229 research outputs found

    Marking dependency in non-Markovian stochastic Petri nets

    Get PDF
    © 2017 Elsevier B.V.Marking dependency is a powerful tool that allows different firing time distributions to be associated with a stochastic Petri net transition, depending on the marking. Through this feature, the modeler can easily and compactly represent advanced properties and behaviors of the system. While a semantics and specific solution techniques have been provided for generalized stochastic Petri nets thus covering homogeneous Markovian aspects, in the non-homogeneous/non-Markovian case marking dependency still needs to be investigated. To fill this gap, this paper provides a formalization of marking dependent semantics in non-Markovian stochastic Petri nets (NMSPNs) and a solution technique, based on phase type distributions and Kronecker algebra, able to deal with such a feature allowing both transient and steady-state analyses. To motivate the actual need of marking dependency in NMSPN modeling and to demonstrate the potential of such a feature as well as the validity of the proposed solution technique a case study on a multi-core CPU system with power management facilities is explored

    Versatile Markovian models for networks with asymmetric TCP sources

    Get PDF
    In this paper we use Stochastic Petri Nets (SPNs) to study the interaction of multiple TCP sources that share one or two buffers, thereby considerably extending earlier work. We first consider two sources sharing a buffer and investigate the consequences of two popular assumptions for the loss process in terms of fairness and link utilization. The results obtained by our model are in agreement with existing analytic models or are closer to results obtained by ns-2 simulations. We then study a network consisting of three sources and two buffers and provide evidence that link sharing is approximately minimum-potential-delay-fair in case of equal round-trip times. \u

    Synthesis and Analysis of Product-form Petri Nets

    Get PDF
    For a large Markovian model, a "product form" is an explicit description of the steady-state behaviour which is otherwise generally untractable. Being first introduced in queueing networks, it has been adapted to Markovian Petri nets. Here we address three relevant issues for product-form Petri nets which were left fully or partially open: (1) we provide a sound and complete set of rules for the synthesis; (2) we characterise the exact complexity of classical problems like reachability; (3) we introduce a new subclass for which the normalising constant (a crucial value for product-form expression) can be efficiently computed.Comment: This is a version including proofs of the conference paper: Haddad, Mairesse and Nguyen. Synthesis and Analysis of Product-form Petri Nets. Accepted at the conference Petri Nets 201

    Modeling Strategies to Improve the Dependability of Cloud Infrastructures

    Get PDF
    Cloud computing presents some challenges that need to be overcome, such as planning infrastructures that maintain availability when failure events and repair activities occur. Cloud infrastructure planning that addresses the dependability aspects is an essential activity because it ensures business continuity and client satisfaction. Redundancy mechanisms cold standby, warm standby and hot standby can be allocated to components of the cloud infrastructure to maintain the availability levels agreed in service level agreement (SLAs). Mathematical formalisms based on state space such as stochastic Petri nets and based on combinatorial as reliability block diagrams can be adopted to evaluate the dependability of cloud infrastructures considering the allocation of different redundancy mechanisms to its components. This chapter shows the adoption of the mathematical formalisms stochastic Petri nets and reliability block diagrams to dependability evaluation of cloud infrastructures with different redundancy mechanisms

    Methodologies synthesis

    Get PDF
    This deliverable deals with the modelling and analysis of interdependencies between critical infrastructures, focussing attention on two interdependent infrastructures studied in the context of CRUTIAL: the electric power infrastructure and the information infrastructures supporting management, control and maintenance functionality. The main objectives are: 1) investigate the main challenges to be addressed for the analysis and modelling of interdependencies, 2) review the modelling methodologies and tools that can be used to address these challenges and support the evaluation of the impact of interdependencies on the dependability and resilience of the service delivered to the users, and 3) present the preliminary directions investigated so far by the CRUTIAL consortium for describing and modelling interdependencies
    • 

    corecore