16 research outputs found

    Iteration Algebras for UnQL Graphs and Completeness for Bisimulation

    Full text link
    This paper shows an application of Bloom and Esik's iteration algebras to model graph data in a graph database query language. About twenty years ago, Buneman et al. developed a graph database query language UnQL on the top of a functional meta-language UnCAL for describing and manipulating graphs. Recently, the functional programming community has shown renewed interest in UnCAL, because it provides an efficient graph transformation language which is useful for various applications, such as bidirectional computation. However, no mathematical semantics of UnQL/UnCAL graphs has been developed. In this paper, we give an equational axiomatisation and algebraic semantics of UnCAL graphs. The main result of this paper is to prove that completeness of our equational axioms for UnCAL for the original bisimulation of UnCAL graphs via iteration algebras. Another benefit of algebraic semantics is a clean characterisation of structural recursion on graphs using free iteration algebra.Comment: In Proceedings FICS 2015, arXiv:1509.0282

    Structural recursion for querying ordered graphs

    Full text link

    Proceedings of the 4th DIKU-IST Joint Workshop on the Foundations of Software

    Get PDF

    A Study on interoperable bidirectional graph transformations (Fostering Joint International Research)

    Get PDF
    研究成果の概要 (和文) : 双方向変換は、モデル駆動開発に於いて下流での修正の上流への伝播を実現する枠組として期待されている。本研究は、単方向変換言語から双方向変換言語への部分翻訳に基づく部分双方向変換手法について、単方向変換言語処理系と双方向変換言語処理系の統合実行による統合処理系が全体としてラウンドトリップ性を示すための十分条件を証明し、実装を公開した。更に、上述の十分条件のうちのひとつである単方向変換言語の加法性について、query containmentと変換の間の包含関係との間の関係、包含関係がなす束、単調性と文脈を用いた加法性抽出法などをまとめた研究論文を国際会議で発表した。研究成果の概要 (英文) : Bidirectional transformations are expected to play an important role in propagating changes upwards in model driven software development.In this project, we have proved the sufficient condition for the integrated execution of unidirectional transformation and bidirectional transformation has a round-trip property when the unidirectional transformation languages are partially bidirectionalized by partially translating unidirectional transformation languages to bidirectional transformation languages.With respect to the additivity of the unidirectional transformation language which is one of the above sufficient conditions, we have presented in an international conference the relationship between the notion of query containment and the containment relation between transformations, a lattice formed by the containment, how to extract the additivity through monotonicity and contexts

    Adding Structure to Unstructured Data

    Get PDF
    . We develop a new schema for unstructured data. Traditional schemas resemble the type systems of programming languages. For unstructured data, however, the underlying type may be much less constrained and hence an alternative way of expressing constraints on the data is needed. Here, we propose that both data and schema be represented as edge-labeled graphs. We develop notions of conformance between a graph database and a graph schema and show that there is a natural and efficiently computable ordering on graph schemas. We then examine certain subclasses of schemas and show that schemas are closed under query applications. Finally, we discuss how they may be used in query decomposition and optimization. 1 Introduction The ability to represent and query data with little or no apparent structure arises in several areas: biological databases, database integration, and query systems for the World-Wide Web[PGMW95, TMD92, BDHS96a, MMM96, QRS + 95, KS95, CM90]. The general approach is to ..

    Bidirectional data transformation by calculation

    Get PDF
    MAPi Doctoral Programme in Computer ScienceThe advent of bidirectional programming, in recent years, has led to the development of a vast number of approaches from various computer science disciplines. These are often based on domain-specific languages in which a program can be read both as a forward and a backward transformation that satisfy some desirable consistency properties. Despite the high demand and recognized potential of intrinsically bidirectional languages, they have still not matured to the point of mainstream adoption. This dissertation contemplates some usually disregarded features of bidirectional transformation languages that are vital for deployment at a larger scale. The first concerns efficiency. Most of these languages provide a rich set of primitive combinators that can be composed to build more sophisticated transformations. Although convenient, such compositional languages are plagued by inefficiency and their optimization is mandatory for a serious application. The second relates to configurability. As update translation is inherently ambiguous, users shall be allowed to control the choice of a suitable strategy. The third regards genericity. Writing a bidirectional transformation typically implies describing the concrete steps that convert values in a source schema to values a target schema, making it impractical to express very complex transformations, and practical tools shall support concise and generic coding patterns. We first define a point-free language of bidirectional transformations (called lenses), characterized by a powerful set of algebraic laws. Then, we tailor it to consider additional parameters that describe updates, and use them to refine the behavior of intricate lenses between arbitrary data structures. On top, we propose the Multifocal framework for the evolution of XML schemas. A Multifocal program describes a generic schema-level transformation, and has a value-level semantics defined using the point-free lens language. Its optimization employs the novel algebraic lens calculus.O advento da programação bidirecional, nos últimos anos, fez surgir inúmeras abordagens em diversas disciplinas de ciências da computação, geralmente baseadas em linguagens de domínio específico em que um programa representa uma transformação para a frente ou para trás, satisfazendo certas propriedades de consistência desejáveis. Apesar do elevado potencial de linguagens intrinsicamente bidirecionais, estas ainda não amadureceram o suficiente para serem correntemente utilizadas. Esta dissertação contempla algumas características de linguagens bidirecionais usualmente negligenciadas, mas vitais para um desenvolvimento em mais larga escala. A primeira refere-se à eficiência. A maioria destas linguagens fornece um conjunto rico de combinadores primitivos que podem ser utilizados para construir transformações mais sofisticadas que, embora convenientes, são cronicamente ineficientes, exigindo ser otimizadas para uma aplicação séria. A segunda diz respeito à configurabilidade. Sendo a tradução de modificações inerentemente ambígua, os utilizadores devem poder controlar a escolha de uma estratégia adequada. A terceira prende-se com a genericidade. Escrever uma transformação bidirecional implica tipicamente descrever os passos que convertem um modelo noutro diferente, enquanto que ferramentas práticas devem suportar padrões concisos e genéricos de forma a poderem expressar transformações muito complexas. Primeiro, definimos uma linguagem de transformações bidirecionais (intituladas de lentes), livre de variáveis, caracterizada por um poderoso conjunto de leis algébricas. De seguida, adaptamo-la para receber parâmetros que descrevem modificações, e usamo-los para refinar lentes intrincadas entre estruturas de dados arbitrárias. Por cima, propomos a plataforma Multifocal para a evolução de modelos XML. Um programa Multifocal descreve uma transformação genérica de modelos, cuja semântica ao nível dos valores e consequente otimização é definida em função da linguagem de lentes

    Distributed Robotic Vision for Calibration, Localisation, and Mapping

    Get PDF
    This dissertation explores distributed algorithms for calibration, localisation, and mapping in the context of a multi-robot network equipped with cameras and onboard processing, comparing against centralised alternatives where all data is transmitted to a singular external node on which processing occurs. With the rise of large-scale camera networks, and as low-cost on-board processing becomes increasingly feasible in robotics networks, distributed algorithms are becoming important for robustness and scalability. Standard solutions to multi-camera computer vision require the data from all nodes to be processed at a central node which represents a significant single point of failure and incurs infeasible communication costs. Distributed solutions solve these issues by spreading the work over the entire network, operating only on local calculations and direct communication with nearby neighbours. This research considers a framework for a distributed robotic vision platform for calibration, localisation, mapping tasks where three main stages are identified: an initialisation stage where calibration and localisation are performed in a distributed manner, a local tracking stage where visual odometry is performed without inter-robot communication, and a global mapping stage where global alignment and optimisation strategies are applied. In consideration of this framework, this research investigates how algorithms can be developed to produce fundamentally distributed solutions, designed to minimise computational complexity whilst maintaining excellent performance, and designed to operate effectively in the long term. Therefore, three primary objectives are sought aligning with these three stages

    Videos in Context for Telecommunication and Spatial Browsing

    Get PDF
    The research presented in this thesis explores the use of videos embedded in panoramic imagery to transmit spatial and temporal information describing remote environments and their dynamics. Virtual environments (VEs) through which users can explore remote locations are rapidly emerging as a popular medium of presence and remote collaboration. However, capturing visual representation of locations to be used in VEs is usually a tedious process that requires either manual modelling of environments or the employment of specific hardware. Capturing environment dynamics is not straightforward either, and it is usually performed through specific tracking hardware. Similarly, browsing large unstructured video-collections with available tools is difficult, as the abundance of spatial and temporal information makes them hard to comprehend. At the same time, on a spectrum between 3D VEs and 2D images, panoramas lie in between, as they offer the same 2D images accessibility while preserving 3D virtual environments surrounding representation. For this reason, panoramas are an attractive basis for videoconferencing and browsing tools as they can relate several videos temporally and spatially. This research explores methods to acquire, fuse, render and stream data coming from heterogeneous cameras, with the help of panoramic imagery. Three distinct but interrelated questions are addressed. First, the thesis considers how spatially localised video can be used to increase the spatial information transmitted during video mediated communication, and if this improves quality of communication. Second, the research asks whether videos in panoramic context can be used to convey spatial and temporal information of a remote place and the dynamics within, and if this improves users' performance in tasks that require spatio-temporal thinking. Finally, the thesis considers whether there is an impact of display type on reasoning about events within videos in panoramic context. These research questions were investigated over three experiments, covering scenarios common to computer-supported cooperative work and video browsing. To support the investigation, two distinct video+context systems were developed. The first telecommunication experiment compared our videos in context interface with fully-panoramic video and conventional webcam video conferencing in an object placement scenario. The second experiment investigated the impact of videos in panoramic context on quality of spatio-temporal thinking during localization tasks. To support the experiment, a novel interface to video-collection in panoramic context was developed and compared with common video-browsing tools. The final experimental study investigated the impact of display type on reasoning about events. The study explored three adaptations of our video-collection interface to three display types. The overall conclusion is that videos in panoramic context offer a valid solution to spatio-temporal exploration of remote locations. Our approach presents a richer visual representation in terms of space and time than standard tools, showing that providing panoramic contexts to video collections makes spatio-temporal tasks easier. To this end, videos in context are suitable alternative to more difficult, and often expensive solutions. These findings are beneficial to many applications, including teleconferencing, virtual tourism and remote assistance
    corecore