
The GreatSPN Tool: Recent Enhancements

Soheib Baarir
∗

LIP6
Univ. Pierre et Marie Curie

Paris
souheib.baarir@lip6.fr

M. Beccuti
†

Dipartimento di Informatica
Univ. del Piemonte Orientale

Alessandria
beccuti@mfn.unipmn.it

Davide Cerotti
Dipartimento di Informatica

Univ. del Piemonte Orientale
Alessandria

davide.cerotti@mfn.unipmn.it
Massimiliano De Pierro
Dipartimento di Informatica

Università di Torino
Torino

depierro@di.unito.it

Susanna Donatelli
Dipartimento di Informatica

Università di Torino
Torino

susi@di.unito.it

Giuliana Franceschinis
Dipartimento di Informatica

Univ. del Piemonte Orientale
Alessandria

giuliana@mfn.unipmn.it

ABSTRACT
GreatSPN is a tool that supports the design and the qual-
itative and quantitative analysis of Generalized Stochas-
tic Petri Nets (GSPN) and of Stochastic Well-Formed Nets
(SWN). The very first version of GreatSPN saw the light
in the late eighties of last century: since then two main
releases where developed and widely distributed to the re-
search community: GreatSPN1.7 [12], and GreatSPN2.0 [7].
This paper reviews the main functionalities of GreatSPN2.0
and presents some recently added features that significantly
enhance the efficacy of the tool.

1. INTRODUCTION
Generalized Stochastic Petri Nets (GSPN) [1] are Petri

Nets that include timed and immediate transitions. Timed
transitions have stochastic firing delays, while immediate
transitions fire in zero time. Stochastic Well-Formed Nets [11]
(SWN) are High Level Petri Nets (HLPN) where tokens
can carry information and thus be distinguished (i.e. to-
kens are “colored” as opposed to traditional “black” tokens),
and the events are represented by transition instances which
are parameterized on the basis of a number of “color vari-
ables” associated with them. SWNs can have timed and
immediate transitions, as in GSPNs. GreatSPN supports
both GSPN and SWN-based performance evaluation either
through discrete event simulation, or through the genera-
tion of a Markov chain representing the model behavior in
time (if transition firing times are exponentially distributed).
One of the characterizing aspect of GreatSPN is the analysis
(reachability graph and Markov chain generation) of SWNs,
that is based on particularly efficient algorithms that exploit
symmetries to limit the state space explosion problem.

GreatSPN was initially developed at the Computer Sci-
ence Department of the University of Torino, Italy; currently
also the Computer Science Department of the University of
Piemonte Orientale in Alessandria, Italy, is actively con-
tributing to its maintenance, development and distribution.

The current distribution can be downloaded from the web
page www.di.unito.it/∼greatspn: it runs on Linux, So-

∗This work has been done while S. Baarir was a temporary
researcher at the Università del Piemonte Orientale†M. Beccuti is working on a research contract for CNIT,
Research Unit of the Università del Piemonte Orientale

laris and MacOS X1, and requires the Open Motif library
for the graphical interface. It is also possible to download
a VMware image including a Linux installation of the pack-
age, that can be run on any platform for which a VMware
virtual machine exists (e.g. Windows). Recently, the port-
ing towards 64 bits architectures has started. The package
is available free of charge for academic institutions and non
profit organizations.

In the following we present GreatSPN2.0 basic functional-
ities (Section 2) and some recently added features (that are
also part of the current distribution): utilities for model con-
struction and transformation in Section 3, and two modules
for the efficient analysis of SWN models that are partially
symmetric in Section 4.

A summary of the various interactions of GreatSPN with
other Petri nets and non-Petri nets tools that have taken
place over the years is presented in Section 5.

2. GREATSPN BASIC FEATURES
This section is an overview about the main features of

the GreatSPN software distribution. Further details and
technical aspects can be found in [7, 12, 17].

The GreatSPN software distribution is mainly composed
of three groups of programs:

The Graphical User Interface: the GUI is developed above
the Motif toolkit and besides the editing facilities allowing to
draw a net and specify performance indexes, it allows to run
the analysis modules (for structural properties, state space
and performance indices computation) and show the results,
to play the token game (GSPN only) and to perform an in-
teractive simulation of timed and stochastic models (GSPN
only). Figure 1 illustrates the GreatSPN’s GUI Main win-
dow and the Console window, which shows the output re-
sults coming from the execution of an analysis module (in
the figure it is shown the output of the SRG computation
module applied to an example SWN). The GUI has limited
support for the structuration of models into submodels: it
only allows to place the net elements on different layers;
compositional model construction is supported by an exter-
nal utility (algebra) described later. It is possible to export
models in eps or ps graphic formats (the model pictures

1For the moment only tested on version 10.4 and on PPC
processor.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Archivio Istituzionale della Ricerca- Università del Piemonte Orientale

https://core.ac.uk/display/226050862?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1: GreatSPN’s GUI: Main and Console windows

shown in this paper have been exported from GreatSPN).

The analysis modules: mainly implemented in C program-
ming language, these programs run in their own address-
space, separately from the GUI, although a GUI’s Console
window allows to call them from within the graphical en-
vironment. The modules store the results of the analysis
into files according to an internal format; several modules
can cooperate (through intermediate result files) in order to
compute a final result that requires several analysis steps;

Utilities: The GreatSPN distribution includes some utili-
ties: algebra, for models composition, a tool for graphical
visualization of the reachability graph (see Section 3) and a
tool implemented in Java, multisolve, which allows to run
multiple experiments of a given analysis module in a batch
of runs varying some model parameters, the output results
are saved into a file suitable for the generation of graphs
through the gnuplot program. In addition a number of
“exporters” that translate the GreatSPN model description
files into the formats accepted by other analysis and drawing
tools are also available: see Section 5 for the details.

The analysis modules provided by the distribution can be
classified into structural analysis modules, state-space anal-
ysis modules, simulation modules and performance analysis
modules based on the generation of a Markov chain (MC)
and its numerical solution:

Structural analysis modules are available for GSPN mod-
els only (although it is possible to apply them to unfolded
SWN models). Among them there are: the P and T semi-
flows computation module; the structural boundness and
unbounded transition sequences computation modules; the
structural traps and deadlocks computation modules. Sev-
eral other kinds of net structural properties (whose results
are useful to speed up other analysis algorithms) can be com-
puted such as mutual exclusion, confusion, implicit places,
causal connection, structural conflict, Extended Conflict Sets
(ECS). A structural performance bound analyser is also avail-
able, which requires lpsolve (lpsolve.sourceforge.net).

State-space analysis: for the uncolored formalisms an ef-
ficient state space generation module is available, i.e. the
Reachability Graph (RG) generator and the Tangible RG
(TRG) generator that build the set of reachable markings
and the transitions connecting them. Moreover a separate
module computes several properties of the model state space
(e.g. liveness, strongly connectedness, etc.). For the SWNs,
both ordinary RG computation and more efficient Symbolic
RG generation modules are available;

Simulation: event-driven simulation modules are available
for both supported formalisms. The simulator allows to
compute steady state performance indices through the batch
means method. For SWNs the simulation can be performed
either using ordinary markings and transitions or symbolic
ones. Moreover, SWN ordinary simulation allows for timed
transitions general firing time distributions. For GSPNs an
interactive version cooperating with the GUI is also avail-
able: it allows graphical animation of the model with move-
ment of tokens, with step-by-step and automatic run, for-
ward and backward time progression, real-time update of
performance figures, arbitrary rescheduling of events.

Markov chain generation and analysis modules: from
the TRG or SRG a MC can be automatically generated;
both transient (based on a randomization technique) and
steady-state numerical analysis modules are then provided,
to derive performance indices from the MC.

3. UTILITIES
One important choice in the development of GreatSPN

has been the introduction of an HLPN formalism, SWNs,
together with a suite of efficient algorithms for their analy-
sis: this has greatly facilitated the construction of complex
models, in particular those representing several entities with
homogeneous behavior, and the analysis of qualitative and
quantitative properties of the represented systems.

However the possibility of using an HLPN formalism is not
enough when the model is more naturally specified in terms
of interacting components. For this reason a net composi-

tion tool called algebra has been introduced, with the aim
of supporting a compositional model construction approach.
The algebra tool is a command line one, able to compose
two subnets by superposition on (labelled) places, or tran-
sitions or both. In this section we show algebra at work
on a running example that will be used also throughout the
paper for illustrating other GreatSPN tools and features.

Let us consider a system where several users can require a
resource to be used in mutual exclusion: the SWN model in
Fig. 2(a) represents such situation; in this model “colors” (in
Proc) are used to distinguish the identity of token-customers
(in this section we assume Proc = {Proc1, P roc2}): the in-
scriptions appearing on the arcs express the fact that the
identity of the tokens is maintained while moving among
places. Notice that at this abstract level of system represen-
tation, keeping track of such identity is not actually needed:
this over-specification may have quite a significant impact
on the analysis complexity; the use of SWN-specific analy-
sis tools (namely the Symbolic Reachability Graph – SRG –
construction algorithm), recognizing that the customers be-
have homogeneously and automatically abstracting out the
irrelevant information, allows to alleviate the state space
explosion problem. Let us now assume that the identities
are necessary for the selection of the customer that has the
right of getting exclusive use of the unique resource among
the subset of customer who have issued a request (e.g. iden-
tities correspond to customer priorities). The submodel in
Fig. 2(b) represents a mechanism for the selection of the
highest priority candidate for accessing the resource: it mim-
ics a distributed selection process where pairs of customers
compare their priorities, and the highest priority eliminates
the lower priority one from the race. This process contin-
ues until only one customer remains, which is the highest
priority one that is hence assigned the resource. More in
detail, place AllProc contains the identities of the processes
that are allowed to submit a request (initially the whole
set Proc); place GSbis represents the requests that have
reached the scheduler: when it is marked no new requests
are accepted any longer (all tokens still in place AllProc are
moved to place FDR by immediate transition t6), and the
selection process starts. Transition t4 performs the highest
priority customer selection (the guard d(p) = Proc2 means
that process p has highest priority: the request of process
q losing the race is discarded and sent back to place IDbis,
while p remains in GSbis); finally transition t3 represents
the assignment of the resource to the race winner (it can
fire only when all process identities except the winner are
in place FDR, what is expressed by function < S − #p >
on the arc). A new race can start only after the end of the
resource usage by the current customer (firing of transition
endCS, which restores the whole set of customer identities
in place AllProc through function < S > on the arc, thus
making it possible the arrival of new requests).

The two submodels of Figs. 2(a) and 2(b) can be com-
posed to form a complete model by superposition over la-
beled places and transitions. In particular the places ID
and GS, and the transitions t1, t3 and endCS in the first
model, have an associated label (appearing next to the node
name, separated by a | symbol) that allows to match them
with the corresponding places and transitions in the sec-
ond model, hence algebra can be employed to glue the two
submodels. The result produced by algebra (after a light
rearrangment of arcs) is shown in Fig. 2(c) (described in de-

ID|p12
Proc m0

Mutex

CS
Proc

GS|pl1

Proc

RQ
Proc

FDR
Proc

AllProc
Proc m0

IDbis|pl2

Proc m0

GSbis|pl1

Proc

endCSbis|tl3

endCS|tl3t3|tl2

t2t1|tl1

t4

[d(p)=Proc2]
t1bis|tl1 t3bis|tl2

t6

<q>

<p>

<q>
<p>

<S-#p>

<#p>

<q>

<q>

<p>
<p>+<q>

<#p><#p> <p><p> <#p><#p>

<p>

<#p>

<S>

AllProc

Proc
m0

FDR
Proc

CS
Proc

GS

Proc

RQ
Proc

Mutex

ID
Proc m0

t4
[d(p)=Proc2]

t3

endCS

t1 t2

t6

<S>

<q>

<p> <S-p>

<q>

<q>

<p> <p><p>

<p>

<p>

<p>
<p>+<q>

<p><p><p>

<p>

<q>

<p>

(b)

(a)

(c)

Figure 2: SWN submodel of a mutually exclusive
access to a shared resource (a), a submodel for selec-
tion of the highest priority customer (b), and their
composition (c)

tails in [6]). Much more complex composition situations are
allowed, in particular several nodes in a submodel may con-
tain the same label, moreover a node may be multi-labelled.
Composition of n > 2 submodels can be achieved by a se-
quence of successive compositions of model pairs. For more
details on the use of algebra see [9, 17].

SWN analysis is supported by specific solvers. However
any SWN can be automatically translated into an equiv-
alent GSPN by means of an unfolding procedure. This
allows to use analysis modules available for GSPNs only
(e.g. the structural analysis ones) but can also be the first
step towards the translation of a GSPN in other modeling
languages for which analysis algorithms not supported by
GreatSPN are available through other tools (e.g. this ap-
proach has been used to export models to PRISM [10], as
detailed in Section 5). The GreatSPN package embeds an
unfolding tool that can transform an SWN into a GSPN.
Fig. 3 illustrates the result of the unfolding of the net in
Fig. 2(c) when the set of colors Proc (customer identities)
has cardinality two: colored places and transitions are repli-
cated and properly connected on the basis of their color
domain. The model in Fig. 3 is the direct result of the
automatic unfolding: some parameters allow to control the
layout of the resulting model.

A new feature, recently introduced in GreatSPN, is the
possibility to display graphically the (S)RG of a GSPN/SWN
model. The (S)RG visualisation is performed in two steps
and it is based on Graphviz (www.graphviz.org), an open
source graph visualisation software, that includes several
graph layout programs (e.g. dot, neato, twopi,. . .).

The RG graphical representation for the model in Fig. 2(c)

ID_a

CS_b

CS_a

Mutex_

ID_b
RQ_b

RQ_a

GS_b

AllProc_b FDR_b

AllProc_a FDR_a

GS_a

t4_1

t4_3

t3_0

t3_1

endCS_0

endCS_1

t1_0

t1_1

t2_0

t2_1

t6_0

t6_1

t6_2

t6_3

_2

Figure 3: Unfolding the net in Fig.2(c) (|Proc| = 2)

T1

T2

 t1<Proc21>

T3

 t1<Proc10>

V1

 t2<Proc21>

T5

 t1<Proc10> t1<Proc21>

V2

 t2<Proc10>

T4

 t6<Proc10,Proc21>

T7

 t3<Proc21>

T8

 t2<Proc10>

T9

 t2<Proc21>

T6

 t6<Proc21,Proc10>

T10

 t3<Proc10>

 endCS<Proc21>

T11

 t2<Proc21> t2<Proc10>

 endCS<Proc10>

 t4<Proc21,Proc10>

Figure 4: Graphical representation of the RG of the
SWN model in Fig. 2(c)

is shown in Fig 4. This result is achieved in two steps: first
the RG generation module for SWNs is run with a specific
option so that an additional .dot result file is generated,
this file is then parsed by the dot tool which generates the
corresponding graph in a graphic format such as GIF, PNG,
SVG or PostScript. The nodes in the graph are labeled with
a short name: the complete marking description is stored in
a separate textual file. Vanishing and tangible markings
as well as immediate and timed transition firings are repre-
sented in different colors (grey and black, respectively) to
ease their identification.

4. NEW SOLUTION MODULES FOR SWN
The well-known state space explosion problem of com-

plex systems can be contrasted in several ways, among them
there are techniques based on the construction of a reduced
graph equivalent to the RG w.r.t. some set of properties.
In the context of (S)WNs, a symmetry based method can
be applied, which builds the Symbolic Reachability Graph
(SRG): each SRG node corresponds to a set of states lead-
ing to an equivalent behavior. On the SRG one can study
the reachability problem, temporal logic problems (when-
ever the atomic propositions of the formula are symmetri-
cal), but also the performance of the modeled system, solv-
ing the lumped MC isomorphic to the SRG.

This approach has some limitations when the symmetric
behavior of the modeled system has some exceptions: from
an application point of view, it may happen that the (token)
identities lead to asymmetric behaviors, e.g. in the context

of distributed algorithms identities can be used to break
deadlock situations. Symmetry-based methods are not able
to efficiently handle these partial symmetries, hence some
strategy is needed to be able to efficiently treat these situ-
ations. Two approaches have been developed to this pur-
pose: the Extended SRG (ESRG) [6] and the Dynamic SRG
(DSRG) [4], now distributed with GreatSPN [3].

The ESRG method: in this approach, an abstract state
representation (called Symmetric Representation) is used
which does not take the asymmetries into account, until
some asymmetric transition becomes enabled, then a more
refined marking representation (called eventuality) is used
until the influence of the asymmetric firing is “absorbed” by
a completely symmetric state.

In the SWN of Fig. 2(c) only transition t4 is asymmetric,
because of the guard d(p) = Proc2. Hence, the need to
distinguish the elements of Proc2 from the other elements
of color class Proc arises only when transition t4 is enabled.

The ESRG representation is based on extended symbolic
markings (ESM); each ESM is characterized by a symmet-
ric representation (SR) not taking into account the asym-
metries, and possibly a set of eventualities, which refine the
SR and take asymmetries into account: the eventualities are
produced only when an asymmetrical transition is enabled
in the ESM or when only a subset of the possible eventual-
ities are reachable.

Whenever possible only SRs are maintained. In order to
reduce the size of the ESRG it is also possible to discard
the already generated eventualities of an ESM: this happens
when the ESM becomes saturated (i.e. when all its eventual-
ities have been reached) and all the asymmetric transitions
fireable from them have been fired.
The DSRG method: in this approach, a system is mod-
eled by use of two components: a completely symmetric
SWN and a control automaton. In the symmetric SWN
no references to particular identities are allowed, hence this
SWN defines a superset of the behavior of the partially
asymmetric system to be modeled.

The control automaton is an event-based automaton, used
to reduce the symmetric SWN behavior to the actual one.
This reduction is obtained by operating a synchronized prod-
uct between the two components (in GreatSPN the automa-
ton is specified in textual form through an additional file).

As an example, the system modeled by the SWN of Fig.2(c)
would be modeled by a symmetric SWN, (without the guard
d(p) = Proc2), and a control automaton with one state, l,

and two arcs l ¬t4−→l and l
t4[p∈Proc2]−→ l. Synchronizing the au-

tomaton with the SWN any transition ti 6= t4 enabled in the
SWN are allowed to fire (synchronized with ¬t4) while only
those instances of t4 with p ∈ Proc2 are allowed.

The DSRG is as a directed graph where each node is com-
posed of a symbolic marking and a state of the control au-
tomaton. Based on the restrictions imposed by the control
automaton each symbolic marking specifies its own degree
of symmetry (represented by the so-called local partition,
which partitions the identities keeping in the same subset
those which in that state exhibit symmetric behavior). Con-
trary to the traditional SRG method, that is based on the
unique global partition of the identities taking into account
all potential asymmetries of the model (statically defined at
the net level), the DSRG partition is dynamically adjusted
during its construction.

With respect to the ESRG, where we have two possible

representations, the SR and the eventuality, in the DSRG
many intermediate representations may exist, corresponding
to abstraction levels in between the SR and the eventuality
(and corresponding to sets of eventualities). One remarkable
difference between the ESRG and the DSRG is that while
the ESMs always represent disjoint subsets of eventualities,
the DSRG nodes may have non null intersection.

The efficiency of the ESRG approach is measured by the
number of SR (without eventualities) that are present in
it. Since eventualities may be generated and then discarded
when the ESM they belong to reaches saturation, this gen-
erates a memory peak problem (which can be relevant if sat-
uration is reached late in the ESRG computation).

Also, the derivation of a (lumped) MC from the ESRG
is not straightforward: in fact the final structure does not
always satisfy the (strong/exact) lumpability condition (as
the SRG does). Hence an algorithm, to compute the coars-
est Refined ESRG (RESRG) that satisfies the exact or the
strong lumpability condition, must be derived. In [6], an ef-
ficient algorithm, based on the Paige and Tarjan’s partition
refinement algorithm, is proposed. Also this refinement al-
gorithm may suffer from a memory peak problem: to satisfy
the desired lumpability condition (exact or strong), the re-
finement of some SRs into its eventualities may be required.
The generated eventualities are kept in memory until the
end of the computation. Hence the peak evolution depends
on the number of SRs involved in such refinement. If there is
a wide domino-effect then the peak could prevent the com-
putation of the RESRG and the corresponding lumped MC.
In the worst case the final RESRG is equal to the SRG.

By construction, the DSRG satisfies the exact lumpability
condition. Hence, it does not need further refinement, and
does not exhibit any memory peak problem. On the other
hand, due to the non null intersection between its nodes, it
may grow beyond the size of underlying ordinary RG.

A final remark is important: the type of performance mea-
sure of interest may have an impact on the state space re-
duction method that can be applied: the MC derived from
the SRG satisfies both exact and strong lumpability, hence
the probability of any individual ordinary marking can be
derived from the probability of the symbolic markings. Also
the DSRG method builds an aggregate MC satisfying the
exact lumpability. The ESRG refinement step can be per-
formed according to either the strong or the exact lumpabil-
ity condition, however only in the latter case the probability
of each ordinary marking can be computed.

To give a flavor of the space saving that can be achieved
by exploiting the ESRG and DSRG methods, let us indicate
some figures for the model of Fig. 2(c) for the case |Proc| = 8
(note that when |Proc| > 2 the guard of transition t4 must
be adapted to check that the identity of p is greater than the
identity of q) the SRG has 23.041 states, the ESRG has 74
SRs plus 5.281 final eventualities (and a peak of 5.796). The
number of states of the RESRG w.r.t. strong lumpability is
74, however the number of refined states that are instanti-
ated to achieve the final RESRG is 5.327; when refining the
ESRG w.r.t. exact lumpability, the RESRG size is 547 with
an intermediate peak of 6.343 states. Finally the DSRG size
is 4.168 (in between the peak and the final RESRG size). In
general, the degree of space saving can span several orders
of magnitude, depending on the locality of the asymmetric
behavior. Other figures illustrating the performance of the
proposed methods can be found in [3, 4, 6].

5. INTERACTION WITH OTHER TOOLS
We distinguish two main types of interactions of Great-

SPN with other tools: (1) export of net models to a receiving
tool, in order to use analysis techniques available in the re-
ceiving tool, (2) reuse of modules of GreatSPN (or part of
them) by other tools.

Export to other tools. In its simplest form an export is
a translation of the net description files (.net and .def) of
GreatSPN onto the input files of the receiving tools, that
might not necessarily be a Petri net tool.

For improved graphical manipulation of GSPN models,
the gspn2tgif converter generates the .obj file format of
TGIF (bourbon.usc.edu:8001/tgif); TGIF models are very
convenient for inclusion in documents. An export to APNN
(www4.cs.uni-dortmund.de/APNN-TOOLBOX), a GSPN tool,
is also available (see [13]): if the GreatSPN net is split
over layers, the translation maps layers on APNN partitions,
so that the efficient Kronecker based Markovian solver of
APNN can be used.

To allow GreatSPN users to check CSL [2] properties,
two different translations are available. GSPN are trans-
lated [10] into PRISM (www.prismmodelchecker.org): the
PRISM language is based on variables and actions, and a
model is usually a set of modules that interacts on actions.
The translation produces a single module, mapping places
onto variables of equal name. The user can then check CSL
properties in which the atomic propositions are expressions
over the variables (that is to say over the places). PRISM
does not support priorities among transitions and therefore
only SPNs can be successfully translated. SWN have instead
to undergo an unfolding step, as described in Section 3. CSL
model checking of SWN can also be realized using a different
approach [10]: the SWN underlying MC is generated first,
together with a set of atomic proposition that hold true in
each state; the chain and the properties are produced in a
format accepted by the MRMC tool (www.mrmc-tool.org),
that allows to check CSL properties of the MC.
Reuse inside other tools. We consider two different types
of reuse, depending on whether a full module, usually a
solver with its input and output files, is called by another
tool, or whether it is a function, or a portion of it, that
has been reused, usually totally embedded into the receiv-
ing tools code. Clearly the second option requires a deeper
knowledge of the basic data structures of GreatSPN.

Examples of the first type are the tool PerfSWN [15] of
the University of Savoie at Annecy for computing detailed
performance indices of SWN nets based on the SRG analy-
sis module and on SciLab(www.scilab.org), and the tool for
computing bounds on Timed Petri Nets [8], that uses some
of the modules for invariant computation and bounds com-
putation of GreatSPN. Another extensive reuse of Great-
SPN modules is what is done within the Draw-Net Mod-
eling System [14], which supports a number of modeling
formalisms, including the possibility of creating new formal-
ism based on existing ones, and possibly mixing them. In
Draw-Net whenever GSPN or SWN nets are involved, the
GreatSPN solvers have been reused: among all of them we
mention the possibility to compose SWN models at a graph-
ical level exploiting the algebra module of GreatSPN.

We do not know how many cases of code reuse of Great-
SPN actually exist (the source code of the tool has been
distributed since the very beginning to non profit organi-
zations). Two significant ones are due to a collaboration

with the researchers of the LIP6 laboratory of the Univer-
sity of Paris VI that have created and maintain CPN-AMI
(move.lip6.fr/software/CPNAMI) and with the University
of Savoie at Annecy. CPN-AMI includes a state space gener-
ation and analysis of SWN based on a very efficient symbolic
(decision-diagram like) data structure [16] which has mod-
ified the GreatSPN functions for enabling and firing. The
compSWN tool (an evolution of TenSWN [15]) developed
at LISTIC, University of Savoie, uses modified SRG and as-
sociated MC computation algorithms, in order to combine
symmetry based method and Kronecker algebra based tech-
niques to SWN models comprising several submodels com-
bined through synchronous or asynchronous composition:
this is particularly useful when modeling component-based
architectures.

Finally the tool for the analysis of Markov Decision Well-
formed Nets (MDWN) [5], integrated in Draw-Net, uses al-
gebra to compose the non deterministic and probabilistic
subnets of a MDWN, and a modified version of the SRG
module to derive a Markov Decision Process from a MDWN.

6. CONCLUSIONS
The GreatSPN package is a mature software tool for per-

formance evaluation of GSPN and SWN models: the latest
developments have been oriented towards the integration of
some utilities to ease the models construction, and the devel-
opment and implementation of new efficient analysis mod-
ules specifically oriented to the SWN high level formalism.
The modular structure of the tool has favored the integra-
tion of some of its modules within other frameworks. More-
over several model translation tools have been developed to
exploit other packages features. In several cases the SWN
related functions have been reused in other tools: the pro-
duction of a more accessible library to promote the reuse
of such code is a medium term goal that the GreatSPN de-
velopment team is pursuing within a collaboration with the
MoVe group at LIP6, University of Paris VI.

7. REFERENCES
[1] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli,

and G. Franceschinis. Modelling with Generalized
Stochastic Petri Nets. J. Wiley, 1995.

[2] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton.
Model-checking continuous time Markov chains. ACM
Trans. on Computational Logic, 1(1):162–170, 2000.

[3] S. Baarir, M. Beccuti, and G. Franceschinis. New
solvers for asymmetric systems in GreatSPN. In Proc.
of the 5th Int. Conf. on Quantitative Evaluation of
Systems (QEST08), pages 235–236, St. Malo, France,
Sep. 2008. IEEE CS Press.

[4] S. Baarir, C. Dutheillet, S. Haddad, and J.-M. Ilié. On
the Use of Exact Lumpability in Partially Symmetrical
Well-formed Nets. In Proc. of the 2nd Int. Conf. on
Quantitative Evaluation of Systems (QEST05), pages
23–32, Torino, Italy, Sep. 2005. IEEE CS Press.

[5] M. Beccuti, D. Codetta-Raiteri, G. Franceschinis, and
S. Haddad. A framework to design and solve Markov
Decision Well-formed Net models. In Proc. of the 4th
Int. Conf. on Quantitative Evaluation of Systems
(QEST07), pages 165–166, Edinburgh, UK, Sep. 2007.
IEEE CS Press.

[6] M. Beccuti, G. Franceschinis, S. Baarir, and J.-M. Ilié.
Efficient lumpability check in partially symmetric
systems. In Proc. of the 3rd Int. Conf. on the
Quantitative Evaluation of Systems (QEST06), pages
211–220, Riverside, CA, USA, Sep. 2006. IEEE CS
Press.

[7] S. Bernardi, C. Bertoncello, S. Donatelli,
G. Franceschinis, R. Gaeta, M. Gribaudo, and
A. Horváth. GreatSPN in the New Millenium. In
Tools, 2001 Int. Multiconf. on Measurement,
Modelling and Evaluation of Computer
Communication Systems, pages 17–23, 2001.
TR760/2001 of the Universitat Dortmund (Germany).

[8] S. Bernardi and J. Campos. On Performance Bounds
for Interval Time Petri Nets. In Proc. of the 1st
International Conference on Quantitative Evaluation
of Systems (QEST04), pages 50–59, Enschede, The
Netherlands, Sep. 2004. IEEE CS Press.

[9] S. Bernardi, S. Donatelli, and A. Horváth.
Compositionality in the GreatSPN tool and its use to
the modelling of industrial applications. Software
Tools for Technology Transfer, 3(4):417–430, 2001.

[10] D. Cerotti, D. D’Aprile, S. Donatelli, and J. Sproston.
Verifying Stochastic Well-formed Nets with CSL
Model-Checking Tools. In Proc. of the 6th Int. Conf.
on Application of Concurrency to System Design,
ACSD06, pages 143–152, Turku, Finland, June 2006.
IEEE Computer Society.

[11] G. Chiola, C. Dutheillet, G. Franceschinis, and
S. Haddad. Stochastic Well-Formed Coloured Nets for
Symmetric Modelling Applications. IEEE Trans. on
Computers, 42(11):1343–1360, Nov. 1993.

[12] G. Chiola, G. Franceschinis, R. Gaeta, and
M. Ribaudo. GreatSPN 1.7: Graphical Editor and
Analyzer for Timed and Stochastic Petri Nets.
Performance Evaluation, special issue on Performance
Modeling Tools, 24(1&2):47–68, Nov. 1995.

[13] S. Donatelli and P. Kemper. Integrating
synchronization with priority into a Kronecker
representation. Perform. Eval., 44(1-4):73–96, 2001.

[14] M. Gribaudo, D. Codetta-Raiteri, and
G. Franceschinis. Draw-Net, a customizable
multi-formalism, multi-solution tool for the
quantitative evaluation of systems. In Proc. of the 2nd
Int. Conf. on Quantitative Evaluation of Systems
(QEST05), pages 256–257, Torino, Italy, Sep. 2005.
IEEE CS Press.

[15] J.-M. Ilié, S. Baarir, M. Beccuti, C. Delamare,
S. Donatelli, C. Dutheillet, G. Franceschinis,
R. Gaeta, and P. Moreaux. Extended SWN solvers in
GreatSPN. In Proc. of the 1st Int. Conf. on
Quantitative Evaluation of Systems (QEST04), pages
324–325, Enschede, The Netherlands, Sep. 2004. IEEE
CS Press.

[16] Y. Thierry-Mieg, J.-M. Ilié, and D. Poitrenaud. A
Symbolic Symbolic State Space Representation. In
Proc. of the 24th Int. Conf on Formal Techniques for
Networked and Distributed Systems, pages 276–291,
Madrid, Spain, Sep. 2004. LNCS 3235.

[17] Univ. di Torino and Univ. del Piemonte Orientale.
GreatSPN User’s Manual , 2008. Downloadable from

www.di.unito.it/∼greatspn.

