37 research outputs found

    A Review Paper On Motion Estimation Techniques

    Get PDF
    Motion estimation (ME) is a primary action for video compression. Actually, it leads to heavily to the compression efficiency by eliminating temporal redundancies. This approach is one among the critical part in a video encoder and can take itself greater than half of the coding complexity or computational coding time. Several fast ME algorithms were proposed as well as realized. In this paper, we offers a brief review on various motion estimation techniques mainly block matching motion estimation techniques. The paper additionally presents a very brief introduction to the whole flow of video motion vector calculation

    The Potential of Using Exergame s for Correcting Posture Problems of Children

    Get PDF
    In Poland we observe a large scale of posture deformations and consequent health implications in the population of school children. Therefore many pedagogical and medical societies are looking for ways and methods of preventing and reversing this negative trend. The purpose of this article is to present the potential of practical use of new posture correction interactive games among school children. Some of the newest equipment and ways of detecting and registering natural human movement have been presented. Teletransmision of data in real time makes it possible for a physiotherapist to supervise and modify the player’s motor behavior. Creating visually attractive and involving forms of physical exercise might help encourage and inspire children to reject a sedentary lifestyle.3128930316Studia Edukacyjn

    On the Two-View Geometry of Unsynchronized Cameras

    Full text link
    We present new methods for simultaneously estimating camera geometry and time shift from video sequences from multiple unsynchronized cameras. Algorithms for simultaneous computation of a fundamental matrix or a homography with unknown time shift between images are developed. Our methods use minimal correspondence sets (eight for fundamental matrix and four and a half for homography) and therefore are suitable for robust estimation using RANSAC. Furthermore, we present an iterative algorithm that extends the applicability on sequences which are significantly unsynchronized, finding the correct time shift up to several seconds. We evaluated the methods on synthetic and wide range of real world datasets and the results show a broad applicability to the problem of camera synchronization.Comment: 12 pages, 9 figures, Computer Vision and Pattern Recognition (CVPR) 201

    Circulant temporal encoding for video retrieval and temporal alignment

    Get PDF
    We address the problem of specific video event retrieval. Given a query video of a specific event, e.g., a concert of Madonna, the goal is to retrieve other videos of the same event that temporally overlap with the query. Our approach encodes the frame descriptors of a video to jointly represent their appearance and temporal order. It exploits the properties of circulant matrices to efficiently compare the videos in the frequency domain. This offers a significant gain in complexity and accurately localizes the matching parts of videos. The descriptors can be compressed in the frequency domain with a product quantizer adapted to complex numbers. In this case, video retrieval is performed without decompressing the descriptors. We also consider the temporal alignment of a set of videos. We exploit the matching confidence and an estimate of the temporal offset computed for all pairs of videos by our retrieval approach. Our robust algorithm aligns the videos on a global timeline by maximizing the set of temporally consistent matches. The global temporal alignment enables synchronous playback of the videos of a given scene

    Outdoor Dynamic 3-D Scene Reconstruction

    Get PDF
    Existing systems for 3D reconstruction from multiple view video use controlled indoor environments with uniform illumination and backgrounds to allow accurate segmentation of dynamic foreground objects. In this paper we present a portable system for 3D reconstruction of dynamic outdoor scenes which require relatively large capture volumes with complex backgrounds and non-uniform illumination. This is motivated by the demand for 3D reconstruction of natural outdoor scenes to support film and broadcast production. Limitations of existing multiple view 3D reconstruction techniques for use in outdoor scenes are identified. Outdoor 3D scene reconstruction is performed in three stages: (1) 3D background scene modelling using spherical stereo image capture; (2) multiple view segmentation of dynamic foreground objects by simultaneous video matting across multiple views; and (3) robust 3D foreground reconstruction and multiple view segmentation refinement in the presence of segmentation and calibration errors. Evaluation is performed on several outdoor productions with complex dynamic scenes including people and animals. Results demonstrate that the proposed approach overcomes limitations of previous indoor multiple view reconstruction approaches enabling high-quality free-viewpoint rendering and 3D reference models for production

    Enhanced facial expression using oxygenation absorption of facial skin

    Get PDF
    Facial skin appearance is affected by physical and physiological state of the skin. The facial expression especially the skin appearances are in constant mutability and dynamically changed as human behave, talk and stress. The color of skin is considered to be one of the key indicators for these symptoms. The skin color resolution is highly determined by the scattering and absorption of light within the skin layers. The concentration of chromophores in melanin and hemoglobin oxygenation in the blood plays a pivotal role. An improvement work on prior model to create a realistic textured three-dimensional (3D) facial model for animation is proposed. This thesis considers both surface and subsurface scattering capable of simulating the interaction of light with the human skin. Furthermore, six parameters are used in this research which are the amount of oxygenation, de-oxygenation, hemoglobin, melanin, oil and blend factor for different types of melanin in the skin to generate a perfect match to specific skin types. The proposed model is associated with Blend Shape Interpolation and Facial Action Coding System to create five basic facial emotional expressions namely anger, happy, neutral, sad and fear. Meanwhile, the correlation between blood oxygenation in changing facial skin color for basic natural emotional expressions are measured using the Pulse Oximetry and 3D skin analyzer. The data from different subjects with male and female under different number of partially extreme facial expressions are fed in the model for simulation. The multi-pole method for layered materials is used to calculate the spectral diffusion profiles of two-layered skin which are further utilized to simulate the subsurface scattering of light within the skin. While the subsurface scattering is further combined with the Torrance-Sparrow Bidirectional Reflectance Distribution Function (BRDF) model to simulate the interaction of light with an oily layer at the skin surface. The result is validated by an evaluation procedure for measuring the accountability of a facial model via expressions and skin color of proposed model to the real human. The facial expressions evaluation is verified by calculating Euclidean distance between the facial markers of the real human and the avatar. The second assessment validates the skin color of facial expressions for the proposed avatar via the extraction of Histogram Color Features and Color Coherence Vector of each image with the real human and the previous work. The experimental result shows around 5.12 percent improvement compared to previous work. In achieving the realistic facial expression for virtual human based on facial skin color, texture and oxygenation of hemoglobin, the result demonstrates that the proposed model is beneficial to the development of virtual reality and game environment of computer aided graphics animation systems
    corecore