734 research outputs found

    List of requirements on formalisms and selection of appropriate tools

    Get PDF
    This deliverable reports on the activities for the set-up of the modelling environments for the evaluation activities of WP5. To this objective, it reports on the identified modelling peculiarities of the electric power infrastructure and the information infrastructures and of their interdependencies, recalls the tools that have been considered and concentrates on the tools that are, and will be, used in the project: DrawNET, DEEM and EPSys which have been developed before and during the project by the partners, and M\uf6bius and PRISM, developed respectively at the University of Illinois at Urbana Champaign and at the University of Birmingham (and recently at the University of Oxford)

    The GreatSPN tool: recent enhancements

    Get PDF
    GreatSPN is a tool that supports the design and the qualitative and quantitative analysis of Generalized Stochastic Petri Nets (GSPN) and of Stochastic Well-Formed Nets (SWN). The very first version of GreatSPN saw the light in the late eighties of last century: since then two main releases where developed and widely distributed to the research community: GreatSPN1.7 [13], and GreatSPN2.0 [8]. This paper reviews the main functionalities of GreatSPN2.0 and presents some recently added features that significantly enhance the efficacy of the tool

    Methodologies synthesis

    Get PDF
    This deliverable deals with the modelling and analysis of interdependencies between critical infrastructures, focussing attention on two interdependent infrastructures studied in the context of CRUTIAL: the electric power infrastructure and the information infrastructures supporting management, control and maintenance functionality. The main objectives are: 1) investigate the main challenges to be addressed for the analysis and modelling of interdependencies, 2) review the modelling methodologies and tools that can be used to address these challenges and support the evaluation of the impact of interdependencies on the dependability and resilience of the service delivered to the users, and 3) present the preliminary directions investigated so far by the CRUTIAL consortium for describing and modelling interdependencies

    Non deterministic Repairable Fault Trees for computing optimal repair strategy

    Get PDF
    In this paper, the Non deterministic Repairable Fault Tree (NdRFT) formalism is proposed: it allows to model failure modes of complex systems as well as their repair processes. The originality of this formalism with respect to other Fault Tree extensions is that it allows to face repair strategies optimization problems: in an NdRFT model, the decision on whether to start or not a given repair action is non deterministic, so that all the possibilities are left open. The formalism is rather powerful allowing to specify which failure events are observable, whether local repair or global repair can be applied, and the resources needed to start a repair action. The optimal repair strategy can then be computed by solving an optimization problem on a Markov Decision Process (MDP) derived from the NdRFT. A software framework is proposed in order to perform in automatic way the derivation of an MDP from a NdRFT model, and to deal with the solution of the MDP

    Representing Conversations for Scalable Overhearing

    Full text link
    Open distributed multi-agent systems are gaining interest in the academic community and in industry. In such open settings, agents are often coordinated using standardized agent conversation protocols. The representation of such protocols (for analysis, validation, monitoring, etc) is an important aspect of multi-agent applications. Recently, Petri nets have been shown to be an interesting approach to such representation, and radically different approaches using Petri nets have been proposed. However, their relative strengths and weaknesses have not been examined. Moreover, their scalability and suitability for different tasks have not been addressed. This paper addresses both these challenges. First, we analyze existing Petri net representations in terms of their scalability and appropriateness for overhearing, an important task in monitoring open multi-agent systems. Then, building on the insights gained, we introduce a novel representation using Colored Petri nets that explicitly represent legal joint conversation states and messages. This representation approach offers significant improvements in scalability and is particularly suitable for overhearing. Furthermore, we show that this new representation offers a comprehensive coverage of all conversation features of FIPA conversation standards. We also present a procedure for transforming AUML conversation protocol diagrams (a standard human-readable representation), to our Colored Petri net representation

    Formalisms for specifying Markovian population models

    Get PDF
    In this survey, we compare several languages for specifying Markovian population models such as queuing networks and chemical reaction networks. All these languages — matrix descriptions, stochastic Petri nets, stoichiometric equations, stochastic process algebras, and guarded command models — describe continuous-time Markov chains, but they differ according to important properties, such as compositionality, expressiveness and succinctness, executability, and ease of use. Moreover, they provide different support for checking the well-formedness of a model and for analyzing a model
    • …
    corecore