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Adding Structure to Unstructured Data

Peter Buneman Susan Davidson Mary Fernandez Dan Suciu

January 24, 1997

Abstract

We develop a new schema for unstructured data. Traditional schemas resemble the type

systems of programming languages. For unstructured data, however, the underlying type may

be much less constrained and hence an alternative way of expressing constraints on the data is

needed. Here, we propose that both data and schema be represented as edge-labeled graphs.

We develop notions of conformance between a graph database and a graph schema and show

that there is a natural and e�ciently computable ordering on graph schemas. We then exam-

ine certain subclasses of schemas and show that schemas are closed under query applications.

Finally, we discuss how they may be used in query decomposition and optimization.

1 Introduction

The ability to represent and query data with little or no apparent structure arises in several areas:
biological databases, database integration, and query systems for the World-Wide Web[PGMW95,
TMD92, BDHS96a, MMM96, QRS+95, KS95, CM90]. The general approach is to represent data
as a labeled graph. Data values and schema information, such as �eld and relation names, are kept
in one data structure, blurring the distinction between schema and instance.

Although these models merge schema and data, distinguishing between them is important, because
schemas are useful for query decomposition and optimization and for describing a database's struc-
ture to its users. The biological database system ACeDB [TMD92] allows exible representation of
data, but also has a schema-de�nition language that limits the type and number of edges stored in
a database. The OEM [PGMW95] model supports database integration by providing a structure in
which most traditional forms of data (relational, object-oriented, etc.) can be modeled. Even the
World-Wide Web, which appears to be completely unstructured, contains structured subgraphs.
Fig. 1 depicts a fragment of the web site http://www.ucsd.edu, in which pages connecting schools,
departments, and people are structured. Queries applied to this graph's link structure can bene�t
from structural information, for example, by knowing there exists at most one department on any
path from the root to a leaf and that every paper is reachable from a department.

We describe a new notion of schema appropriate for an edge-labeled graph model of data. We use
this model to formulate, optimize, and decompose queries for unstructured data [BDS95, BDHS96a,
Suc96]. Informally, a database is an edge-labeled graph, and a schema is a graph whose edges are
labeled with formulas. A database DB conforms to a schema S if there is a correspondence
between the edges in DB and S, such that whenever there is an edge labeled a in DB, there is a
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Figure 1: A fragment of http://www.ucsd.edu.

corresponding edge labeled with predicate p in S such that p(a) holds. This notion of conformance
is a generalization of similarity [HHK95]. We investigate the properties of such schemas, and
show that there is a natural subsumption ordering on schemas { a generalization of similarity. We
then investigate a \deterministic" subclass of schemas and argue that it is appropriate to have
deterministic schemas although data may be \nondeterministic". Finally, we examine queries on a
database with a known schema and consider when we can compute a schema for the result of the
query. We also discuss how schemas can improve the optimization and decomposition of queries in
UnQL [BDHS96a].

2 Basic De�nitions

Let U be the universe of all constants (U = Int [ String [ Bool [ : : :). We adopt the data model
of [BDHS96a], where a graph database is a rooted graph with edge labels in U . Formally, DB =
(V;E; v0), where V is a set of nodes, E � V �U�V , and v0 2 V is a distinguished root . Fig. 1 is an
example of a graph database. We denote an edge with u

a
! v, instead of the o�cial (u; a; v) 2 E.

This model is powerful enough to encode relational databases, as illustrated in Fig. 2(a), which
encodes a relation R(A : Int; B : Int; C : String), but exible enough to represent unstructured
data, like Fig. 2(b) and (c). There is no distinction in this model between set, record, and variant
nodes. Graphs may have arbitrary cycles and sharing. Two graphs are considered equal if they are
bisimilar [BDHS96b]. Briey, DB and DB0 are bisimilar if there exists a binary relation � from
the nodes of DB to those of DB0 such that (1) v0 � v00 where v0; v

0
0 are the two roots, and (2)

whenever u � u0, then for every u
a
! v in DB, there exists u0

a
! v0 in DB0 such that v � v0, and

for every u0
a
! v0 in DB0, there exists u

a
! v in DB such that v � v0.

In earlier work [BDHS96a], we introduced a notation for specifying graphs, e.g., the tree database
in Fig. 2(c) is written as ftup)fA; fD)f3gggg. Also, we de�ned a union operation on two graph
databases DB1 [DB2 in which their two roots are collapsed (Fig. 3(a)). For example, in Fig. 3(b)
DB1 = fa)fbg; cg;DB2 = fa)fdgg, and DB1 [DB2 = fa)fbg; c; a)fdgg.

To de�ne graph schema, consider a set of base predicates over U , denoted P1; P2; : : :, such that the
�rst order theory T generated by U (i.e. the �rst order sentences true in U) is decidable. A unary

formula is a formula with at most one free variable.
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De�nition 2.1 A graph schema is a rooted, labeled graph, in which the edges are labeled with

unary formulas.

Although our results apply to every decidable theory, we use theories generated by unary predi-
cates, with equality and with names for all constants in our universe. Typical predicates include
Int(x);String(x);Nat(x), Bool(x), which denote x 2 Int; x 2 String; x 2 Nat, x 2 Bool, and user-
de�ned unary predicates, P (x). The theory has an equality operator, so we have predicates such
as x = 5 and x = \abc00. Such a theory is decidable [DG79].

Fig. 4 (a) depicts a graph schema S. By convention, we drop the free variable from unary formulas
which are boolean combinations of unary predicates, thus writing A, Int, and Int _ String instead
of x = A, Int(x), and Int(x) _ String(x) respectively. Intuitively, a graph schema captures some
knowledge about the structure of a graph database. In particular, the graph schema S says that
a graph database that conforms to S has only tup-edges emerging from the root, possibly followed
by A, B, or C edges, and these possibly followed by integers or strings respectively. The graph
database encoding a relational database in Fig. 2(a) conforms to this graph schema, but the graph
in Fig. 2(c) does not. The database in Fig. 2(b) also conforms to this schema, although it does not
encode any relational database.

In schemas (c), (d), (e), (f) in Fig. 4, isDept(x) and isPaper(x) are user-de�ned predicates testing
whether x is a string denoting a department (e.g., \Computer Science Department" or \Electrical
Engineering Department") or a paper. Schema (d) says that there is at most one department on
every path starting at the root, while that in (e) says that no paper edge may occur before a
department edge. The database in Fig. 1 conforms to both these schemas. We will comment later
about schemas (c) and (f).

Schema (b) in Figure 4 is of special interest: it says that the database may have any labels what-
soever (they have to satify true), thus it does not impose any structure on the databse. We denote
it with S>.

De�nition 2.2 A database DB conforms to a graph schema S, in notation DB � S, if there exists

3
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Figure 4: Six examples of graph schema.

a simulation from DB to S, i.e. a binary relation � from the nodes of DB to those of S satisfying:

(1) the root nodes of DB and S are in the relation �, (2) whenever u � u0 and u
a
! v is an edge

labeled a in DB, then there exists some edge u0
p
! v0 in S such that p(a) is true and v � v0.

A graph schema cannot enforce the presence of some label. This is consistent with the notion of
schema in ACeDB [TMD92]. In particular, the empty database (one node, no edges) conforms to
any graph schema S, i.e., ; � S. A graph schema cannot model variants, nor can it prevent a node
from having multiple occurrences of the same label, as occurs in Fig. 2(b). Finally, any database
DB can be viewed as a schema, by replacing every label a with the unary formula x = a. In
particular this gives us a notion of simulation between databases, DB � DB0.

In keeping with our view that two graphs are considered equal if they are bisimilar, we can show
that if DB � S and DB and DB0 are bisimilar, then DB0 � S. However, note that DB � DB0

and DB0 � DB does not necessarily imply that DB;DB0 are bisimilar: e.g. take DB = fa)
fb; cg; a)fbgg and DB0 = fa) fb; cgg.

Graph schemas can be viewed as in�nite databases. For example, we view an edge u
Nat
! v in

S, as representing in�nitely many edges, u
0
! v; u

1
! v; u

2
! v; : : :. We call the expansion of S,

denoted S1, the (possibly in�nite) database obtained from replicating each edge in S once for every
constant in the universe U satisfying the unary formula on that edge. See Fig. 5 for an example. If
any of the schema edges is labeled with the formula false, that edge disappears in S1.

One can easily check that for any database DB and graph schema S, DB � S i� DB � S1, where
the latter relation is a simulation between two databases, one of which may be in�nite.
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Figure 5: A graph schema S and its in�nite expansion S1.

3 Complexities

Paige and Tarjan [PT87] give an O(m log n) algorithm for the relational coarsest partition problem,
which computes a bisimulation relation on a graph, where n is the number of nodes and m the
number of edges. Their algorithm can easily be adapted to test whether two rooted graphs G1 and
G2 are bisimilar: take their disjoint union G, compute a bisimulation� on G, then test whether the
two roots of G1 and G2 are in �. Although bisimulation and simulation are related, they require
di�erent algorithms. Henzinger, Henzinger, and Kopke [HHK95] have recently found an O(mn)
time algorithm to compute the simulation between two graphs with labeled nodes.

Neither algorithm applies directly to our framework, because they associate labels with nodes, not
edges. We can reduce the problem of �nding a (bi)simulation of two edge-labeled graphs with a total
of n nodes and m edges to that of �nding a (bi)simulation between two node-labeled graphs with
a total of m+ n nodes and 2m edges. We split each labeled edge x

a
! y into two unlabeled edges

x! z ! y, in which z is a new node labeled a, and we label all other nodes with a new, unique label.
Finally, we compute a (bi)simulation for the new graphs, in time O(2m log(m+ n)) = O(m logm)
for bisimulation, or O((m + n)2m) = O(m2) for simulation. We may assume m � n, because the
graphs G1; G2 are connected, but unlike in [HHK95], we no longer necessarily have m � n2. This
still does not allow us to test DB � S, because when we expand S into a database we get an
in�nite graph. We can, however, adapt the algorithm in [HHK95] to get:

Proposition 3.1 Suppose one can test validity of sentences of the theory T in time t. Then there

exists an algorithm for checking whether DB � S that runs in time O(m2t). Here m is the total
number of edges in DB and S, which are each assumed to be connected.

Proof: Consider the algorithm E�cientSimilarity of [HHK95]. The only place where it checks
equality of node labels is in the initialization phase. Given DB and S, we replace this initialization
step with one which compares whether a label a fromDB and a predicate p from S satisfy U j= p(a):
this can be done in time t. The rest of the algorithm remains unchanged. 2

4 Expressiveness of graph schemas

Graph schemas di�er from relational or object-oriented schemas. A relational database has only
one schema. A graph database, however, may conform to several graph schemas such as those in
Fig. 4 (d) and (e). Moreover, there exists a schema S> (Fig. 4 (b)) to which all graph databases
conform. Since graph schemas are meant to capture partial information about the structure of data
with the purpose of optimizing queries, we could store multiple graph schemas for the same data
and o�er multiple \hints" to a query optimizer.

5



The relationship between graph database and graph schemas raises several questions. First, given
two graph schemas S and S0, how do we know if S says more about some database than S0? How
do we know that graph schemas S and S0 are \equivalent", i.e. DB � S i� DB � S0, for any DB?
For example, the graph schema in Fig. 4(f) captures more information about a database than either
schema in (d) or (e), in that any database conforming to the schema in (f) will also conform to the

schemas in (d) and (e). Formally, we de�ne [[S]]
def
= fDB j DB � Sg. Given two schemas S; S0, we

want to check whether [[S]] � [[S0]] and [[S]] = [[S0]]. We show that both [[S]] � [[S0]] and [[S]] = [[S0]] can be
checked in polynomial time.

Second, given two graph schemas S and S0, which express di�erent constraints on a database, can
we describe with a single graph schema S00 their combined constraints ? We want some graph
schema S00 such that DB � S ^ DB � S0 i� DB � S00. We show that S00 always exists. For
example, when S; S0 are those in Fig. 4 (d), (e), then S00 is the schema in (f).

Last, when DB 6� S, what \fragment" DB0 of DB does conform to S? This question is important
if we wish to use graph schema as data guides [Abi97]. Assume we optimize queries based on the
assumption that the Web site in Fig. 1 follows schema S in Fig. 4 (d) as a guide. Since the schema
does not enforce conformance it is unclear what the optimized query means when applied to some
DB which fails to conform to S. We show here that for any database DB and schema S there
exists a canonical \fragment" DB0 of DB that conforms to S. Moreover, whenever DB � S, then
DB0 is DB. We can now state what we expect from an optimizer. Given a query Q and schema
S, we expect a correct optimizer to produce an optimized query Qopt such that for any database
DB, Qopt(DB) = Q(DB0). This implies that Qopt(DB) = Q(DB) whenever DB � S.

We address these three issues in the sequel.

4.1 Subsumption of graph schemas

We de�ne schema subsumption and equivalence as follows.

De�nition 4.1 Given two graph schemas S; S0 we say that S subsumes S0, in notation S � S0, if
there exists a binary relation � between the nodes of S and S0 such that: (1) v0 � v00, where v0; v

0
0

are the roots of S; S0, (2) whenever u � u0, for every labeled edge u
p
! v in S and every a 2 U s.t.

U j= p(a), there exists an edge u0
p0

! v0 in S0 s.t. U j= p0(a) and v � v0. S and S0 are equivalent if
S � S0 and S0 � S.

When S; S0 are databasses (i.e. each predicate is equality with a constant), then the subsumption
relation conincides with the simulation relation between databases.

Recall that a graph schema S represents its possibly in�nite expansion, S1, i.e., an edge x
p
! y

represents in�nitely many edges, one for each a for which U j= p(a). Each such edge may be

simulated in S0 by some unary formula. First, we choose a 2 U , then decide which edge x0
p0

! y0 in
S0 will \mimic" the edge x

p
! y in S. To justify our choice for condition (2), consider the example

in Figure 6, where S = fNat _ String ) f5gg; S0 = fNat ) fNatg;String ) fNatgg. Clearly
S1 � S01, so we expect S � S0, and indeed condition (2) is satis�ed when u; u0 the roots: for any
a s.t. Nat(a) _ String(a), we can have either Nat(a) or String(a). In the �rst case we \move" to
the left in S0 (i.e. pick v0 to be the left node) else we \move" to the right. Now consider a more

6
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Figure 6: Simulation between two graph schemas S and S0.

rigid choice for condition (2) above, requiring: 8u � u0, and for every labeled edge u
p
! v in S,

there exists an edge u0
p0

! v0 in S0 s.t. U j= p) p0. Then we would not have had S � S0, because
neither Nat _ String ) Nat nor Nat _ String ) String holds.

Proposition 4.2 S � S0 i� S1 � S01. The latter is the simulation relation between (possibly

in�nite) databases.

Proof: Suppose S � S0 and let � be a subsumption relation. S1 and S01 have the same nodes
as S; S0 respectively: we prove that � satis�es conditions (1) and (2) in De�nition 2.2. (1) is
immediate. For (2) let u � u0 and let u

a
! v in S1. That is, there exists u

a
! v in S s.t. U j= p(a).

By (2) of De�nition 4.1 there exists u0
p0

! v0 in S0 s.t. U j= p0(a) and v � v0. But this implies that
there exists an edge u0

a
! v0 in S01.

Conversely, let S1 � S01, and let � be a simulation relation. We show that � satis�es condition
(2) of De�nition 4.1 (condition (1) is immediate). So let u � u0, u

p
! v in S and U j= p(a). Then

u
a
! v is an edge in S1 hence, by De�nition 2.2, there exists in S01 an edge also labeled a, u0

a
! v0

s.t. v � v0. It follows immediately that S0 must have some edge u0
p0

! v0 s.t. U ` p0(a). 2

In particular, a database DB conforms to a graph schema S, DB � S, i� DB when viewed as a
graph schema subsumes S, for which we use the same notation DB � S.

We now consider the problem of determining whether S � S0. From [HHK95], this problem is
decidable. Moreover, our algorithm in Fig. 7 checks whether S � S0 in polynomial time.

Proposition 4.3 The algorithm in Fig. 7 checks in time mO(1)t whether S � S0, where t is the

time needed to check validity of a sentence in the theory T .

We want to use this algorithm to check whether [[S]] � [[S0]]. Corollary 4.5 below, which says that
[[S]] � [[S0]] is equivalent to S � S0, allows us to do that. To prove it, we observe that the subsumption
relation � on graph schemas is preorder (from Proposition 4.2), and this allows us to de�ne the
least upper bound (lub) of a set of graph schemas, as in any preordered set. We review here the
de�nition of a lub, for completeness. Let D be a set of graph schemas. S is a least upper bound for

7



Let R � f(u; u0) j u 2 nodes(S); u0 2 nodes(S0)g
while any change do

�nd (u; u0) 2 R and edge u
p
! v in S

such that U j= 9a:(p(a) ^ (
V
i=1;k :p

0
i(a)))

where u0
p0

i! v0i, i = 1; k are all edges from u0 in S0

R � R� f(u; u0)g
return ((v0; v

0
0) 2 R)

Figure 7: An algorithm checking whether S � S0.

D if (1) 8S0 2 D, S0 � S, and (2) whenever another graph schema S0 has this property, it follows
that S � S0. We use

F
D for the set of least upper bounds of D. Since � is a preorder rather than

an order relation,
F
D may have more than one element, but all are equivalent, i.e. S; S0 2

F
D =)

S � S0 and S0 � S. This justi�es abbreviations like
F
D �

F
D0 for 9S 2

F
D;9S0 2

F
D0; S � S0.

The following theorem relates the order relation � to the meaning of a graph schema, [[S]]:

Theorem 4.4 If D = [[S]] then S 2
F
D.

Before proving this result, we prove a corollary:

Corollary 4.5 S � S0 i� [[S]] � [[S0]]. Hence S; S0 are equivalent i� [[S]] = [[S0]].

Proof: Obviously, S � S0 =) [[S]] � [[S0]]. The converse follows from Theorem 4.4, because [[S]] � [[S0]]
implies

F
[[S]] �

F
[[S0]], hence S � S0. 2

Together, Corollary 4.5 and Proposition 4.3 imply that [[S]] � [[S0]] and [[S]] = [[S0]] are decidable
in polynomial time. The rest of this subsection contains the proof of Theorem 4.4. The idea
is to approximate graph databases with trees. A tree database is a database whose graph is a
�nite tree. For a database DB, the approximations of DB is the set appr (DB) = fTDB j
TDB a TDB � DBg. When DB is cycle-free, then appr (DB) is a �nite set; when DB is a tree
database itself, then DB 2appr (DB). When DB has cycles, appr (DB) is in�nite, and can be
thought of as the set of all �nite unfoldings of DB. Approximations allow us to infer simulations:

Proposition 4.6 appr (DB) �appr (DB0) i� DB � DB0.

Proof: Obviously, DB � DB0 implies appr (DB) �appr (DB0). For the converse, let u be some
node in DB, and DBu be the same graph database DB, but whose root is u. More precisely,
when DB = (V;E; v0) then DBu = (V;E; u). We de�ne the relation � from the nodes of DB
to those of DB0 to be u � u0 i� appr (DBu) �appr (DB0

u0). Obviously, v0 � v00, where v0; v
0
0

are the roots of DB;DB0 respectively. Now we have to prove that � is a simulation. Assume
u � u0 and let u

a
! v be an edge in DB. The tree (fu; vg; f(u; a; v)g; u) (consisting of a single

edge u
a
! v with root u) is in appr (DBu), hence it is in appr (DB0

u0), so there exists at least

8
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Figure 8: An example of two in�nite databases with appr (DB) �appr (DB0) but DB 6� DB0. Here
DB0 is not label-�nite.

one a-labeled edge leaving u0. Let u0
a
! v01; : : : ; u

0 a
! v0k be the set of all such edges, k � 1.

We use the fact that this set is �nite and show that there exists some i s.t. appr (DBv) �appr

(DB0
v0

i
), implying v � v0i. Suppose by contradiction that this is not true: then for each i = 1; k

there exists some tree database TDBi 2appr (DBv) s.t. TDBi 62appr (DB
0
v0

i
). Consider the tree

TDB = fa) (TDB1 [ : : : [ TDBk)g. We have TDB 2appr (DBu), but TDB 62appr (DB
0
u0) { a

contradiction. 2

This proposition also holds for some in�nite databases. Let us call some in�nite database, DB,
label �nite if for any node u and label a, the set of outgoing edges u

a
! is �nite. In fact, we have

proven a stronger version of Proposition 4.6:

Proposition 4.7 Let appr (DB) �appr (DB0), with DB;DB0 possibly in�nite databases, but with

DB0 label-�nite. Then DB � DB0.

Without the label-�nitedness condition, Proposition 4.7 fails, as illustrated in the following example.

Example 4.8 Let DB = fa) f0; 1; 2; : : :gg and DB0 = fa) t0; a) t1; a) t2; : : :g, where tk =
f0; 1; : : : ; k � 1; k + 1; k + 2; : : :g, see Figure 8. Then appr (DB) =appr (DB0) but DB 6� DB0,
proving that Proposition 4.7 fails when DB0 is not label �nite.

We now prove Theorem 4.4 using Proposition 4.7. We extend the notation appr to graph schemas,
i.e. appr (S) = fTDB j TDB � S; TDB is a tree d.b.g =appr (S1). Suppose S0 satis�es 8DB 2
D, DB � S0: we have to prove S � S0. First we show appr (S) �appr (S0): TDB � S =)
TDB 2 D =) TDB � S0 =) TDB 2appr (S0). Now we observe that S01 is label-�nite, hence
Proposition 4.7 implies S1 � S01. Finally Proposition 4.2 implies S � S0.

4.2 GLB's and LUB's of graph schemas

Next, we show how to construct a schema S that expresses the combined constraints of two graph
schemas S1 and S2. Given two schemas S1 and S2, we show that there exists a schema S s.t.
[[S]] = [[S1]] \ [[S2]]. Take the nodes of S to be pairs (u1; u2), with ui a node in Si, i = 1; 2, and

take edges to be (u1; u2)
p1^p2
�! (v1; v2), for any two edges ui

pi! vi in Si, i = 1; 2. One can show
[[S]] = [[S1]] \ [[S2]]. It follows that S is the greatest lower bound of S1 and S2, in notation S1 u S2.
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For example, when S1; S2 are given by Fig. 4(d) and (e), then S1 uS2 is given by the schema in (c)
which is equivalent to that of (f), assuming the predicates isDept and isPaper are disjoint.

A similar fact does not hold for union or complement. Let us say that a set D of databases
is representable if it is of the form D = [[S]] for some graph schema S. Then it is easy to
show that any representable set D is an ideal [Gun92], i.e.: (1) D is nonempty, (2) D is down-
wards closed, i.e. DB � DB0 and DB0 2 D implies DB 2 D, and (3) D is directed, i.e.
DB1;DB2 2 D implies 9DB 2 D s.t. DB1 � DB and DB2 � DB. It follows immediately
that, if D1 and D2 are representable, then the complement of D1 and D1 [ D2 are, in general, not
representable. Let idl(D) denote the ideal generated by the set D, i.e. idl(D) = fDB1 [ : : : [DBk j
9DB0

1; : : : ;DB
0
k 2 D; s.t. DBi � DB0

i; i = 1; kg. Then we can prove that when D1;D2 are rep-
resentable, so is idl(D1 [ D2). For S1; S2 graph schemas representing D1 and D2 respectively, we
de�ne S to be their union (Section 2). It follows that [[S]] = idl([[S1]] [ [[S2]]) and that S is the least
upper bound of S1; S2, in notation S1 t S2.

4.3 Fragments of databases

Finally, we address the problem of �nding for some database DB and graph schema S, a canonical
\fragment" DB0 of DB such that DB0 � S. This is important if we wish to use graph schemas
as data guides [Abi97]. Instead of insisting that a database DB strictly conforms to some schema
S, we require that there be a \large fragment" of DB which conforms to S. By \fragment" we
mean a database DB0 s.t. DB0 � DB. The name \fragment" is justi�ed, because whenever
DB0 � DB, there exists some graph DB0 which is bisimilar to DB (hence, DB and DB0 denote
the same data) of which DB0 is a subgraph. E.g. consider the graph schema S in Fig. 4 (a), and
let DB = ftup)fA;D)f3ggg be the database in Fig. 2(c). Then DB0 = ftup) fAgg.

We observe that for any DB;S, the empty database ; (one node, no edges) is a fragment satisfying
the requirement above, i.e. ; � DB and ; � S. This is not the \canonical" fragment we want,

because it is not the largest fragment under the simulation relation �. By taking DB0
def
= DB u S

we can prove:

Proposition 4.9 For any graph database DB and graph schema S, there exists some database

DB0 s.t. (1) DB0 � DB and DB0 � S, and (2) for any other database DB0
0 satisfying this

property, DB0
0 � DB0. Moreover DB0 can be computed in PTIME, and if DB � S then DB0 is

bisimilar to DB. We call DB0 the canonical fragment of DB satisfying S.

5 Determinism

Nodes in a schema have the potential to classify nodes in a database. For example, consider the
database DB in Figure 1, which conforms to the schema S in Figure 4(d). Let us denote with v0; v1
the two nodes of schema S. Then S classi�es DB's nodes into two categories: those \conforming"
to v0, and those \conforming" to v1. Informally, the �rst category consists of all nodes before
a Department edge, and the second category of nodes after some Department edge. But not for
any schema does the classi�cation work so nicely. For example, consider the schema in Fig. 1(e),
with two nodes u0; u1, and suppose the database contains some Department without papers. Then

10



the nodes in DB following that Department link can be either classi�ed as u0 or as u1. What
distinguishes between the two schemas is that the �rst one is deterministic while the second one is
not.

In object-based graph database models, determinism is natural. For example, the semantics of
ACeDB trees imposes that instance databases be deterministic, and in the Tsimmis data model,
each node has a unique object identi�er making the instance database deterministic. In our graph
model, however, a deterministic representation of relational databases requires adding unnecessary
object identi�ers to sets. For example, in order to make the tree representation of a relational
database in Fig. 2(a) deterministic we would use a di�erent object identi�er for every tup edge,
say tup1; tup2; tup3. Determinism for graph schemas in any model, however, is natural. Note that
the tree representation of the relational graph schema in Fig. 4 (a) for the database of Fig. 2(a) is
deterministic.

We show that certain nondeterministic schemas are not equivalent to any deterministic ones. Since
we argued that deterministic schemas are more suitable than nondeterministic once, one wonders
what we may loose by restricting to deterministic schemas. We show that for any nondeterministic
schema S, there exists a canonical Sd which best \approximates" S.

We call an edge-labeled graph G deterministic if for every node x and label a, there exists at most
one edge labeled a going out of x. This de�nition is not invariant under bisimulation1. A database
DB is deterministic if there exists some deterministic graph bisimilar to it. Similarly, we call a
graph schema S deterministic i� S1 is deterministic. We will show below that testing whether
a schema S is deterministic is decidable. The following is a su�cient condition for checking if a
graph schema S is deterministic:

Proposition 5.1 Let S be a graph schema. S is deterministic if for any node u and any two

distinct edges u
p
! v; u

p0

! v0, we have U j= :(9x:p(x) ^ p0(x)).

Deterministic graph schemas are important because of the following:

Proposition 5.2 Let S be deterministic and TDB a tree database s.t. TDB � S. Then TDB
conforms to S \in a unique way". More precisely there exists a function ' from the nodes of TDB
to those of S s.t. for any simulation � from TDB to S, and for every node u of TDB, u � '(u).

This follows from the observation that nodes in a tree database are in 1-1 correspondence with
sequences of labels, a1 : : : an. Such a sequence is mapped uniquely into some node in S, because S
is deterministic, and this de�nes the function '. Moreover, '(u) classi�es nodes: u and v are in
the same class i� '(u) = '(v).

Deterministic schemas are less \expressive" than nondeterministic ones. For example, the nondeter-
ministic graph schema S = fa)fbg; a)fcgg is not equivalent to any deterministic graph schema,
i.e. [[S]] 6= [[Sd]] for any deterministic graph schema Sd. The \closest" we can get is the deterministic
graph schema Sd = fa)fb; cgg. In general, for any nondeterministic graph schema S, there exists
a \closest" deterministic graph schema Sd. The latter is constructed in a way reminiscent of the
DFA equivalent to an NDFA:

1The tree fag is deterministic and bisimilar to the tree fa; ag; but the latter is not deterministic.
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Proposition 5.3 For any graph schema S, there exists some deterministic graph schema Sd with

the following properties: (1) S � Sd, (2) whenever S � S0 and S0 is deterministic then Sd � S0.

Proof: We use a powerset construct to get Sd. Let S = (V;E; v0). Then Sd = (Vd; Ed; v0d), where:
the nodes are nonempty sets of nodes of S, Vd = P(V ), the root v0d is fv0g, and the edges are

de�ned as follows. Let U = fu1; : : : ; ung, n � 1, be a node in Sd, and let ui1
p1
! v1; : : : ; uim

pm
! vm,

m � 0, be all edges in S whose source is in this set. For any nonempty subset J � f1; 2; : : : ;mg, let2

V = fvj j j 2 Jg. We introduce an edge U ! V in Sd labeled with the unary formula
V
j=1;m qj,

where qj = pj when j 2 J , and qj = :pj otherwise. Note that at least one unary formula pj is not
negated. Note also that Sd is deterministic, because for any two outgoing edges U ! V and U ! V 0

there exists at least some unary formula pj which is negated on the �rst edge but unnegated in
the second one, or vice versa. To show S � Sd we prove that the relation u � U () u 2 U is a
simulation. For u � U , u

p
! v an edge in S and a 2 U s.t. U j= p(a), using the notations above

we de�ne J = fj j U j= pj(a)g and V = fvj j j 2 Jg. Finally we have to prove item (2). Let � be
a simulation from S to S0, with S0 deterministic. De�ne �0 to be the following relation from the
nodes of Sd to those of S

0: U �0 u0 i� 8u 2 U , u � u0. For U �0 u0, edge U ! V in Sd labeled
W
j qj

(notations as above), and a 2 U s.t. U j=
W
j qj(a), we use the fact that � is a simulation, so for

each edge uij
pj
! vj , with j 2 J there has to be some transition u0

p0

! v0 with U j= p0(a), and with
vj � v0. Here we use the fact that S0 is deterministic, to conclude that p0 and v0 are the same, for
all j 2 J . It follows that V �0 v0. 2

In particular, the construction of Sd gives us a procedure for checking whether S is deterministic:

Corollary 5.4 Given a schema S, it is decidable wether S is deterministic or not.

Proof: S is deterministic i� Sd � S: the latter relation is decidable. 2

An interesting case is when S is a database (i.e. all unary formulas on its edges are equalities with
constants); then Sd is precisely the deterministic automata obtained from S. For the example in
which S = fa)fbg; a)fcgg, we get Sd = fa)fb; cgg.

In general, the number of nodes in Sd is exponential in that of S. But when S is a tree database,
then the number of nodes in Sd is less than or equal to that of S [Per90, pp.7]. When we generalize
to unary formulas, then the number of nodes in Sd may be exponential, even when S is a tree. For
example, let S = fp1; p2; : : : ; png, then Sd = fr0; r1; : : : ; r2n�1g, where each ri =

W
j=0;n�1 qj, with

qj = pj or qj = :pj, depending on whether the j's bit in the binary representation of i is 1 or 0. Such
arbitrary sets of unary formulas p1; p2; : : : ; pn rarely occur in practice, because the base predicates
are either constants, or taken from a list of disjoint predicates, like Int;String;Bool;Nat; isDept.
The graph schemas in Figure 4 have this property. Then we can prove:

Proposition 5.5 Let S be a tree schema in which for every two distinct unary formulas p(x); p0(x),
either is a constant (i.e. of the form x = a), or they are disjoint (i.e. U j= :9x:(p(x) ^ p0(x))).
Then Sd has at most as many nodes as S, and can be computed in polynomial time.

2
v1; : : : ; vm are not necessarily distinct.
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6 Graph Schemas and Queries

In [BDHS96a], we propose UnQL, a language for querying and restructuring graph databases.
UnQL is compositional, has a simple select : : : where : : : construct, supports exible path expres-
sions, and can express complex restructuring of the graph database. Consider the simple UnQL
query Q:

select fx)fxgg where nx DB

Q takes a graph database of the form fa1 ) t1; : : : ; an ) tng and returns the graph database
fa1)fa1g; : : : ; an)fangg, i.e., Q doubles each edge in the �rst level of edges in DB.

Recall from Section 2 that graph schemas can be thought of as �nite descriptions of in�nite sets of
databases, i.e. S de�nes the set [[S]] = fDB j DB � Sg. We consider whether, given a schema S
and an UnQL query Q, we can describe the set fQ(DB) j DB � Sg by a schema S0. This question
is important for two reasons. First, we plan to use graph schemas in query optimization of UnQL.

Since UnQL is compositional, when we optimize a composed query Q(DB)
def
= Q2(Q1(DB)) whose

input conforms to some graph schema, DB � S, we �rst optimize Q1 according to graph schema S,
then optimize Q2 according to the graph schema of the set fQ1(DB) j DB � Sg, hence the need to

compute the latter. Second, UnQL queries can be used to de�ne views, like V
def
= Q(DB). Given

that DB � S, we want to optimize queries against the view. This requires a graph schema for the
set fQ(DB) j DB � Sg.

Given a graph schema S and a query Q, there is a natural way to compute a graph schema Q(S),
with the property:

8DB � S;Q(DB) � Q(S) (1)

Since UnQL queries are just graph transformations, we can compute Q(S) much in the same
way in which we compute Q(DB). Where the construct is less obvious, we take a conservative
action. For example, for a subquery Q(DB) = fx) DBg, having a free variable x bound in a
surrounding context, we de�ne Q(S) to be ftrue)Sg, or if any predicate P (x) is known about
the variable x (e.g. Q occurs in the then branch of an if P (x) then : : : else : : : construct), then
we take Q(S) = fP ) Sg. This ensures that Equation 1 holds, but Q(S) may not necessarily
get the tightest description of the set fQ(DB) j DB � Sg. It follows however that Q(S) can be
computed in PTIME, and that it satis�es Equation 1. But this can be trivially satis�ed by taking
Q(S) = S> (Fig. 4 (b)), which is a maximal element in the partial order �. We would like to
make the claim Q(S) =

F
fQ(DB) j DB � Sg, thus showing that Q(S) describes precisely the set

D
def
= fQ(DB) j DB � Sg. Unfortunately, this does not hold. Worse, there are examples of simple

queries Q and graph schema S for which
F
D does not exist, as illustrated in the following example.

Example 6.1 Consider the graph schema S = fNatg and the UnQL query Q from above. This
query doubles every label in the database, e.g. on the database DB = f2; 4; 5g Q returns f2)
f2g; 4)f4g; 5)f5gg. When we apply our method to the schema S and queryQ, we obtain the graph
schema S0 = Q(S) = fNat)fNatgg. But this is not

F
D, and in fact one can show that

F
D does

not exists. Instead of giving the formal proof, we explain what is going on. Consider the sequence
of graph schemas S0; S1; S2; : : : where Sn = f0) f0g; 1) f1g; : : : ; n� 1) fn� 1g; pn) fNatgg,
with pn(x) = (x 6= 0 ^ : : : ^ x 6= n� 1 ^ Nat(x)). In particular S0 = S0. Each of them is an upper
bound of D, and they form an in�nite, strictly descending chain of graph schemas. Hence none of
them is a least upper bound for D.
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Figure 9: Two examples of extended graph schemas and their expansions.

The reason why graph schemas cannot describe all sets of the form fQ(DB) j DB � Sg is because
they cannot impose equality constraints on edges in the database. We can partially �x this by
extending the notion of graph schema to allow equality constraints between certain values on edges.
Formally, we de�ne an extended graph schema with n � 0 variables z1; : : : ; zn to be a rooted graph
(V;E; v0), in which the edges are labeled with formulas as explained below, and with n distinguished
subgraphs, denoted Gz1 ; : : : ; Gzn . Each subgraph Gz is called the scope of the variable z, and is
given by (1) a set of nodes Vz � V , (2) a set of edges Ez � E, s.t. for every edge u ! v in Ez,
both u and v are in Vz, (3) a set of input nodes Iz � Vz, and (4) a set of output nodes Oz � Vz.
We impose the following four conditions on extended graph schemas:

� For every edge u! v entering some graph Gz (i.e. u 62 Vz and v 2 Vz), v is one of the inputs
of Gz.

� Similarly, every edge u! v leaving some graph Gz exits from an output node, u 2 Oz.

� Each formula labeling some edge in the scope of k variables zi1 ; : : : ; zik may have k + 1 free
variables: zi1 ; : : : ; zik and a distinguished variable x (as before).

� The scopes of variables follow traditional rules in programming languages: for z 6= z0, either
Gz � Gz0, or Gz0 � Gz, or Gz and Gz0 are disjoint.

Graph schemas are particular cases of extended graph schemas with no variables (n = 0). As with
graph schemas, an extended graph schema S can be modeled by its in�nite expansion S1, which
we describe formally below. Intuitively, each graph Gz is replicated once for each value z 2 U .

Example 6.2 Figure 9 contains two examples of extended graph schemas, both with a single
variable, z. In (a), Gz = G, Iz consists of a single node (the root), and Oz = ;. In its expansion,
we replace z with every value in the universe, U , but for values outside Nat we obtain predicates
equivalent to false. This in�nite expansion describes precisely the set fQ(DB) j DB � Sg, where
Q and S are from Example 6.1. In (b), Gz is a proper subgraph of G, with each of Iz and Oz

consisting of one node. The \expansion" depicted in (b) is incomplete: not(0) should be further
expanded with all atoms a 2 U , a 6= 0, and similarly for not(1);not(2); : : :

Formally, for a given extended schema S = (V;E; v0; Gz1 ; : : : ; Gzn) over variables z1; : : : ; zn, we
de�ne S1 to be the following in�nite database. Its nodes are tuples (u; a1; : : : ; ak), where u 2 V , k
is the number of variables z1; : : : ; zn in whose scope u is, and a1; : : : ; ak are elements of the universe
U . We call nodes of the form (u; a1; : : : ; ak) copies of u. The root of S1 is a fresh node u0, and
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there are "-edges from u0 to all \copies" of the old root v0 (see [BDHS96a] for a de�nition of "

edges). For each edge u
p
! v in S we construct copy edges in S1 as follows. Let u be in the scope

of zi1 ; : : : ; zik . Due to the scoping rules for the graphs Gz, only one of the following three cases can
happen:

� Node v is in the scope of the same variables. Then we add and edge labeled a between any
two similar copies of u and v, for which a 2 U \satis�es" p: more precisely, we add an edge
(u; ai1 ; : : : ; aik)

a
! (v; ai1 ; : : : ; aik) whenever p(ai1 ; : : : ; aik ; a) is true.

� Node v is in the scope of strictly more variables, i.e. of zi1 ; : : : ; zil , with k < l. Then from
each copy (u; ai1 ; : : : ; aik) of u we add \fan-out" edges to copies of v extending that of u:
more precisely, we add an edge (u; ai1 ; : : : ; aik)

a
! (v; ai1 ; : : : ; ail) whenever p(ai1 ; : : : ; aik ; a)

is true.

� Node v is in the scope of strictly less variables, i.e. of zi1 ; : : : ; zil , with k > l. Then into each
copy (v; ai1 ; : : : ; aik) of v we add \fan-in" edges from copies of u extending that of v: more
precisely, we add an edge (u; ai1 ; : : : ; aik)

a
! (v; ai1 ; : : : ; ail) whenever p(ai1 ; : : : ; ail ; a) is true.

Note that unlike graph schemas, in the case of extended graph schemas S1 has in�nitely many
nodes.

Since extended graph schemas are nothing more than an elaborate way of specifying the in�nite
graph S1, we can extend previous results for graph schemas. We can de�ne what it means for a
database DB to conform to an extended graph schema S, DB � S, and for an extended graph
schema S to subsume some other extended graph schema S0, S � S0, etc. From [HHK95], both
DB � S and S � S0 are decidable.

By adding extended graph schemas, we have enriched our set of schemas. As a consequence, if
before S was the least upper bound of some set of databases D, S =

F
D, this may no longer be

the case once we introduce extended schemas. So we have to reconsider Theorem 4.4. In fact, now
it fails: even when S is a non-extended schema, it need not be the least upper bound of [[S]], as
illustrated in the following example.

Example 6.3 Let S = fa)fNatgg. Then S1 = DB with DB from Example 4.8, and [[S]] =appr

(DB). We show that S 6=
F
[[S]]. Take S0 to be the extended schema given by the graph G = Gz =

fu
x=a^Nat(z)
�! v

Nat(x)^x 6=z
�! wg with Iz = fug and Oz = ;. Then S01 = DB0 of Example 4.8, and S0

is an upperbound of [[S]] but S 6� S0. Intuitively, S0 is better than S = fa)fNatgg because it says
that after each a-edge, at least one natural number is missing. This proves that S 6=

F
[[S]]. One

wonders whether S0 =
F
[[S]]: this is also false, because by using two variables z1; z2 we can write an

extended schema S00 saying say that at least two natural numbers are missing on each branch etc.
In fact the set [[S]] does not have a least upper bound in the preordered set of extended schemas.

The reason why Theorem 4.4 fails in the set of all extended graph schemas is because, for an
extended schema S, S1 is not generally label-�nite. It still holds in the following weaker form:
if D = [[S]] and S0 is an upper bound of D, then if S01 is label �nite, it follows that S � S0.
In particular, this holds for deterministic S0. Generalizing this, we prove the following theorem,
which is the most complex result of this paper. Here a positive UnQL query is a query whose
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a 2 U

a : Label

y a label variable

y : Label

t a tree variable of type TreeX
t : TreeX

fg : TreeX

X 2 X

X : TreeX

l : Label Q : TreeX
fl)Qg : TreeX

l1 : Label l2 : Label

l1 = l2 : Bool

l1 : Label : : : ln : Label p a predicate

p(l1; : : : ; ln) : Bool

b : Bool Q1 : TreeX Q2 : TreeX
if b then Q1 else Q2 : TreeX

Q1 : TreeY : : : Qm : TreeY

(X1 := Q1; : : : ;Xm := Qm) : Tree
fX1;:::;Xmg
Y

Q1 : TreeX Q2 : TreeX
Q1 [Q2 : TreeX

Q1 : TreeX Q2 : Tree
X
Y

Q@X Q2 : TreeY

y label variable t tree variable of type TreeY Q1 : Tree
X
X Q2 : TreeY

gextX (�(y; t):Q1)(Q2) : Tree
X
X�Y

X denotes a �nite set of markers. TreeX denotes rooted graphs whose output markers are in the
set X . TreeXY denotes graphs whose input markers are X and whose output markers are in Y.

Figure 10: The rules for the positive fragment of UnCAL, denoted UnCAL+.

translation into UnCAL does not use isempty (isempty is the only non-monotone operator in
UnCAL, see [Suc96] for a more detailed discussion).

Theorem 6.4 Let Q be a positive UnQL query. Then for every (extended) graph schema S there

exists an extended graph schema Q(S), computable in PTIME such that: for every deterministic,

extended graph schema S0, if 8DB � S ) Q(DB) � S0, then Q(S) � S0.

Proof: Following [BDHS96b], we de�ne the positive fragment of UnCAL, denoted UnCAL+, to be
the language described by the rules in Figure 10. We refer the reader to [BDHS96b] for a semantics
of the language. It is \positive" in that the operator isempty is missing. It su�ces to proof the
statement of the theorem for queries in UnCAL+.

UnCAL+ manipulates graph data whose structure is more general than the rooted, labeled graphs
de�ned in Section 2: namely they are graphs with m distinguished inputs, n distinguished outputs,
and with "-edges. As in [BDHS96b] we \distinguish" nodes by labeling them with markers: "-
edges are simply silent transitions. To describe such graphs in terms of schemas, we generalize
our (extended) schemas to graphs with m inputs, n outputs and "-edges too. All de�nitions and
properties of graph schemas generalize mutatis mutandis to the new framework.

We will show how to construct S0 = Q(S) by induction on the structure of the query Q. More
precisely, let y1; : : : ; ym be the free label variables, and t1; : : : ; tn be the free tree variables of Q,
in notation Q(y1; : : : ; ym; t1; : : : ; tn), and let S1; : : : ; Sn be n given extended schemas over variables

z1; : : : ; zp. Then we show how to construct a new extended schema S0
def
= Q(y1; : : : ; ym; S1; : : : ; Sn)

over variables y1; : : : ; ym; z1; : : : ; zp such that for any labels a1; : : : ; am, then the following two
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conditions hold:

1. For any databases DB1; : : : ;DBn conforming to S1; : : : ; Sn we have:

Q(a1; : : : ; am;DB1; : : : ;DBn) � S0[�a=�y] (2)

2. For any tree database TDB0 2appr (S0[�a=�y]) there exists n tree databases TDB1; : : : ; TDBn

conforming to S1; : : : ; Sn respectively, such that:

TDB0 � Q[�a=�y; TDB=�t] (3)

When Q is a query with a single free variable (the input database), then condition 2 implies that
S0 is an upper bound of fQ(DB) j DB � Sg, while condition 3 implies (by Proposition 4.7) that
S0 will be below any other label-�nite upper bound, in particular below any deterministic upper
bound.

We now illustrate the more interesting cases for Q.

Tree variable Q = ti. Take S
0 def= Si.

Singleton construct Q = fl) Q1g First apply induction hypothesis to Q1, and obtain schema
S01. The label expression l is either a constant a, or a variable y. In the �rst case return the
schema f(x = a)) S01g. In the second case return f(x = y)) S01g.

Union Q = Q1 [Q2. Obtain S01 and S02 �rst, then take S0
def
= S01 [ S

0
2.

Conditional Q = if b then Q1 else Q2. Construct S
0
1; S

0
2 �rst. Then de�ne S0 to have a new root

and two "-edges into S01 and S
0
2 respectively, labeled with b and :b respectively. That is, b and

:b are predicates with free variables y1; : : : ; ym (not the distinguished variable x). \Labeling"
an " edge with a predicate means that we enable it when the predicate is true, and disable it
when it is false. In the case of S0, exactly one of the two " edges will be enabled, for each m-
tuple a1; : : : ; am. For example to check Equation 3 above, let a1; : : : ; am be given, and TDB0

be some database in appr (S0[�a=�y]). Then exactly one of b[�a=�y] or :b[�a=�y] must be true. In
the �rst case we reason that TDB0 is also in appr (S01[�a=�y]), hence there exists tree databases
TDB1 � S1; : : : ; TDBn � Sn such that TDB0 � Q1(a1; : : : ; am; TDB1; : : : ; TDBn), which
also implies that TDB0 � Q(a1; : : : ; am; TDB1; : : : ; TDBn). The second case is similar.

Gext Assume, for sake of illustration, that the gext construct has a single marker, i.e. Q =
gextfXg(�(y; t):(X := Q1))(Q2). First we apply induction hypothesis to Q2 and obtain some
extended schema S02 with variables y1; : : : ; ym; z1; : : : ; zp. Our schema S0 will consists of
the nodes of S02, with some subschemas replacing the edges in S02. The subschemas are

obtained from the edges of S02 as follows. For each edge u
p
! v in S02, we apply induc-

tion hypothesis to Q1, in which we \bind" the variable t to the schema S02v, that is having
the same nodes and edges as S02, but with v as its root. We obtain an extended schema
S01(u; p; v) = Q1(y1; : : : ; ym; S1; : : : ; Sn; S

0
2v), over the variables y1; : : : ; ym; y; z

0
1; : : : ; z

0
q. We

assume z1; : : : ; zp to be distinct from z01; : : : ; z
0
q (else we rename some of them). Then we

join u with the root r of S01(u; p; v) by a chain of two "-edges: u
"
! wu;p;v

"
! r (here wu;p;v

is a fresh node). We label the �rst edge with true, and the second with p[y=x] (which is
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a predicate with variables y1; : : : ; ym; y; z1; : : : ; zp). We denote with wu;p;v
"
! S01(u; p; v) the

extended subschema consisting of the root wu;p;v and the "-edge labeled p[y=x] into the root
of S01(u; p; v): its variables are y1; : : : ; ym; y; z1; : : : ; zp; z

0
1; : : : ; z

0
q, and we de�ne the scope of

y to be the entire graph wu;p;v
"
! S01(u; p; v). In constructing S0 from S02, we replace the

edge u
a
! v with this subschema. We repeat this construct for every edge u

p
! v, and

call S0 the resulting schema. Its variables are y1; : : : ; ym; y; z1; : : : ; zp; z
0
1; : : : ; z

0
q. (Techni-

cally, we have to rename all di�erent occurrences of the variables y; z01; : : : ; z
0
q from di�er-

ent subschemas S01(u; p; v); we omit some of the details.) We prove now Equation 3. Let
a1; : : : ; am; TDB1 � S1; : : : ; TDBm � Sm be given. Let TDB0 2appr (S0[�a=�y]), which means
TDB0 � [[(S0[�a=�y])]]. Since TDB0 is a tree, there exists a simulation which is a many-to-one
mapping from the nodes of TDB0 to those of (S0[�a=�y])1. We will decompose TDB0 into
another tree TDB0

2 and a number of subtrees, which we generically denote TDB0
1. The nodes

of TDB0
2 consists of those nodes in TDB0 which are mapped by � into nodes of (S0[�a=�y])1

lying only within the scopes of z1; : : : ; zp, and not of y; z01; : : : ; z
0
q. Consider such a node u in

TDB0
2. Any path in TDB0 from u to some other node v in TDB2, without going through

any other node in TDB2, has, on all its edges, the same values of the variables y; z1; : : : ; zp.
Moreover, all such paths from the same u have the same values of z1; : : : ; zp, but they may
di�er on y. Then we construct edges in TDB0

2 as follows. We add a new node ua for each
value y = a taken by y on such a path, draw an edge labeled a from u to ua, then draw
"-edges from ua to all nodes v reachable in TDB0 from u through a path on which y = a.
Obviously TDB0

2 � (S02[�a=�y])
1. Next, we de�ne the trees TDB0

1 to be small pieces which
correspond to the same y. More precisely, for each node u in TDB0

2, and for each value a for
which there exists some path in TDB0 from u to another node v in TDB0

2, we de�ne the tree
TDB0

1(u; a) to consists of all nodes accessible from u through paths having y = a. Each tree
TDB0

1(u; a) is mapped by � to some wu0;p;v0

"
! S01(u

0; p; v0). By induction hypothesis for Q1,
for each TDB1(u; a) we �nd n tree databases TDB1 � S1; : : : ; TDBn � Sn; TDB(u; a) � S02v0

such that TDB1 � Q1(�a=�y; a=y; TDB=�t; TDB=t). First, we notice that w.l.o.g. we may
assume that TDB1 is the same for all trees TDB0

1(u; a): else take their l.u.b., which is
simply their union. But we may have di�erent trees TDB(u; a) for di�erent TDB0

1(u; a)'s,
because they have to conform to di�erent schemas S02v0 (the v0 di�ers). Then, let us de-
note TDB00

2 the tree obtained by expanding TDB0
2 with all trees TDB(u; a), and by adding

an " edge from each node ua to the root of TDB(u; a). This de�nition of TDB00
2 implies

that TDB0 � gext(�(y; t):Q1[�a=�y; TDB=�t])(TDB
00
2 ). Next we observe that TDB00

2 still con-
forms to (S02[�a=�y])

1, because the newly added trees TDB conform to correct subschemas
S02v0 . Hence we apply induction hypothesis to Q2, and conclude that there exists n tree
databases TDB1 � S1; : : : ; TDBn � Sn (we may assume w.l.o.g. that these are the same
as before: else, take their g.l.b.) such that TDB00

2 � Q2[�a=�y; TDB=�t]. It follows that
TDB0 � gext(�(y; t):Q1[�a=�y; TDB=�t])(Q2[�a=�y; TDB=�t]).

2

7 Conclusions and Future Work

When querying unstructured data, the ability to use whatever structure is known about the data
can have signi�cant impact on performance. Examples abound in optimizations for generalized
path expression (see [CACS94, CCM96], among others). We have explored a new notion of a
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graph schema appropriate for edge-labeled graph databases. Since the known structure of graph
databases may be weaker than that of a traditional database, we use unary formulas instead of
constants for edge labels. We describe how a graph database conforms to a schema and observe
that a graph database may conform to multiple schemas. Since there is a natural ordering on graph
schemas, it is possible to take the least upper bound of a set of schemas and combine into a single
schema all their constraints. We then describe a \deterministic" subclass of schemas that uniquely
classi�es nodes of (tree) databases. When optimizing queries for distributed graph databases, node
classi�cation allows us to decompose and specialize the query for a target site [Suc96].

In current work, we are using schemas for query optimization and query decomposition. Consider
the following UnQL query Q [Suc96], which selects all papers in the Computer Science Department
in Fig. 1:

select \Papers":t where �:\CS-Department": �:\Papers":t DB

Without any knowledge about the data's structure, one has to search the entire database. We can
exploit knowledge about the structure of the data in order to prune the search. For example, if we
know that the data conforms to the the schema in Fig. 4(d), we can prune the search after every
department edge that is not a Computer Science Department. This can be described by another
query, Qopt. An interesting question is what happens if the database DB fails to conform to the
schema S, which is likely in unpredictable data sources like the Web. As discussed in Subsection 4.3,
one can still describe the precise semantics of Qopt(DB), namely as Q(DB0), where DB0 is the
canonical fragment of DB conforming to S (Subsection 4.3). Similarly, we plan to address query
decomposition. [Suc96] describes a query decomposition technique that ignores any information
about the structure of the data, or how it is distributed. Assuming the database DB is distributed
on two sites, the technique in [Suc96] poses three di�erent queries on each site. We plan to use
deterministic schemas to describe data in a distributed environment. For example, we could use
the schema in Fig. 4(d) to describe how the nodes in the database are located on the two sites and
reduce the queries posed at each site from three to one. Maximizing the bene�ts of these techniques
for query decomposition and optimization is an area of future work.

The de�nition of a graph schema we have given is extremely general. For example, it cannot con-
strain a graph to be an instance of a relation in the sense that Fig. 2(a) describes a relation, because
multiple edges with the same attribute name are allowed in the graph instance. Furthermore, our
schemas only place outer bounds on what edges may emanate from a node. In future work, we may
consider a dual notion of schema that places inner bounds on edges by requiring certain edges to
exist. One could consider further constraints that restrict the number of edges that emanate from
a node, as is done in [TMD92] to model variants.
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