroeconomic model, stochastic optimization, evolutionary algorithms, Repetitive Stochastic Guesstimation

    Two Timescale Convergent Q-learning for Sleep--Scheduling in Wireless Sensor Networks

    Full text link
    In this paper, we consider an intrusion detection application for Wireless Sensor Networks (WSNs). We study the problem of scheduling the sleep times of the individual sensors to maximize the network lifetime while keeping the tracking error to a minimum. We formulate this problem as a partially-observable Markov decision process (POMDP) with continuous state-action spaces, in a manner similar to (Fuemmeler and Veeravalli [2008]). However, unlike their formulation, we consider infinite horizon discounted and average cost objectives as performance criteria. For each criterion, we propose a convergent on-policy Q-learning algorithm that operates on two timescales, while employing function approximation to handle the curse of dimensionality associated with the underlying POMDP. Our proposed algorithm incorporates a policy gradient update using a one-simulation simultaneous perturbation stochastic approximation (SPSA) estimate on the faster timescale, while the Q-value parameter (arising from a linear function approximation for the Q-values) is updated in an on-policy temporal difference (TD) algorithm-like fashion on the slower timescale. The feature selection scheme employed in each of our algorithms manages the energy and tracking components in a manner that assists the search for the optimal sleep-scheduling policy. For the sake of comparison, in both discounted and average settings, we also develop a function approximation analogue of the Q-learning algorithm. This algorithm, unlike the two-timescale variant, does not possess theoretical convergence guarantees. Finally, we also adapt our algorithms to include a stochastic iterative estimation scheme for the intruder's mobility model. Our simulation results on a 2-dimensional network setting suggest that our algorithms result in better tracking accuracy at the cost of only a few additional sensors, in comparison to a recent prior work

    Implementation of CAVENET and its usage for performance evaluation of AODV, OLSR and DYMO protocols in vehicular networks

    Get PDF
    Vehicle Ad-hoc Network (VANET) is a kind of Mobile Ad-hoc Network (MANET) that establishes wireless connection between cars. In VANETs and MANETs, the topology of the network changes very often, therefore implementation of efficient routing protocols is very important problem. In MANETs, the Random Waypoint (RW) model is used as a simulation model for generating node mobility pattern. On the other hand, in VANETs, the mobility patterns of nodes is restricted along the roads, and is affected by the movement of neighbour nodes. In this paper, we present a simulation system for VANET called CAVENET (Cellular Automaton based VEhicular NETwork). In CAVENET, the mobility patterns of nodes are generated by an 1-dimensional cellular automata. We improved CAVENET and implemented some routing protocols. We investigated the performance of the implemented routing protocols by CAVENET. The simulation results have shown that DYMO protocol has better performance than AODV and OLSR protocols.Peer ReviewedPostprint (published version

    A Fuzzy Based Link Analysis for Mining Relational Databases

    Get PDF
    This work introduces a link analysis procedure for discovering relationships in a relational database or a graph, generalizing both simple and multiple correspondence analysis. It is based on a random walk model through the database defining a Markov chain having as many states as elements in the database. Suppose we are interested in analyzing the relationships between some elements (or records) contained in two different tables of the relational database. To this end, in a first step, a reduced, much smaller, Markov chain containing only the elements of interest and preserving the main characteristics of the initial chain, is extracted by stochastic complementation. This reduced chain is then analyzed by projecting jointly the elements of interest in the diffusion map subspace and visualizing the results. This two-step procedure reduces to simple correspondence analysis when only two tables are defined, and to multiple correspondence analysis when the database takes the form of a simple star-schema. On the other hand, a kernel version of the diffusion map distance, generalizing the basic diffusion map distance to directed graphs, is also introduced and the links with spectral clustering are discussed. Several data sets are analyzed by using the proposed methodology, showing the usefulness of the technique for extracting relationships in relational databases or graphs. Keywords:Graph mining, link analysis, kernel on a graph, diffusion map, correspondence analysis, dimensionality reduction, statistical relational learning

    06061 Abstracts Collection -- Theory of Evolutionary Algorithms

    Get PDF
    From 05.02.06 to 10.02.06, the Dagstuhl Seminar 06061 ``Theory of Evolutionary Algorithms\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available
    corecore