2,313 research outputs found

    The Marangoni flow of soluble amphiphiles

    Full text link
    Surfactant distribution heterogeneities at a fluid/fluid interface trigger the Marangoni effect, i.e. a bulk flow due to a surface tension gradient. The influence of surfactant solubility in the bulk on these flows remains incompletely characterized. Here we study Marangoni flows sustained by injection of hydrosoluble surfactants at the air/water interface. We show that the flow extent increases with a decrease of the critical micelle concentration, i.e. the concentration at which these surfactants self-assemble in water. We document the universality of the surface velocity field and predict scaling laws based on hydrodynamics and surfactant physicochemistry that capture the flow features.Comment: 5 pages, 4 figures, submitte

    Marangoni flow in freely suspended liquid films

    Get PDF
    We demonstrate controlled material transport driven by temperature gradients in thin freely suspended smectic films. The films with submicrometer thicknesses and lateral extensions of several millimeters were studied in microgravity during suborbital rocket flights. In-plane temperature gradients cause two specific Marangoni effects, directed flow and convection patterns. At low gradients, practically thresholdless, flow transports material with a normal (negative) temperature coefficient of the surface tension, dσ/dT<0d\sigma/dT<0, from the hot to the cold film edge. That material accumulates at the cold film border. In materials with positive temperature coefficient, dσ/dT>0d\sigma/dT>0, the reverse transport from the cold to the hot edge is observed. We present a model that describes the effect quantitatively.Comment: 5 pages, 5 figure

    Collective dynamics of chemically active particles trapped at a fluid interface

    Full text link
    Chemically active colloids generate changes in the chemical composition of their surrounding solution and thereby induce flows in the ambient fluid which affect their dynamical evolution. Here we study the many-body dynamics of a monolayer of active particles trapped at a fluid-fluid interface. To this end we consider a mean-field model which incorporates the direct pair interaction (including also the capillary interaction which is caused specifically by the interfacial trapping) as well as the effect of hydrodynamic interactions (including the Marangoni flow induced by the response of the interface to the chemical activity). The values of the relevant physical parameters for typical experimental realizations of such systems are estimated and various scenarios, which are predicted by our approach for the dynamics of the monolayer, are discussed. In particular, we show that the chemically-induced Marangoni flow can prevent the clustering instability driven by the capillary attraction.Comment: 8 pages, 2 figure

    A bouncing oil droplet in a stratified liquid and its sudden death

    Get PDF
    Droplets can self-propel when immersed in another liquid in which a concentration gradient is present. Here we report the experimental and numerical study of a self-propelling oil droplet in a vertically stratified ethanol/water mixture: At first, the droplet sinks slowly due to gravity, but then, before having reached its density matched position, jumps up suddenly. More remarkably, the droplet bounces repeatedly with an ever increasing jumping distance, until all of a sudden it stops after about 30 min. We identify the Marangoni stress at the droplet/liquid interface as responsible for the jumping: its strength grows exponentially because it pulls down ethanol-rich liquid, which in turn increases its strength even more. The jumping process can repeat because gravity restores the system. Finally, the sudden death of the jumping droplet is also explained. Our findings have demonstrated a type of prominent droplet bouncing inside a continuous medium with no wall or sharp interface.Comment: 6 pages, 4 figure

    Phase coexistence in a monolayer of active particles induced by Marangoni flows

    Full text link
    Thermally or chemically active colloids generate thermodynamic gradients in the solution in which they are immersed and thereby induce hydrodynamic flows that affect their dynamical evolution. Here we study a mean-field model for the many-body dynamics of a monolayer of active particles located at a fluid-fluid interface. In this case, the activity of the particles creates long-ranged Marangoni flows due to the response of the interface, which compete with the direct interaction between the particles. For the most interesting case of a r−3r^{-3} soft repulsion that models the electrostatic or magnetic interparticle forces, we show that an "onion-like" density distribution will develop within the monolayer. For a sufficiently large average density, two-dimensional phase transitions (freezing from liquid to hexatic, and melting from solid to hexatic) should be observable in a radially stratified structure. Furthermore, the analysis allows us to conclude that, while the activity may be too weak to allow direct detection of such induced Marangoni flows, it is relevant as a collective effect in the emergence of the experimentally observable spatial structure of phase coexistences noted above. Finally, the relevance of these results for potential experimental realizations is critically discussed.Comment: 11 page

    Patterns Formation in Drying Drops of Blood

    Full text link
    The drying of a drop of human blood exhibits coupled physical mechanisms, such as Marangoni flow, evaporation and wettability. The final stage of a whole blood drop evaporation reveals regular patterns with a good reproducibility for a healthy person. Other experiments on anaemic and hyperlipidemic people were performed, and different patterns were revealed. The flow motion inside the blood drop is observed and analyzed with the use of a digital camera: the influence of the red blood cells (RBCs) motion is revealed at the drop periphery as well as its consequences on the final stage of drying. The mechanisms which lead to the final pattern of the dried blood drops are presented and explained on the basis of fluid mechanics in conjunction with the principles of haematology. The blood drop evaporation process is evidenced to be driven only by Marangoni flow. The same axisymetric pattern formation is observed, and can be forecast for different blood drop diameters. The evaporation mass flux can be predicted with a good agreement, assuming only the knowledge of the colloids mass concentration.Comment: 1 page + conference APS 2011 (1 movie for the gallery + 1 movie for ArXiv

    Evaporating pure, binary and ternary droplets: thermal effects and axial symmetry breaking

    Get PDF
    The Greek aperitif Ouzo is not only famous for its specific anise-flavored taste, but also for its ability to turn from a transparent miscible liquid to a milky-white colored emulsion when water is added. Recently, it has been shown that this so-called Ouzo effect, i.e. the spontaneous emulsification of oil microdroplets, can also be triggered by the preferential evaporation of ethanol in an evaporating sessile Ouzo drop, leading to an amazingly rich drying process with multiple phase transitions [H. Tan et al., Proc. Natl. Acad. Sci. USA 113(31) (2016) 8642]. Due to the enhanced evaporation near the contact line, the nucleation of oil droplets starts at the rim which results in an oil ring encircling the drop. Furthermore, the oil droplets are advected through the Ouzo drop by a fast solutal Marangoni flow. In this article, we investigate the evaporation of mixture droplets in more detail, by successively increasing the mixture complexity from pure water over a binary water-ethanol mixture to the ternary Ouzo mixture (water, ethanol and anise oil). In particular, axisymmetric and full three-dimensional finite element method simulations have been performed on these droplets to discuss thermal effects and the complicated flow in the droplet driven by an interplay of preferential evaporation, evaporative cooling and solutal and thermal Marangoni flow. By using image analysis techniques and micro-PIV measurements, we are able to compare the numerically predicted volume evolutions and velocity fields with experimental data. The Ouzo droplet is furthermore investigated by confocal microscopy. It is shown that the oil ring predominantly emerges due to coalescence
    • …
    corecore