88 research outputs found

    On the Two-View Geometry of Unsynchronized Cameras

    Full text link
    We present new methods for simultaneously estimating camera geometry and time shift from video sequences from multiple unsynchronized cameras. Algorithms for simultaneous computation of a fundamental matrix or a homography with unknown time shift between images are developed. Our methods use minimal correspondence sets (eight for fundamental matrix and four and a half for homography) and therefore are suitable for robust estimation using RANSAC. Furthermore, we present an iterative algorithm that extends the applicability on sequences which are significantly unsynchronized, finding the correct time shift up to several seconds. We evaluated the methods on synthetic and wide range of real world datasets and the results show a broad applicability to the problem of camera synchronization.Comment: 12 pages, 9 figures, Computer Vision and Pattern Recognition (CVPR) 201

    SmartMocap: Joint Estimation of Human and Camera Motion using Uncalibrated RGB Cameras

    Full text link
    Markerless human motion capture (mocap) from multiple RGB cameras is a widely studied problem. Existing methods either need calibrated cameras or calibrate them relative to a static camera, which acts as the reference frame for the mocap system. The calibration step has to be done a priori for every capture session, which is a tedious process, and re-calibration is required whenever cameras are intentionally or accidentally moved. In this paper, we propose a mocap method which uses multiple static and moving extrinsically uncalibrated RGB cameras. The key components of our method are as follows. First, since the cameras and the subject can move freely, we select the ground plane as a common reference to represent both the body and the camera motions unlike existing methods which represent bodies in the camera coordinate. Second, we learn a probability distribution of short human motion sequences (∼\sim1sec) relative to the ground plane and leverage it to disambiguate between the camera and human motion. Third, we use this distribution as a motion prior in a novel multi-stage optimization approach to fit the SMPL human body model and the camera poses to the human body keypoints on the images. Finally, we show that our method can work on a variety of datasets ranging from aerial cameras to smartphones. It also gives more accurate results compared to the state-of-the-art on the task of monocular human mocap with a static camera. Our code is available for research purposes on https://github.com/robot-perception-group/SmartMocap

    The Potential of Using Exergame s for Correcting Posture Problems of Children

    Get PDF
    In Poland we observe a large scale of posture deformations and consequent health implications in the population of school children. Therefore many pedagogical and medical societies are looking for ways and methods of preventing and reversing this negative trend. The purpose of this article is to present the potential of practical use of new posture correction interactive games among school children. Some of the newest equipment and ways of detecting and registering natural human movement have been presented. Teletransmision of data in real time makes it possible for a physiotherapist to supervise and modify the player’s motor behavior. Creating visually attractive and involving forms of physical exercise might help encourage and inspire children to reject a sedentary lifestyle.3128930316Studia Edukacyjn
    • …
    corecore