48 research outputs found

    Distances on Rhombus Tilings

    Get PDF
    The rhombus tilings of a simply connected domain of the Euclidean plane are known to form a flip-connected space (a flip is the elementary operation on rhombus tilings which rotates 180{\deg} a hexagon made of three rhombi). Motivated by the study of a quasicrystal growth model, we are here interested in better understanding how "tight" rhombus tiling spaces are flip-connected. We introduce a lower bound (Hamming-distance) on the minimal number of flips to link two tilings (flip-distance), and we investigate whether it is sharp. The answer depends on the number n of different edge directions in the tiling: positive for n=3 (dimer tilings) or n=4 (octogonal tilings), but possibly negative for n=5 (decagonal tilings) or greater values of n. A standard proof is provided for the n=3 and n=4 cases, while the complexity of the n=5 case led to a computer-assisted proof (whose main result can however be easily checked by hand).Comment: 18 pages, 9 figures, submitted to Theoretical Computer Science (special issue of DGCI'09

    Rapid Mixing for Lattice Colorings with Fewer Colors

    Full text link
    We provide an optimally mixing Markov chain for 6-colorings of the square lattice on rectangular regions with free, fixed, or toroidal boundary conditions. This implies that the uniform distribution on the set of such colorings has strong spatial mixing, so that the 6-state Potts antiferromagnet has a finite correlation length and a unique Gibbs measure at zero temperature. Four and five are now the only remaining values of q for which it is not known whether there exists a rapidly mixing Markov chain for q-colorings of the square lattice.Comment: Appeared in Proc. LATIN 2004, to appear in JSTA

    Arctic octahedron in three-dimensional rhombus tilings and related integer solid partitions

    Full text link
    Three-dimensional integer partitions provide a convenient representation of codimension-one three-dimensional random rhombus tilings. Calculating the entropy for such a model is a notoriously difficult problem. We apply transition matrix Monte Carlo simulations to evaluate their entropy with high precision. We consider both free- and fixed-boundary tilings. Our results suggest that the ratio of free- and fixed-boundary entropies is σfree/σfixed=3/2\sigma_{free}/\sigma_{fixed}=3/2, and can be interpreted as the ratio of the volumes of two simple, nested, polyhedra. This finding supports a conjecture by Linde, Moore and Nordahl concerning the ``arctic octahedron phenomenon'' in three-dimensional random tilings

    Domino tilings and related models: space of configurations of domains with holes

    Get PDF
    We first prove that the set of domino tilings of a fixed finite figure is a distributive lattice, even in the case when the figure has holes. We then give a geometrical interpretation of the order given by this lattice, using (not necessarily local) transformations called {\em flips}. This study allows us to formulate an exhaustive generation algorithm and a uniform random sampling algorithm. We finally extend these results to other types of tilings (calisson tilings, tilings with bicolored Wang tiles).Comment: 17 pages, 11 figure

    Approximately Sampling Elements with Fixed Rank in Graded Posets

    Full text link
    Graded posets frequently arise throughout combinatorics, where it is natural to try to count the number of elements of a fixed rank. These counting problems are often #P\#\textbf{P}-complete, so we consider approximation algorithms for counting and uniform sampling. We show that for certain classes of posets, biased Markov chains that walk along edges of their Hasse diagrams allow us to approximately generate samples with any fixed rank in expected polynomial time. Our arguments do not rely on the typical proofs of log-concavity, which are used to construct a stationary distribution with a specific mode in order to give a lower bound on the probability of outputting an element of the desired rank. Instead, we infer this directly from bounds on the mixing time of the chains through a method we call balanced bias\textit{balanced bias}. A noteworthy application of our method is sampling restricted classes of integer partitions of nn. We give the first provably efficient Markov chain algorithm to uniformly sample integer partitions of nn from general restricted classes. Several observations allow us to improve the efficiency of this chain to require O(n1/2log(n))O(n^{1/2}\log(n)) space, and for unrestricted integer partitions, expected O(n9/4)O(n^{9/4}) time. Related applications include sampling permutations with a fixed number of inversions and lozenge tilings on the triangular lattice with a fixed average height.Comment: 23 pages, 12 figure
    corecore