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Abstract. The evolutionary algorithm stochastic process is well-known to be
Markovian. These have been under investigation in much of the theoretical evo-
lutionary computing research. When mutation rate is positive, the Markov chain
modeling an evolutionary algorithm is irreducible and, therefore, has a unique
stationary distribution. Rather little is known about the stationary distribution.
In fact, the only quantitative facts established so far, tell us that the stationary
distributions of Markov chains modeling evolutionary algorithms concentrate on
the uniform populations (i.e. these populations consisting of the repeated copy of
the same individual). At the same time, knowing the stationary distribution may
provide some information about the expected time it takes for the algorithm to
reach a certain solution, assessment of the biases due to recombination and selec-
tion and is of importance in population genetics to assess what’s called a “genetic
load” (see the introduction for more details). In the recent joint works of the first
author, some bounds have been established on the rates at which the stationary
distribution concentrates on the uniform populations. The primary tool used in
these papers is the “quotient construction” method. It turns out that the “quo-
tient construction” method can be significantly strengthen to yield much more
informative results. In the current paper we present a couple of examples where
we compute the stationary distribution of a GA Markov chain using the quotient
construction method. Furthermore, we show another important asymptotic result
which we hope will be of technical importance in the future applications.

1 Introduction

One of the aspects of the theoretical analysis of the evolutionary algorithms is studying
the properties of the Markov chains associated with these algorithms. Many research ar-
ticles in the field of evolutionary computing have been devoted to this subject (see, for
instance, [33], [34], [38], [9], [37], [36] and [5] for a survey of known results and open
questions). In vast majority of cases, Markov chains modeling evolutionary algorithms
are irreducible due to positive mutation rates and, hence, possess unique stationary dis-
tributions. Knowing the relative size of the stationary distribution value of one subset
comparing to another one (estimating such ratios is what the current paper is devoted
to) can be advantageous for a number of reasons. Some of these are described below.

In [35] a heuristic computational approach to estimate the average waiting time for
a GA to hit the desired individuals based on the Markov chain model has been offered.
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Due to the super-exponential growth of the state space with respect to the string length
and population size, such estimates inevitably involve reducing the size of the Markov
chain modeling the genetic algorithm by considering an appropriate aggregation (also
known as quotient) Markov chain obtained by lumping some states into one (see, for
instance, [15], [7] or [4]). The model of [35] applies to a limited class of Markov chains
nevertheless. In [27] a different method has been offered for obtaining the lumping
quotients which applies to a wider class of Markov chains modeling EAs. In either
case, expressions for the quotient (or aggregated) Markov chain transition probabilities
involve the ratios of the form wbP

c∈B wc
where the weights wb are supposed to measure

the relative frequency of occurrence of the states b ∈ B (here B is a set of states that
are lumped into a single state of the quotient chain). In fact, the long-term frequency of
occurrence of such states is precisely the stationary distribution value of these states and
the current paper is devoted to obtaining rigorous estimates of such ratios (as opposed to
the heuristic techniques employed in [27] and [35]). At least, the estimates can be used
as reasonable starting points of the heuristic estimation algorithms proposed in [27].

Evolutionary algorithms essentially simulate the natural, or approximate, evolution-
ary processes, thereby discovering which genes become most frequent in the process of
evolution. Thus the theory of evolutionary algorithms implicitly informs us of issues of
importance in population genetics. The classical theorems of Geiringer (see [11] for a
review of her results, also [3], [10] and [29] for later developments in infinite popula-
tions) tells us the frequency of alleles at a set of loci for various genetic systems in the
limit under the assumption of no mutation and flat fitness. In [22] a finite population
version of the Geiringer theorem has been established which is stated in terms of the
stationary distribution of the Markov chain modeling an evolutionary algorithm. This
finite population model is more suitable for the purpose of describing evolutionary al-
gorithms (yet it’s also closely related to the infinite population model). The Geiringer
theorem of [22] applies only in the absence of selection, however. It may be of inter-
est to find out how selection effects the frequencies of occurrence of various genes in
the long run and this is precisely the information which the stationary distribution of the
Markov chain modeling the EA (together with selection) carries in itself. The procedure
for finding the frequencies of specific individuals given the knowledge of the stationary
distribution is described in (cite my Geiringer paper).

One particular application of the above would be in assessing the genetic load car-
ried by a (possibly) human population, a concept introduced in [13]. Implicit in the
persistence of individuals of reduced fitness, in the equilibrium population is the loss
of individuals (or putative) individuals through selection (or reduced fertility); this loss
being measured by the genetic load. Assessing the size of this genetic load can be made
analytically for simple models of mutation and fitness, but in more complex cases this is
not possible. In these latter one could assess the genetic load by estimating the station-
ary distribution and inferring the load from that, so that the current paper can provide a
method for doing this in the multi-locus, multi-allele context. This is of importance to
human populations both directly (as in [12]) and through its effects on other species we
interact with (as in [14]).

Another application of Geiringer-like theorems as well as other results on the fixed
points in the infinite or finite population models, is to assess the sampling biases which



individuals may possess due to a particular representation of the search space. A num-
ber of articles are devoted to this rather important practical issue (see, for instance,
[31], [17] and [18]). When the estimates are based on the flat fitness landscape only,
they don’t take into account how the change in fitness values affects the biases. Since
Markov chains modeling evolutionary algorithms are irreducible they are biased to-
wards the stationary distribution which tells us the long-term frequency of occurrence
of a given population (see section 4 for more details). From that we can often easily
deduce the long-term frequency of occurrence of given individuals. In fact, the ratios of
the stationary distribution values of various sets of populations may be sufficient. The
results of the current paper apply to arbitrary fitness landscapes which, therefore, may
provide a tool for a more informative assessment of the biases.

Finally, it seems worth mentioning that the ratio of the stationary distribution values
of singleton subsets to one another measure the expected number of visits of the chain
started at the state in the denominator to the numerator state before returning back
to the denominator state (see chapter 2 of [2]). For example, if X = {x, x, . . . , x}
and Y = {y, y, . . . , y} are the populations consisting of a repeated copy of the same
individual (an x and a y respectively) then π(X)

π(Y ) measures the expected number of
visiting population X starting with the initial population Y before returning back to
the population Y . While not related to the expected waiting time until the first visit in
an apparent way, this seems like a potentially useful piece information at least for the
future theoretical work.

As mentioned briefly before, one difficulty that arises with the Markov chain ap-
proach, is the fact that the number of states of this Markov chain grows very fast with
respect to the size of the search space and the number of elements in a population. In-
deed, if Ω denotes the search space, the number of states of this Markov chain for a
population of size m is |Ω|m. In [25] an elegant and simple method based on the “quo-
tient Markov chain” construction has been introduced to study the stationary distribu-
tion of some Markov chains. Asymptotic results about the rate of concentration of the
stationary distribution of the Markov chains modeling evolutionary algorithms on the
uniform populations (populations consisting of repeated copies of the same individual)
have been obtained. Such a notion of a quotient of a Markov chain is frequently re-
ferred to as “coarse graining” in the evolutionary computation literature. In probability
it’s known as “lumping quotient”, “aggregation” or “quotient under lumping equiva-
lence relation” (see [4], [15], [7]). We shall discuss the construction of a quotient of an
irreducible Markov chain with respect to an arbitrary equivalence relation on the state
space. The stationary distribution of the quotient chain is “coherent” with the stationary
distribution of the original chain. Although the transition probabilities of the quotient
chain depend on the stationary distribution of the original chain, we can still exploit
the quotient construction to deduce some estimates on the stationary distribution of the
original chain via proposition 15. For the sake of completeness, the quotient construc-
tion method and the theory behind it will be presented in sections 4 and 5 respectively.
In the current paper we strengthen the quotient construction method (see proposition 13,
corollary 16 and corollary 17 which appear for the first time in this paper) and present
a few more applications. In particular, we compute exact ratios of the stationary distri-
bution values on some subsets for a couple specific examples (see sections 6 and 8) and



we also establish a rather general asymptotic result about the stationary distributions of
Markov chains modeling EAs in section 7. This result is necessary for the application
of corollary 17 in section 8. As a matter of fact, we believe that this asymptotic result
can be used in conjunction with the quotient construction method to accomplish much
more (this will hopefully appear in the sequel papers).

2 A Reminder about the Asymptotic Notation

Throughout the paper we shall make extensive use of the following notation:
If F : U → R and G : U → R are functions of µ then we write F = O(G) if

∀µ ∈ U we have |F (µ)| ≤ k · |G(µ)| for some constant k ∈ R; F = Ω(G) if ∀µ ∈ U
we have |F (µ)| ≥ k · |G(µ)| and F = Θ(G) if F = O(G) and F = Ω(G).

Remark 1 It may be worth pointing out that in the definition above U is an arbitrary
set. Throughout the current paper we will set U = (0, a] for some constant a < 1 since
the independent variable of the functions we deal with is the mutation rate denoted by µ
which takes values in such intervals. All the other parameters (such as population size or
string length etc.) are assumed to be fixed constants unless explicitly stated otherwise.

3 Which Algorithms Do We Consider?

In the current paper we consider the classical binary genetic algorithm with the search
space Ω = {0, 1}n, fitness function f : Ω → {0, 1} and population size 2. The
algorithms cycles through the three basic stages, selection, recombination and mutation.
By a stage here we mean a probabilistic rule which takes a given population as an input
and returns another population as an output with some probability. More precisely, a
stage can be described by a Markov transition matrix as follows:

Definition 2 Given a search space Ω and an integer m > 0, called population size,1

a stage is a Markov transition matrix on the set Ωm of populations2 of size m where
pstage
x→y denotes the probability that if the stage takes population x as its input it returns

the population y as its output.

Each of these stages is described below in detail for a population of size m (even
though in the current paper m = 2):

Definition 3 Selection is a stage which takes a population of size m, say
x = (x1, x2, . . . xm), and returns another population y = (y1, y2, . . . ym) as an output
where ∀ i∃ j with yi = xj . In the sense of definition 2, this means that pselection

x→y = 0
unless ∀ i∃ j with yi = xj .

1 As mentioned earlier, in the current paper we consider only the population size m = 2 and
Ω = {0, 1}.

2 Here we consider ordered populations to avoid combinatorial complications. Thus they are
elements of Ωm rather than multi-sets.



In the current paper we will carry out the computations specifically for the stage of
fitness-proportional selection, defined below, however one can easily do the same for
any type of selection procedure in the sense of definition 3 as a routine exercise.

Definition 4 The stage of fitness-proportional selection is such a selection stage (in
the sense of definition 3) where the transition probability px→y can be computed as
follows: Let x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , ym). For every i choose j(i)
(say the smallest j) such that yi = xj(i) (if this is not possible then let px→y = 0 as
must be the case for a selection stage according to definition 3). Now let

px→y =
∏m

i=1 f(xj(i))
(
∑m

l=1 f(xl))m
.

There is not much we need to assume about the stage of recombination apart from the
following property referred to as purity (see [32], [19], [20] and [21]).

Definition 5 A recombination stage is any stage in the sense of definition 2 with the
property that whenever x = (x, x, . . . , x) (i.e. x consists of a repeated copy of the same
individual x), we have px→x = 1.

In the current paper we will be dealing only with the classical binary genetic algo-
rithm where populations and recombination stage can be defined as follows. Since
Ω = {0, 1}n, the individuals are binary strings of length n. We can then represent a
population of size m as an m× n matrix where the rows are the individuals.

Example 6 If Ω = {0, 1}5 then the 4 × 5 matrix




0 1 1 1 0
0 0 1 0 1
0 1 0 1 0
0 1 1 1 0


 represents the pop-

ulation x = (x1, x2, x3, x4) ∈ Ω4 of size 4 where x1 = (0, 1, 1, 1, 0), x2 =
(0, 0, 1, 0, 1), x3 = (0, 1, 0, 1, 0) and x4 = (0, 1, 1, 1, 0).

When equipped with the matrix notation it is convenient to describe the class of recom-
bination stages to which our results apply:

Definition 7 A binary GA recombination stage is a stage where given any two m × n

matrices x =




x11 x12 . . . x1n

x21 x22 . . . x2n

...
...

. . .
...

xm1 xm2 . . . xmn


 and y =




y11 y12 . . . y1n

y21 y22 . . . y2n

...
...

. . .
...

ym1 ym2 . . . ymn


, we have

px→y > 0 =⇒ ∃ permutations σ1, σ2, . . . , σn on the set of indices {1, 2, . . . , m} such
that yij = xσj(i)j

Less formally, definition 7 describes the class of recombination methods which only
reshuffle the genetic material: they neither introduce new alleles nor delete the existing
once. This kind of recombination stages includes one-point and masked 2-parent →
2-children crossovers exploited in binary GAs.



Remark 8 It is easy to see that binary GA recombination stage in the sense of defini-
tion 7 is also a recombination stage in the sense of definition 5 since permuting identical
alleles (in the columns) does not alter the matrix.

It remains to describe the mutation stage. While this can be done for a rather wide class
of algorithms (see, for instance, [26]), it requires introducing an integer-valued metric
space structure on the search space (a “hamming distance” analogue). In the current
paper we only apply this notion to the binary GA and, to avoid extra definitions, we
introduce mutation stage for binary GAs only:

Definition 9 Let µ > 0 and µ ≤ 1. Suppose we are given m × n population matrices

x =




x11 x12 . . . x1n

x21 x22 . . . x2n

...
...

. . .
...

xm1 xm2 . . . xmn


 and y =




y11 y12 . . . y1n

y21 y22 . . . y2n

...
...

. . .
...

ym1 ym2 . . . ymn


. Consider the set of index

pairs N = {(i, j) |xij 6= yij}. Then we say that mutation stage is a stage (in the sense
of definition 2) given by the Markov transition matrix {px→y}x, y∈({0, 1}n)m where
px→y = µ|N | · (1 − µ)mn−|N | (it is easy to check that this is a well-defined Markov
transition matrix).

We have now described all the three basic stages involved in binary GAs. It only remains
to introduce the Markov chain that models an EA. In general, if the algorithm cycles
through the stages M0,M2, . . . , Mq starting with M1 and finishing with Mq (meaning
that the input of the stage Mi is the output of the stage Mi−1 where all the indices and
their subtraction are in Zq+1), its Markov transition matrix is the product
Mq ·Mq−1 · . . . ·M0. In most cases, due to some positive mutation rate (certainly the
case for binary GAs), the Markov transition matrix for EAs has all positive entries,
and, hence, the corresponding Markov chain is irreducible. Such Markov chains are
known to have unique global fixed point attractors, called stationary distributions. The
current paper is devoted to computing the stationary distribution of a binary GA Markov
chain in a couple special cases. We also establish a rather general asymptotic result
about the stationary distributions of GA Markov chains in section 7. We believe that the
method can be improved and extended further to compute and estimate the stationary
distribution of evolutionary algorithms in many other cases.

4 Quotients of Irreducible Markov Chains.

4.1 Notation and Fundamental Facts from Markov Chain Theory.

Throughout the current section we shall be dealing with an irreducible Markov chain
M over a finite state space X . Let {px→y} denote the Markov transition matrix with
the convention that px→y is the probability of getting y in the next stage given x. In the
content of the current paper, saying thatM is irreducible means that there exists a natu-
ral number k ∈ N such that the kth power of the Markov transition matrix ofM consists
of only nonzero entries (i.e. ∀x and y ∈ X we have pk

x→y > 0 where pk
x→y denotes the

probability of reaching the state y starting with the state x after exactly k time steps). It



is well-known (see, for instance, [30]) that irreducible Markov chains possess a unique
stationary distribution, i.e. a probability distribution π on X such that ∀y ∈ X we have
π(y) =

∑
x∈X π(x)px→y. 3 Moreover, the stationary distribution π is a global attractor

of the Markov transition matrix in the sense that for every initial probability distribu-
tion ρ on X we have and for any y ∈ X we have limk→∞

∑
x∈X ρ(x)pk

x→y = π(y)
where where pk

x→y denotes the probability of reaching the state y starting with the
state x after exactly k time steps. Finally, it is also worth reminding the reader that the
ergodic theorem (theorem 1.10.2 of [30]) tells us the following important long-term be-
havior property. Let N(x, t) denote the number of visits to state x before time t. Then
limt→∞

N(x, t)
t = π(x) i.e. the average number of occurrences of the state x in the

long run is π(x) where π is the unique stationary distribution of the Markov chain M.

4.2 Construction of the Quotients.

Suppose we are given an equivalence relation ∼ partitioning the state space X . The
main idea of the current section is to construct an irreducible Markov chain over the
equivalence classes under ∼ (i.e. over the set X/ ∼) whose stationary distribution is
compatible with that of M. This construction is a slight generalization of the construc-
tion in [2]:

Definition 10 Suppose M is an irreducible Markov chain over a finite state space X
with transition matrix {px→y}, π is the unique stationary distribution of the Markov
chain M, and ∼ is an equivalence relation on X . Define the quotient Markov chain
M/ ∼ over the state space X/ ∼ of equivalence classes via ∼ to be determined by the
transition matrix {p̃U→V}U,V∈X/∼ given as

p̃U→V =
1

π(U)

∑

x∈U
π(x) · px→V =

1
π(U)

∑

x∈U

∑

y∈V
π(x) · px→y.

Here px→V denotes the transition probability of getting somewhere inside of V given
x. Since V =

⋃
y∈V{y} it follows that px→V =

∑
y∈V px→y and hence the equation

above holds.

Intuitively, the quotient Markov chain M/ ∼ is obtained by running the original chain
M starting with the stationary distribution and computing the transition probabilities
conditioned with respect to the stationary input. If one starts with an arbitrary distribu-
tion and runs the process for a long period of time then the transition probabilities in
definition 10 serve as a good approximation to the transition probabilities induced by
the corresponding stochastic process. Thus, the following fact should not be a surprise:

Theorem 11 Let π denote the stationary distribution of an irreducible Markov chain
M determined by the transition matrix {px→y}x, y∈X . Suppose we are given an equiva-
lence relation∼ partitioning the state space X . Then the quotient Markov chainM/ ∼
is irreducible and its unique stationary distribution π̃ is compatible with π in the sense
that for every O ∈ X/ ∼, we have π̃({O}) = π(O).

3 It is worth pointing out straight away that we use a slight abuse of notation here (which is rather
common in Markov chain theory): we write π(x) in place of π({x}) (since π is a probability
distribution its arguments are subsets of X rather than its individual elements).



Proof: Since the original chain M is assumed to be irreducible, it follows that there
exists an n ∈ N such that for all x, y ∈ X we have pn

x→y > 0 where pn
x→y denotes

the probability that y is reached from x after exactly n time steps. This, in turn, is
equivalent to saying that there exists a sequence of states x1 = x, x2, . . . ,xn = y such
that pxi→xi+1

> 0. LetOi denote the equivalence class of xi under∼. Now we see that

p̃Oi→Oi+1 =
1

π(Oi)

∑

x∈Oi

∑

z∈Oi+1

π(x) · px→z ≥ 1
π(Oi)

· π(xi) · pxi→xi+1 > 0.

This shows that p̃n
O1→On

> 0. Since the equivalence classes are nonempty and the
choices of x and y are arbitrary, it follows that p̃n

U→V > 0 ∀U , V ∈ X/ ∼. This
shows that the Markov chain M/ ∼ is irreducible and, hence, has a unique stationary
distribution π̃. The fact that π̃({O}) = π(O) is the stationary distribution of M/ ∼
can now be verified by direct computation. Indeed, we obtain

∑

O∈X/∼
π̃({O}) · p̃O→U =

∑

O∈X/∼
π(O) · 1

π(O)

∑

x∈O

∑

z∈U
π(x) · px→z =

=
∑

x∈X

∑

z∈U
π(x)·px→z =

∑

z∈U

∑

x∈X
π(x)·px→z

by stationarity of π
=

∑

z∈U
π(z) = π(U) = π̃({U}).

This establishes the stationarity of π̃ and theorem 11 now follows.

5 What is the “Quotient Construction” Method and How Does it
Work?

Theorem 11 lies in the heart of the “quotient construction method” which we develop
in this paper. The next result, which is a simple consequence of theorem 11, will allow
us to establish many bounds related to the stationary distribution of the Markov chains
modeling evolutionary algorithms. For the applications one does not even have to worry
about the quotient Markov chain “behind the scene” and therefore it is convenient to
introduce the following definition:

Definition 12 Given an irreducible Markov chain M with state space X , for any two
subsets A and B ⊆ X , we define pA→B =

∑
a∈A

π(a)
π(A)pa→B where pa→B =

∑
b∈B pa→b

and π is the unique stationary distribution of the Markov chain M.

The next result in conjunction with proposition 15 are the main tools we are going to
use for estimating the ratios of the stationary distribution values on various subsets of
the state space of a Markov chain.

Proposition 13 Let M denote an irreducible Markov chain on a finite state space X .
Let π denote its unique stationary distribution. Given any two disjoint nonempty subsets
A and B, let C = (A ∪ B)c (here U c denotes the complement of U in X ). Then we
have π(A)

π(B) = pB→A

pA→Ac
+ π(C)

π(B) · pC→A

pA→Ac
. In particular, when A∪B = X we have pB→A

pA→Ac
.

Moreover, if C 6= ∅ (i.e. A ∪B 6= X ), we can also write

π(A)
π(B)

=
β

1− α
where β =

pB→A

pA→Ac

+
pB→C · pC→A

pC→Cc · pA→Ac

and α =
pA→C · pC→A

pC→Cc · pA→Ac

.



Proof: Consider the quotient Markov chain with 3 states A, B and C. According to
the definition of a stationary distribution we have

π(A)pA→A + π(B)pB→A + π(C)pC→A = π(A)

which is equivalent to

(1− pA→A)π(A) = π(B)pB→A + π(C)pC→A.

Since the quotient Markov chain is irreducible we must have π(B) > 0. Observing that
1− pA→A = pA→Ac , we can also rewrite the equation above as

pA→Ac

π(A)
π(B)

= pB→A +
π(C)
π(B)

pC→A

which entails
π(A)
π(B)

=
pB→A

pA→Ac

+
π(C)
π(B)

· pC→A

pA→Ac

,

i.e. the first desired conclusion. It may be worth noting that pA→Ac > 0 due to the
fact that our Markov chain is irreducible. When A ∪ B = X , we have C = ∅ so that
π(C) = 0 and π(A)

π(B) = pB→A

pA→Ac
. Now assume C 6= ∅. Then, interchanging the roles of A

and C, we have already shown that

π(C)
π(B)

=
pB→C

pC→Cc

+
π(A)
π(B)

· pA→C

pC→Cc

.

Plugging the equation for π(C)
π(B) into the equation for π(A)

π(B) we obtain

π(A)
π(B)

=
pB→A

pA→Ac

+
(

pB→C

pC→Cc

+
π(A)
π(B)

· pA→C

pC→Cc

)
· pC→A

pA→Ac

.

Solving for π(A)
π(B) then gives the desired conclusion.

Corollary 14 LetM denote an irreducible Markov chain on a finite state space X . Let
π denote its unique stationary distribution. Given any two disjoint nonempty subsets
A and B, let C = (A ∪ B)c. Then we have π(A)

π(B) ≥ pB→A

pA→Ac
+ pB→C ·pC→A

pC→Cc ·pA→Ac
and, in

particular, π(A)
π(B) ≥ pB→A

pA→Ac
and π(A)

π(B) ≥ pB→C ·pC→A

pC→Cc ·pA→Ac
.

Proof: Since probabilities are always at most 1, we have 0 ≤ α ≤ 1 where α is as in
corollary 13. It follows then that 0 ≤ 1− α ≤ 1 which implies the desired conclusions
via corollary 13.

Unfortunately the transition probabilities pA→B depend on the values of the stationary
distribution which is what we are trying to estimate, but in some cases we can still
obtain some bounds on these transition probabilities via the following observation:



Proposition 15 LetM denote an irreducible Markov chain over the state space X . Let
X and Y ⊆ X . Then

min
x∈X

px→Y ≤ p̃X→Y ≤ max
x∈X

px→Y .

Proof:

min
x∈X

px→Y =
1

π(X)

∑

x∈X

π(x) min
x∈X

px→Y ≤ 1
π(X)

∑

x∈X

π(x)px→Y = p̃X→Y ≤

≤ 1
π(X)

∑

x∈X

π(x)max
x∈X

px→Y = max
x∈X

px→Y .

The quality of the bounds in proposition 15 depends largely on the discrepancy among
the values px→Y for x ∈ X . The situation may be particularly disadvantageous pro-
vided X = X1 ∪X2 with px→Y being large for x ∈ X1 and being small for x ∈ X2.
Luckily, if we know (or can estimate) the ratio of the stationary distribution values of
X1 and X2, the situation can be repaired via the following observation:

Corollary 16 Let M denote an irreducible Markov chain over the state space X . Let
X and Y ⊆ X . Suppose X = X1 ∪ X2 where X1 ∩ X2 = ∅. Then pX→Y =
π(X1)
π(X) pX1→Y + π(X2)

π(X) pX2→Y . In particular,

π(X1)
π(X)

min
x∈X1

px→Y +
π(X2)
π(X)

min
x∈X2

px→Y ≤ pX→Y ≤

≤ π(X1)
π(X)

max
x∈X1

px→Y +
π(X2)
π(X)

max
x∈X2

px→Y .

Proof: According to definition 12, we can write

pX→Y =
1

π(X)

∑

x∈X

π(x)px→Y =

=
1

π(X)

( ∑

x∈X1

π(x)px→Y

)
+

1
π(X)

( ∑

x∈X2

π(x)px→Y

)
=

=
1

π(X)

( ∑

x∈X1

π(x) · π(X1)
π(X1)

px→Y

)
+

1
π(X)

( ∑

x∈X2

π(x) · π(X2)
π(X2)

px→Y

)
=

=
π(X1)
π(X)

(
1

π(X1)

∑

x∈X1

π(x)px→Y

)
+

π(X2)
π(X)

(
1

π(X2)

∑

x∈X2

π(x)px→Y

)
=

=
π(X1)
π(X)

pX1→Y +
π(X2)
π(X)

pX2→Y .



This shows that pX→Y = π(X1)
π(X) pX1→Y + π(X2)

π(X) pX2→Y . The last assertion follows by
applying proposition 15 to each of the summands on the right hand side.

In some situations an estimate for the ratio π(X1)
π(X2)

is more readily available than the

ratios π(X1)
π(X) and π(X2)

π(X) . Of course, all these are closely related: we can write, for in-

stance, π(X1)
π(X) = π(X1)

π(X1)+π(X2)
= 1

1+
π(X2)
π(X1)

and, likewise, π(X2)
π(X) = 1

1+
π(X1)
π(X2)

. These

observations allow us to restate corollary 16 as follows.

Corollary 17 Let M denote an irreducible Markov chain over the state space X . Let
X and Y ⊆ X . Suppose X = X1 ∪X2 where X1 ∩X2 = ∅. Also let λ = π(X2)

π(X1)
Then

pX→Y = 1
1+λpX1→Y + 1

1+ 1
λ

pX2→Y . In particular,

1
1 + λ

min
x∈X1

px→Y +
1

1 + 1
λ

min
x∈X2

px→Y ≤ pX→Y ≤

≤ 1
1 + λ

max
x∈X1

px→Y +
1

1 + 1
λ

max
x∈X2

px→Y .

We now proceed applying these observations to compute the stationary distribution of
the binary GA Markov chains with population size 2 in the limit of small mutation rate.
We believe the method can be further extended to compute and estimate the stationary
distribution of Markov chains for a wide class of EAs.

6 First Application: Constant Fitness inside Disjoint Schemata

In this section we consider the binary GA with population size m = 2, string length n
and fitness function f : Ω = {0, 1}n → {0, 1}which takes exactly two distinct values.
In particular, we assume that ∃ i with 1 ≤ i ≤ n such that f(∗, ∗, . . . , ∗, 0, ∗, . . . , ∗) =
x while f(∗, ∗, . . . , ∗, 1, ∗, . . . , ∗) = y (here (∗, ∗, . . . , ∗, a, ∗, . . . , ∗) for a = 0 or
1 represents any individual which has allele a in the specified position and any allele,
either 0 or 1, in the ∗ position) where the fixed alleles 0 and 1 appear in the ith position.
Since the population size is m = 2, the state space X = Ω2 of the Markov chain
modeling our binary GA consists of 2 × n matrices. We can then partition the state
space of this Markov chain into three pairwise disjoint subsets defined as follows:

A =
{(∗ ∗ . . . ∗ 0 ∗ . . . ∗

∗ ∗ . . . ∗ 0 ∗ . . . ∗
)}

, B =
{(∗ ∗ . . . ∗ 1 ∗ . . . ∗

∗ ∗ . . . ∗ 1 ∗ . . . ∗
)}

and

C =
{(∗ ∗ . . . ∗ 1 ∗ . . . ∗

∗ ∗ . . . ∗ 0 ∗ . . . ∗
)

,

(∗ ∗ . . . ∗ 0 ∗ . . . ∗
∗ ∗ . . . ∗ 1 ∗ . . . ∗

)}
.

We aim to compute the ratio π(A)
π(B) via proposition 13. To apply proposition 13 we need

to compute the quotient transition probabilities involved in the formula via corollary 15.
First, it is worthwhile to remind the reader that a classical binary GA cycles through



the three stages: selection, recombination and mutation. To make our calculations con-
venient, in this section we will assume that selection stage follows mutation stage. It
will not matter for our calculation if recombination is the first or the last stage. In the
previous works (see section IX of [26]) it has been shown that we can later drop the
requirement on mutation preceding selection in the limit of small mutation rate.

Lemma 18 Given A, B and C as above, we have pB→A = 2µ(1− µ) x2

(x+y)2 + µ2.

Proof. Fix any population b ∈ B. In case recombination is the first stage, let b′ denote
the output upon completion of recombination of the population b. Otherwise, let b′ =
b. Since recombination, as described in definition 7, can not get us out from either A,
B or C, b′ ∈ B with probability 1. Next we need to obtain a population in A upon
completion of mutation followed by selection. The only possible ways to do so starting
with b′ are as follows:

Option 1: Obtain a population b′′ ∈ C via mutation starting with b′ first, and then
use selection to obtain a population in A.

Option 2: Obtain a population in A right upon completion of mutation (and then
one stays in A with probability 1).

The events described in options 1 and 2 are disjoint and, thereby, the transition
probability pb→A = p(Event described in option 1) + p(Event described in option 2).
Obtaining a population b′′ ∈ C via mutation starting with b′ amounts to mutating
exactly one of the ith alleles of the individuals in b′ (i.e. either mutating the ith al-
lele of the first individual and not mutating the ith allele of the second one, or vise
versa: not mutating the ith allele of the first individual and mutating the ith allele of
the second one). Thereby, this is disjoint union of two events, each happening with
probability µ(1 − µ) (see definition 9). Thus, the probability of obtaining b′′ ∈ C
starting with b′ upon completion of mutation is 2µ(1− µ). Once this is done, we need
to select the individual with the ith allele 0 from the population b′′ twice to obtain
a population in A. According to definition 4, this happens with probability x2

(x+y)2 .

Therefore we deduce that p(Event described in option 1) = 2µ(1 − µ) x2

(x+y)2 . Notice
that option 2 requires mutating the ith allele of both individuals in the population b′′.
This happens with probability µ2. Once mutation is complete, we obtain an individual
in A and neither selection nor recombination can produce an individual outside of A
with probability 1. This shows that p(Event described in option 2) = µ2 and we de-
duce that pb→A = p(Event described in option 1) + p(Event described in option 2) =
2µ(1 − µ) x2

(x+y)2 + µ2. Since the choice of b ∈ B is arbitrary, the desired conclusion

that pB→A = 2µ(1− µ) x2

(x+y)2 + µ2 now follows via proposition 15.

The proofs of the remaining lemmas are analogous to that of lemma 18. We will then
present only abbreviated arguments.

Lemma 19 Given A, B and C as above, we have pA→Ac = 2µ(1− µ)y2+2xy
(x+y)2 + µ2.

Proof. Just as in the proof of lemma 18, in view of proposition 15, it suffices to show
that ∀a ∈ A we have pa→Ac = 2µ(1− µ)y2+2xy

(x+y)2 + µ2. This argument, once again, is



entirely analogous to the one in the proof of lemma 18. There are two alternative paths
to take here, either to mutate exactly one of the ith alleles of the individuals comprising
the input population (recall this is a population in A), which happens with probability
2µ(1 − µ), and, afterwards, not to select the “non-mutant” twice, which happens with
probability 1− x2

(x+y)2 = y2+2xy
(x+y)2 , or to mutate the ith alleles of both individuals in the

input population which happens with probability µ2. This will result in a population
from B and selection won’t get us away from there with probability 1. Thus, the total
probability pa→Ac = 2µ(1 − µ)y2+2xy

(x+y)2 + µ2 which then entails pA→Ac = 2µ(1 −
µ)y2+2xy

(x+y)2 + µ2 via proposition 15.

Lemma 20 Given A, B and C as above, we have pC→Cc = (1− µ)2 x2+y2

(x+y)2 + O(µ).

Proof: Consider any c ∈ C. Let

c′ =

{
c if selection is the first stage.
Output after recombination with input c if recombination is the first stage.

As we have already seen, c′ ∈ C. One way to obtain a population not in C is not to
mutate the ith allele of either individual in c′ which happens with probability (1 − µ)2

and, afterwards, to select either the first or the second individual twice into the final
output population which happens with probability x2+y2

(x+y)2 . The only alternative path is
to mutate the ith allele of at least one of the individuals which happens with probability
O(µ). The effect of selection later may only reduce the probability of getting away
from C (but only if we mutate the ith allele of both individuals).4 We then conclude that
the total probability pc→Cc = (1− µ)2 x2+y2

(x+y)2 + O(µ) and the desired conclusion that

pC→Cc = (1− µ)2 x2+y2

(x+y)2 + O(µ) now follows via proposition 15.

Lemma 21 Given A, B and C as above, we have pC→A = (1− µ)2 x2

(x+y)2 + O(µ).

Proof: The argument is analogous to that in the proof of lemma 20. The only differ-
ence is that during selection stage, rather than getting away anywhere from c ∈ C we
actually need to get specifically into A and this requires selecting the individual with
fitness x twice (rather than selecting wither one of the individuals twice as in the proof
of lemma 20), hence the difference in the final formula.

Lemma 22 Given A, B and C as above, we have pB→C = pA→C = 2µ(1−µ) 2xy
(x+y)2 .

Proof: Consider any b ∈ B. Let

b′ =

{
b if selection is the first stage.
Output after recombination with input b if recombination is the first stage.

4 It is easy to compute this transition probability exactly as a function of µ, x, and y, but in the
current paper we will only be concerned with the asymptotic results as µ → 0 and the current
estimate is then sufficient.



As we have already seen, b′ ∈ B. The only way to obtain a population in C starting
with b′ is to mutate the ith allele of exactly one of the individuals in b′ (otherwise, if
we don’t mutate either of them we stay in B with probability 1 upon completion of
selection, and if we mutate both, then we get into A and, once again, stay there with
probability 1), which, as we have seen before, happens with probability 2µ(1−µ). Upon
completion of mutation we must not get away from C via selection. As we have seen
in the proof of lemma 20, getting away from any c ∈ C upon completion of selection
happens with probability x2+y2

(x+y)2 and, therefore, not getting away from c ∈ C happens

with probability 1− x2+y2

(x+y)2 = 2xy
(x+y)2 . We then deduce that ∀b ∈ B we have pb→C =

2µ(1− µ) 2xy
(x+y)2 and proposition 15 then tells us that pB→C = 2µ(1− µ) 2xy

(x+y)2 . The

proof that pA→C = 2µ(1 − µ) 2xy
(x+y)2 is entirely analogous. In fact, one can repeat the

previous argument verbatim replacing A with B and B with A throughout.

We are now in a position to obtain the main result of this section via proposition 13.

Theorem 23 Given A, B, C and the fitness function f as above, let πµ denote the
unique stationary distribution of the GA Markov chain with mutation rate µ where

selection stage follows mutation stage. Then limµ→0
πµ(A)
πµ(B) =

(
x
y

)2

.

Proof: We simply plug the expressions from lemmas 18, 19, 22, 21 and 20 into the
formula in proposition 13 to obtain:

πµ(A)
πµ(B)

=
β(µ)

1− α(µ)

so that

lim
µ→0

πµ(A)
πµ(B)

=
limµ→0 β(µ)

1− limµ→0 α(µ)

where

β(µ) =
2µ(1− µ) x2

(x+y)2 + µ2

2µ(1− µ)y2+2xy
(x+y)2 + µ2

+

+

(
2µ(1− µ) 2xy

(x+y)2

)
·
(
(1− µ)2 x2

(x+y)2 + O(µ)
)

(
(1− µ)2 x2+y2

(x+y)2 + O(µ)
)
·
(
2µ(1− µ)y2+2xy

(x+y)2 + µ2
)

and

α(µ) =

(
2µ(1− µ) 2xy

(x+y)2

)
·
(
(1− µ)2 x2

(x+y)2 + O(µ)
)

(
(1− µ)2 x2+y2

(x+y)2 + O(µ)
)
·
(
2µ(1− µ)y2+2xy

(x+y)2 + µ2
) .

Taking the limit as µ → 0 we obtain

lim
µ→0

β(µ) =
x2

y2 + 2xy
+

2x3y

(x2 + y2)(y2 + 2xy)
=



=
x2(x2 + y2) + 2x3y

(x2 + y2)(y2 + 2xy)
=

x2(x + y)2

(x2 + y2)(y2 + 2xy)
and

lim
µ→0

α(µ) =
2x3y

(x2 + y2)(y2 + 2xy)
so that

1− lim
µ→0

α(µ) = 1− 2x3y

(x2 + y2)(y2 + 2xy)
=

=
(x2 + y2)(y2 + 2xy)− 2x3y

(x2 + y2)(y2 + 2xy)
=

y2(x + y)2

(x2 + y2)(y2 + 2xy)
and, finally,

lim
µ→0

πµ(A)
πµ(B)

=
limµ→0 β(µ)

1− limµ→0 α(µ)
=

x2(x+y)2

(x2+y2)(y2+2xy)

y2(x+y)2

(x2+y2)(y2+2xy)

=
x2

y2
=

(
x

y

)2

as claimed.

7 Tight and Rigorous Asymptotic Results for Binary GAs

In this section we consider an arbitrary binary genetic algorithm with string length n
arbitrary population size m (not necessarily m = 2). We will also assume that the fit-
ness function f : Ω = {0, 1}n → (0,∞) is independent of the mutation rate µ. In
previous papers (see [25] and [26]) we have already shown that the uniform popula-
tions (i.e. these populations which consist of a repeated copy of the same individual
only) dominate over the nonuniform ones in the limit of small mutation rate. Further-
more, we have also estimated the rate of domination to be on the order of 1

µ (i.e. if U

denotes the set of uniform populations then πµ(U)
πµ(Uc) = Ω

(
1
µ

)
). In this section, apart

from this asymptotic result, we will establish another one of similar nature. Although
the results in the current section are only asymptotic (rather than evaluating specific
stationary distributions) we strongly believe that they will serve as an indispensable
tool in reducing the size of the state space and simplifying the nature of the Markov
transition matrices for a wide class of EAs (hopefully more on this in the forthcoming
papers). Recall that the state space of our Markov Chain consists of m×n binary matri-
ces where the rows are the individuals. Another important notational concept is that of
Holland schemata. Formally, Holland schemata are the elements of the set {0, 1, ∗}n.
Each Holland schema

−→
t = (t1, t2, . . . , tn) ∈ {0, 1, ∗}n represents the set of individ-

uals S(
−→
t ) = {(a1, a2, . . . , an) | ai = ti if ti 6= ∗} ⊆ Ω = {0, 1}n. We will often

abuse the notation by identifying the schema
−→
t with either the entire set of individuals

it represents or with any of the individuals it represents. In fact, we have already made
such informal use of Holland schemata in section 6. Fix any two specified gene indices
i and j with 1 ≤ i < j ≤ n and consider the 4 Holland schemata with fixed positions i
and j partitioning the search space Ω = {0, 1}n:

−→
t 1 = (∗, ∗, . . . , ∗, 0, ∗, . . . , ∗, 0, ∗, . . . , ∗),



−→
t 2 = (∗, ∗, . . . , ∗, 0, ∗, . . . , ∗, 1, ∗, . . . , ∗),
−→
t 3 = (∗, ∗, . . . , ∗, 1, ∗, . . . , ∗, 0, ∗, . . . , ∗),
−→
t 4 = (∗, ∗, . . . , ∗, 1, ∗, . . . , ∗, 1, ∗, . . . , ∗)

where non-∗ entries (alleles) appear precisely at the ith and jth positions. Recall the
notion of the hamming distance between the schemata (and/or the individuals): Given
any two schemata −→u = (u1, u2, . . . , un) and −→v = (v1, v2, . . . , vn) ∈ {0, 1, ∗}n we
define d(−→u ,−→v ) = |{l |ul 6= vl}|. For example, d(

−→
t 1,

−→
t 2) = d(

−→
t 1,

−→
t 3) = 1 while

d(
−→
t 1,

−→
t 4) = 2. Now consider the following sets of populations: Al denotes the set of

all m× n matrices where every row fits the schema tl. We let A =
⋃4

i=1 Ai. Consider
any q and l with 1 ≤ q < l ≤ 4. Let Dq,l denote the set of all m × n matrices such
that every row of these fits either the schema tq or the schema tl (notice that tl and
tq are disjoint for l 6= q so that the “or” is implied to be a mutually exclusive one).
Now let C =

⋃
d(
−→
t q,

−→
t l)=1

Dq,l = D1,2 ∪ D1,3 ∪ D2,4 ∪ D3,4. Finally, let B denote
the set of remaining populations (the complement of A ∪ C in the set of all binary
m × n matrices). Notice that every matrix in B contains at least one pair of rows such
that these rows fit schemata hamming distance 2 apart (i.e. (t1 and t4) or (t2 and t3)).
Notice also that recombination preserves the hamming distance in the sense that if we
recombine a pair of individuals fitting the schemata t1 and t4 we may get either another
pair fitting t1 and t4 or a pair fitting t2 and t3 (which remain hamming distance 2
apart). This implies, in particular, that B and C remain invariant under recombination.
Needless to say, A also remains invariant under recombination. Furthermore, A also
remains invariant under selection. Thus, if a ∈ A is any individual in A, then obtaining
an individual outside of A requires at least one nontrivial mutation which happens with
probability Θ(µ). Moreover, performing exactly one nontrivial mutation (at either ith or
jth position) will produce an individual inside of C. We will then stay inside of C with
some constant (independent of the mutation rate) probability Θ(1). Thus, proposition 15
tells us that pA→C = Θ(µ). Obtaining a population in B requires at least two nontrivial
mutations and happens with probability Θ(µ2). Remaining inside of B happens with
some constant (independent of the mutation rate) probability Θ(1). It follows then via
proposition 15 that pA→B = Θ(µ2). Since B ∩ C = ∅ and B ∪ C = Ac, pA→Ac =
pA→C + pA→B = Θ(µ) + Θ(µ2) = Θ(µ). Moreover, pA→C = pA→Ac − pA→B =
pA→Ac −Θ(µ2). We summarize these observations below:

Lemma 24 Given A, B and C as above, we have pA→Ac = pA→C = Θ(µ) and
pA→C = pA→Ac −Θ(µ2).

Given any population c ∈ C, or, likewise, a population b ∈ B getting from such
population into A can be done via selection only (just select the same individual repeat-
edly) and doesn’t require any nontrivial mutation. This certainly happens with prob-
ability Θ(1). Proposition 15 then tells us that pC→A = Θ(1) and pB→A = Θ(1).
Moreover, getting from c ∈ C somewhere into B does require at least one nontriv-
ial mutation and can then be done via selection only. This happens with probability
Θ(µ) then. Again, proposition 15 tells us that pC→B = Θ(µ). Since A ∩ B = ∅ and
C = (A ∪B)c, it follows that pC→Cc = pC→A + pC→B = Θ(1) + Θ(µ) = Θ(1) and
pC→Cc − pC→A = pC→B = Θ(µ). These deductions are summarized below:



Lemma 25 Given A, B and C as above, we have pB→A = Θ(1), pC→A = Θ(1) and
pC→Cc = Θ(1). Also pC→A = pC→Cc −Θ(µ).

Finally, to get from somewhere in B to anywhere in C we don’t have to perform any
mutation and only need not to select some of the individuals into the new population.
Such an event happens with probability Θ(µ), hence the following:

Lemma 26 Given A, B and C as above, we have pB→C = Θ(1).

We are now in a position to deduce the central result of the current section from
proposition 13.

Theorem 27 πµ(A)
πµ(B) = Θ

(
1

µ2

)

Proof: Much like in the proof of theorem 23, we simply plug in the constants in
lemmas 24, 25 and 26 into proposition13 to obtain πµ(A)

πµ(B) = β(µ)
1−α(µ) where

β(µ) =
Θ(1)
Θ(µ)

+
Θ(1) ·Θ(1)
Θ(1) ·Θ(µ)

= Θ

(
1
µ

)

and

α(µ) =
(pA→Ac −Θ(µ2)) · (pC→Cc −Θ(µ))

pC→Cc · pA→Ac

=

=
pC→Cc −Θ(µ)

pC→Cc

· pA→Ac −Θ(µ2)
pA→Ac

=
(

1− Θ(µ)
Θ(1)

)
·
(

1− Θ(µ2)
Θ(µ)

)
=

= (1−Θ(µ)) · (1−Θ(µ)) = 1−Θ(µ)

carefully noticing that both constants within Θ(µ) notation are positive. We then obtain

πµ(A)
πµ(B)

=
β(µ)

1− α(µ)
=

Θ
(

1
µ

)

1− (1−Θ(µ))
= Θ

(
1
µ2

)

as claimed.

We can strengthen theorem 27 further but noticing that all the “uniform” populations
have probability of the same order of magnitude asymptotically (as µ → 0) as long as
the fitness function is independent of the mutation rate µ. In fact, this is very simple to
prove using corollary 14.

Theorem 28 Given any Ai and Aj as above (recall that Ai is the set of all m × n

matrices which fit the schema ti as described above), we have πµ(Ai)
πµ(Aj)

= Θ(1).

Proof: First we prove this fact for these i and j where d(ti, tj) = 1 (where d denotes
the hamming distance as described above). For such i and j we apply corollary 14 to
obtain πµ(Ai)

πµ(Aj)
=

pAj→Ai

pAi→(Ai)
c
≥ Ω(µ)

O(µ) = Ω(1). Indeed, getting from anywhere in Aj

into somewhere in Ai requires at exactly one mutation, since d(ti, tj) = 1, and this



happens with probability Θ(µ). Then we only need to select the mutated individual re-
peatedly which happens with probability Θ(1) so that, according to proposition 15 we
have pAj→Ai = Ω(1). Obtaining a population not in Ai starting with any given pop-
ulation in Ai requires at least one nontrivial mutation which happens with probability
O(µ). Thus, we have shown that πµ(Ai)

πµ(Aj)
= Ω(1) for these i and j where d(ti, tj) = 1.

Interchanging the roles of i and j we deduce that πµ(Ai)
πµ(Aj)

= Θ(1) for these i and j

where d(ti, tj) = 1. For these i and j where d(ti, tj) = 2 select the “intermediate” k
with d(ti, tk) = 1 and d(tj , tk) = 1 (it is easy to verify by inspection that such a k can
always be found). We then have πµ(Ai)

πµ(Aj)
= πµ(Ai)

πµ(Ak) ·
πµ(Ak)
πµ(Aj)

= Θ(1) ·Θ(1) = Θ(1) and
the desired conclusion is established.

Combining theorem 27 with theorem 28 gives us the following:

Corollary 29 Given Ai for 1 ≤ i ≤ 4, A =
⋃4

i=1 Ai and B as above, we have ∀ i with

1 ≤ i ≤ 4 πµ(Ai)
πµ(A) = Θ(1) and πµ(Ai)

πµ(B) = Θ
(

1
µ2

)
.

Proof: For the first assertion notice that 1 ≥ πµ(Ai)
πµ(A) ≥

πµ(Ai)
4 max1≤i≤4 πµ(Ai)

= 1
4Θ(1) =

Θ(1). To see the last assertion, write

πµ(Ai)
πµ(B)

=
πµ(Ai)
πµ(A)

· πµ(A)
πµ(B)

= Θ(1) ·Θ
(

1
µ2

)
= Θ

(
1
µ2

)
.

8 Unimodal Symmetric Functions on {0, 1}2

In this section we consider a binary GA with string length 2, i.e. the search space is
Ω = {0, 1}2 and population size 2. We consider a fitness function f of the form
f(0, 0) = f(1, 1) = x and f(1, 0) = f(0, 1) = y. This is a unimodal functions
(i.e. a function which depends only on the number of 0s and 1s in its argument) with an
extra symmetry condition that f(0, 0) = f(1, 1) = x. For this function we compute
the stationary distribution of the corresponding GA Markov chain with a population of
size 2 and selection stage following mutation stage within the cycle (the sequence of
stages assumption can be dropped later) in the limit of small mutation rate. It may be
worth mentioning straight away that the primary value of the results is the not so much
the answer itself, since this is only a very special case, but the illustration of the “quo-
tient construction” method which we hope will be further developed and improved to
yield more powerful applications. We now consider the following partition of the state
space (which consists of 16 populations each represented by a 2× 2 binary matrix):

A =
{(

0 0
0 0

)
,

(
1 1
1 1

)}
,

B′ =
{(

0 1
0 1

)
,

(
1 0
1 0

)}
, B′′ =

{(
1 0
0 1

)
,

(
0 1
1 0

)
,

(
0 0
1 1

)
,

(
1 1
0 0

)}
and



C =
{(

0 0
0 1

)
,

(
0 0
1 0

)
,

(
0 1
0 0

)
,

(
1 0
0 0

)
,

(
1 1
1 0

)
,

(
1 1
0 1

)
,

(
1 0
1 1

)
,

(
0 1
1 1

)}
.

We let B = B′ ∪ B′′. Our primary goal here is to compute the ratio limµ→0
π(A)
π(B′) =

limµ→0
π(A)
π(B) (as we will see later). As our eventual goal is to apply proposition 13 to

the sets of populations A, B and C, we need to evaluate the transition probabilities
involved in the formula. Unlike the case in section 6, due to the discrepancies in the
transition probability values (getting away from various individuals within the same
set B), two of the evaluations will require the use of corollary 17 and theorem 27 will
provide us with the necessary estimates of the stationary distribution ratios within the
partitions. All this will be illustrated below.

Lemma 30 Suppose A, C, B = B′∪B′′, and the fitness function f are as above. Then
pB→A = 4µ(1− µ)3 · 1

1+O(µ2) · x2

(x+y)2 + O(µ2).

Proof: Let λ = π(B′′)
π(B′) . According to theorem 27, 1

λ = Ω
(

1
µ2

)
, which is equivalent

to saying that λ = O(µ2). According to corollary 17 we then have

pB→A =
1

1 + O(µ2)
pB′→A +

1

1 + Ω
(

1
µ2

)pB′′→A.

Notice that
1

1 + Ω
(

1
µ2

) ≤ 1
1 + q

µ2

=
µ2

q + µ2
≤ µ2

q
= O(µ2)

for some constant q > 0 independent of µ. This shows that

1

1 + Ω
(

1
µ2

) = O(µ2).

Since pB′′→A ≤ 1, we conclude now that

pB→A =
1

1 + O(µ2)
pB′→A + O(µ2).

It remains to examine pB′→A. If we start with any b′ ∈ B′ then we may perform exactly
one mutation in any of the 4 positions which happens with probability 4µ(1 − µ)3

and, afterwards, select the mutated individual into the new population repeatedly twice
which happens with probability x2

(x+y)2 . An alternative path requires at least 2 mutations
and happens with probability O(µ2). We then deduce that

pb′→A = 4µ(1− µ)3 · x2

(x + y)2
+ O(µ2)

and proposition 15 then tells us that

pB′→A = 4µ(1− µ)3 · x2

(x + y)2
+ O(µ2).



Plugging this into the expression for pB→A we finally obtain

pB→A =
1

1 + O(µ2)

(
4µ(1− µ)3 · x2

(x + y)2
+ O(µ2)

)
+ O(µ2) =

= 4µ(1− µ)3 · 1
1 + O(µ2)

· x2

(x + y)2
+ O(µ2)

as claimed.

The transition probability pB→C is evaluated in an entirely analogous manner. We pro-
vide only a sketchy proof then.

Lemma 31 Suppose A, C, B = B′∪B′′, and the fitness function f are as above. Then
pB→C = 4µ(1− µ)3 · 1

1+O(µ2) · 2xy
(x+y)2 + O(µ2).

Proof: The argument goes along exactly the same lines as the proof of lemma 31. The
only difference is that upon completion of selection (after a successful single mutation)
we need to end up in C rather than in A. This is equivalent to not selecting each of the
individuals from the resulting population (which is in C, by the way) twice and happens
with probability 1− x2+y2

(x+y)2 = 2xy
(x+y)2 .

Evaluating the remaining transition probabilities is truly routine and involves only propo-
sition 15. We have presented so many of these arguments in the previous sections al-
ready that we leave the proofs of all the following lemmas as exercises for the interested
reader.

Lemma 32 Suppose A, C, B = B′∪B′′, and the fitness function f are as above. Then
pA→Ac = 4µ(1− µ)3 · 2xy+y2

(x+y)2 + O(µ2).

Lemma 33 Suppose A, C, B = B′∪B′′, and the fitness function f are as above. Then
pA→C = 4µ(1− µ)3 · 2xy

(x+y)2 + O(µ2).

Lemma 34 Suppose A, C, B = B′∪B′′, and the fitness function f are as above. Then
pC→A = x2

(x+y)2 + O(µ).

Lemma 35 Suppose A, C, B = B′∪B′′, and the fitness function f are as above. Then
pC→Cc = x2+y2

(x+y)2 + O(µ).

We have now evaluated all the transition probabilities involved in proposition 13 and,
thereby, set the stage for the following theorem:

Theorem 36 Suppose A, C, B = B′ ∪ B′′, and the fitness function f are as above.

Then limµ→0
πµ(A)
πµ(B) =

(
x
y

)2

.



Proof: Just as in the proofs of theorems 23 and 27 we simply plug in the expressions
from lemmas 30, 31, 32, 34 and 35 into the formula in proposition 13 to obtain

lim
µ→0

πµ(A)
πµ(B)

= lim
µ→0

β(µ)
1− α(µ)

=
limµ→0 β(µ)

1− limµ→0 α(µ)

where

β(µ) =
4µ(1− µ)3 · 1

1+O(µ2) · x2

(x+y)2 + O(µ2)

4µ(1− µ)3 · 2xy+y2

(x+y)2 + O(µ2)
+

+

(
4µ(1− µ)3 · 1

1+O(µ2) · 2xy
(x+y)2 + O(µ2)

)
·
(

x2

(x+y)2 + O(µ)
)

(
x2+y2

(x+y)2 + O(µ)
)
·
(
4µ(1− µ)3 · 2xy+y2

(x+y)2 + O(µ2)
)

and

α(µ) =

(
4µ(1− µ)3 · 2xy

(x+y)2 + O(µ2)
)
·
(

x2

(x+y)2 + O(µ)
)

(
x2+y2

(x+y)2 + O(µ)
)
·
(
4µ(1− µ)3 · 2xy+y2

(x+y)2 + O(µ2)
) .

Taking limit as µ → 0 we compute

lim
µ→0

β(µ) =
x2

y2 + 2xy
+

2x3y

(x2 + y2)(y2 + 2xy)
=

=
x2(x2 + y2) + 2x3y

(x2 + y2)(y2 + 2xy)
=

x2(x + y)2

(x2 + y2)(y2 + 2xy)

and

lim
µ→0

α(µ) =
2x3y

(x2 + y2)(y2 + 2xy)

so that

1− lim
µ→0

α(µ) = 1− 2x3y

(x2 + y2)(y2 + 2xy)
=

=
(x2 + y2)(y2 + 2xy)− 2x3y

(x2 + y2)(y2 + 2xy)
=

y2(x + y)2

(x2 + y2)(y2 + 2xy)

and, finally,

lim
µ→0

πµ(A)
πµ(B)

=
limµ→0 β(µ)

1− limµ→0 α(µ)
=

x2(x+y)2

(x2+y2)(y2+2xy)

y2(x+y)2

(x2+y2)(y2+2xy)

=
x2

y2
=

(
x

y

)2

as claimed.

It’s interesting to observe that the ratio in theorem 27 is the same as in theorem 23 (of
course, the sets A and B and the fitness function are different).



9 Conclusions

In the current paper we have further strengthened the “quotient construction method”
presented in earlier works. In particular we managed to use it to compute exact ratios
of the stationary distribution values of GA Markov chains in a couple of simple exam-
ples (see sections 6 and 8). Furthermore, we established another, more subtle rigorous
asymptotic result which can easily be extended to a wide class of EAs. We believe this
result can serve as an important tool in reducing the size of the state space of the EA
Markov chains in the limit of small mutation rates. Hopefully more on this topic will
appear in sequel papers.
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