154 research outputs found

    Regional microstructural organization of the cerebral cortex is affected by preterm birth.

    Get PDF
    Objectives: To compare regional cerebral cortical microstructural organization between preterm infants at term-equivalent age (TEA) and healthy full-term newborns, and to examine the impact of clinical risk factors on cerebral cortical micro-organization in the preterm cohort. Study design: We prospectively enrolled very preterm infants (gestational age (GA) at birth\u3c32 \u3eweeks; birthweight\u3c1500 \u3eg) and healthy full-term controls. Using non-invasive 3T diffusion tensor imaging (DTI) metrics, we quantified regional micro-organization in ten cerebral cortical areas: medial/dorsolateral prefrontal cortex, anterior/posterior cingulate cortex, insula, posterior parietal cortex, motor/somatosensory/auditory/visual cortex. ANCOVA analyses were performed controlling for sex and postmenstrual age at MRI. Results: We studied 91 preterm infants at TEA and 69 full-term controls. Preterm infants demonstrated significantly higher diffusivity in the prefrontal, parietal, motor, somatosensory, and visual cortices suggesting delayed maturation of these cortical areas. Additionally, postnatal hydrocortisone treatment was related to accelerated microstructural organization in the prefrontal and somatosensory cortices. Conclusions: Preterm birth alters regional microstructural organization of the cerebral cortex in both neurocognitive brain regions and areas with primary sensory/motor functions. We also report for the first time a potential protective effect of postnatal hydrocortisone administration on cerebral cortical development in preterm infants

    MR diffusion changes in the perimeter of the lateral ventricles demonstrate periventricular injury in post-hemorrhagic hydrocephalus of prematurity

    Get PDF
    OBJECTIVES: Injury to the preterm lateral ventricular perimeter (LVP), which contains the neural stem cells responsible for brain development, may contribute to the neurological sequelae of intraventricular hemorrhage (IVH) and post-hemorrhagic hydrocephalus of prematurity (PHH). This study utilizes diffusion MRI (dMRI) to characterize the microstructural effects of IVH/PHH on the LVP and segmented frontal-occipital horn perimeters (FOHP). STUDY DESIGN: Prospective study of 56 full-term infants, 72 very preterm infants without brain injury (VPT), 17 VPT infants with high-grade IVH without hydrocephalus (HG-IVH), and 13 VPT infants with PHH who underwent dMRI at term equivalent. LVP and FOHP dMRI measures and ventricular size-dMRI correlations were assessed. RESULTS: In the LVP, PHH had consistently lower FA and higher MD and RD than FT and VPT (p\u3c.050). However, while PHH FA was lower, and PHH RD was higher than their respective HG-IVH measures (p\u3c.050), the MD and AD values did not differ. In the FOHP, PHH infants had lower FA and higher RD than FT and VPT (p\u3c.010), and a lower FA than the HG-IVH group (p\u3c.001). While the magnitude of AD in both the LVP and FOHP were consistently less in the PHH group on pairwise comparisons to the other groups, the differences were not significant (p\u3e.050). Ventricular size correlated negatively with FA, and positively with MD and RD (p\u3c.001) in both the LVP and FOHP. In the PHH group, FA was lower in the FOHP than in the LVP, which was contrary to the observed findings in the healthy infants (p\u3c.001). Nevertheless, there were no regional differences in AD, MD, and RD in the PHH group. CONCLUSION: HG-IVH and PHH results in aberrant LVP/FOHP microstructure, with prominent abnormalities among the PHH group, most notably in the FOHP. Larger ventricular size was associated with greater magnitude of abnormality. LVP/FOHP dMRI measures may provide valuable biomarkers for future studies directed at improving the management and neurological outcomes of IVH/PHH

    The duration of intrauterine development influences discrimination of speech prosody in infants.

    Get PDF
    AbstractAuditory speech discrimination is essential for normal language development. Children born preterm are at greater risk of language developmental delays. Using functional near‐infrared spectroscopy at term‐equivalent age, the present study investigated early discrimination of speech prosody in 62 neonates born between week 23 and 41 of gestational age (GA). We found a significant positive correlation between GA at birth and neural discrimination of forward versus backward speech at term‐equivalent age. Cluster analysis identified a critical threshold at around week 32 of GA, pointing out the existence of subgroups. Infants born before week 32 of GA exhibited a significantly different pattern of hemodynamic response to speech stimuli compared to infants born at or after week 32 of GA. Thus, children born before the GA of 32 weeks are especially vulnerable to early speech discrimination deficits. To support their early language development, we therefore suggest a close follow‐up and additional speech and language therapy especially in the group of children born before week 32 of GA

    The Developing Human Connectome Project: typical and disrupted perinatal functional connectivity

    Get PDF
    The Developing Human Connectome Project (dHCP) is an Open Science project which provides the first large sample of neonatal functional MRI (fMRI) data with high temporal and spatial resolution. This data enables mapping of intrinsic functional connectivity between spatially distributed brain regions under normal and adverse perinatal circumstances, offering a framework to study the ontogeny of large-scale brain organisation in humans. Here, we characterise in unprecedented detail the maturation and integrity of resting-state networks (RSNs) at term-equivalent age in 337 infants (including 65 born preterm). First, we applied group independent component analysis (ICA) to define 11 RSNs in term-born infants scanned at 43.5-44.5 weeks postmenstrual age (PMA). Adult-like topography was observed in RSNs encompassing primary sensorimotor, visual and auditory cortices. Among six higher-order, association RSNs, analogues of the adult networks for language and ocular control were identified, but a complete default mode network precursor was not. Next, we regressed the subject-level datasets from an independent cohort of infants scanned at 37-43.5 weeks PMA against the group-level RSNs to test for the effects of age, sex and preterm birth. Brain mapping in term-born infants revealed areas of positive association with age across four of six association RSNs, indicating active maturation in functional connectivity from 37 to 43.5 weeks PMA. Female infants showed increased connectivity in inferotemporal regions of the visual association network. Preterm birth was associated with striking impairments of functional connectivity across all RSNs in a dose-dependent manner; conversely, connectivity of the superior parietal lobules within the lateral motor network was abnormally increased in preterm infants, suggesting a possible mechanism for specific difficulties such as developmental coordination disorder which occur frequently in preterm children. Overall, we find a robust, modular, symmetrical functional brain organisation at normal term age. A complete set of adult-equivalent primary RSNs is already instated, alongside emerging connectivity in immature association RSNs, consistent with a primary-to-higher-order ontogenetic sequence of brain development. The early developmental disruption imposed by preterm birth is associated with extensive alterations in functional connectivity

    Early childhood bilingualism: effects on brain structure and function [version 2; peer review: 2 approved]

    Get PDF
    Growing up in a bilingual environment is becoming increasingly common. Yet, we know little about how this enriched language environment influences the connectivity of children’s brains. Behavioural research in children and adults has shown that bilingualism experience may boost executive control (EC) skills, such as inhibitory control and attention. Moreover, increased structural and functional (resting-state) connectivity in language-related and EC-related brain networks is associated with increased executive control in bilingual adults. However, how bilingualism factors alter brain connectivity early in brain development remains poorly understood. We will combine standardised tests of attention with structural and resting-state functional magnetic resonance imaging (MRI) in bilingual children. This study will allow us to address an important field of inquiry within linguistics and developmental cognitive neuroscience by examining the following questions: Does bilingual experience modulate connectivity in language-related and EC-related networks in children? Do differences in resting-state brain connectivity correlate with differences in EC skills (specifically attention skills)? How do bilingualism-related factors, such as age of exposure to two languages, language usage and proficiency, modulate brain connectivity? We will collect structural and functional MRI, and quantitative measures of EC and language skills from two groups of English-Greek bilingual children - 20 simultaneous bilinguals (exposure to both languages from birth) and 20 successive bilinguals (exposure to English between the ages of 3 and 5 years) - and 20 English monolingual children, 8-10 years old. We will compare connectivity measures and attention skills between monolinguals and bilinguals to examine the effects of bilingual exposure. We will also examine to what extent bilingualism factors predict brain connectivity in EC and language networks. Overall, we hypothesize that connectivity and EC will be enhanced in bilingual children compared to monolingual children, and each outcome will be modulated by age of exposure to two languages and by bilingual language usage

    Interpretation of DTI parameters in the neonatal brain

    Get PDF

    Task-based fMRI investigation of the newborn brain: sensorimotor development and learning

    Get PDF
    Human brain development relies upon the interaction between genetic and environmental factors, and the latter plays a critical role during the perinatal period. In this period, neuronal plasticity through experience-dependent activity is enhanced in the sensory systems, and drive the maturation of the brain. While plasticity is essential for maturation, it is also a source of vulnerability as altered early experiences may interact with the normal course of development. This is particularly evident in infants born preterm, who are prematurely exposed to a sensory-rich environment, and at risk or neurodevelopmental disorders. In keeping with the somatosensory system being at a critical period for development during late gestation, sensorimotor disorders, such as cerebral palsy, are more common in preterm compared with full-term born infants. It is therefore important to understand the normal trajectory of sensorimotor development and how this may be moulded by early sensory experiences. It is well acknowledged that the sensorimotor cortex is topographically organised so that different body parts map to a specific location within the cortex and this map is generally referred to as the ``homunculus". Although the somatotopy has been well characterised in the mature brain, it remains unknown when this organisation emerges during development. Animal studies hints that functional cortical maps might emerge across the equivalent period to the third trimester of human gestation, nevertheless there is currently no evidence. Therefore, I first investigated the topography of the preterm somatosensory cortex in a group of newborn infants. In this purpose I used fMRI and automated robotic tools and measured the functional responses to different sensory simulations (delivered to the mouth, wrists and ankles). The results provide evidence that it is possible to identify distinct areas in the somatosensory cortex devoted to different body parts even in the preterm brain supporting the presence of an immature \textit{homunculus}. Next, I wanted to investigate how activity and development in the sensorimotor system are influenced by experience. Experience-dependent plasticity is the basis of learning (e.g. adaptive behaviour), which is observed in newborn infants. Associative learning in particular has been widely investigated in infants, however, the underlining neuronal processes have previously been poorly understood. To study the neural correlates of associative learning in newborn infants, I developed and used a classical conditioning paradigm in combination with robot-assisted fMRI. The results confirm that associative learning can occur even at this early stage of life and with non-aversive stimuli. More importantly, I could observe learning-induced changes in brain activity within the primary sensory cortices, suggesting that such experience can shape cortical circuitry and is likely to influence early brain development.Open Acces

    Hippocampus, Amygdala, and Thalamus Volumes in Very Preterm Children at 8 Years: Neonatal Pain and Genetic Variation

    Get PDF
    Altered hippocampal morphology and reduced volumes have been found in children born preterm compared to full-term. Stress inhibits neurogenesis in the hippocampus, and neonatal stress/noxious stimulation in rodent pups are associated with long-term alterations in hippocampal volumes. We have previously shown reduced cortical thickness and cerebellar volumes in relation to more exposure to pain-related stress of neonatal invasive procedures in children born very preterm. We have reported targeted gene-by-pain environment interactions that contribute to long-term brain development and outcomes in this population. We now aim to determine whether exposure to pain-related stress (adjusted for clinical factors and genotype) differentially impacts regional structures within the limbic system and thalamus, and investigate relationships with outcomes in very preterm children. Our study included 57 children born very preterm (<32 weeks GA) followed longitudinally from birth who underwent 3-D T1 MRI neuroimaging at ∼8 years. Hippocampal subfields and white matter tracts, thalamus and amygdala were automatically segmented using the MAGeT Brain algorithm. The relationship between those subcortical brain volumes (adjusted for total brain volume) and neonatal invasive procedures, gestational age (GA), illness severity, postnatal infection, days of mechanical ventilation, number of surgeries, morphine exposure, and genotype (COMT, SLC6A4, and BDNF) was examined using constrained principal component analysis. We found that neonatal clinical factors and genotypes accounted for 46% of the overall variance in volumes of hippocampal subregions, tracts, basal ganglia, thalamus and amygdala. After controlling for clinical risk factors and total brain volume, greater neonatal invasive procedures was associated with lower volumes in the amygdala and thalamus (p = 0.0001) and an interaction with COMT genotype predicted smaller hippocampal subregional volume (p = 0.0001). More surgeries, days of ventilation, and lower GA were also related to smaller volumes in various subcortical regions (p < 0.002). These reduced volumes were in turn differentially related to poorer cognitive, visual-motor and behavioral outcomes. Our findings highlight the complexity that interplays when examining how exposure to early-life stress may impact brain development both at the structural and functional level, and provide new insight on possible novel avenues of research to discover brain-protective treatments to improve the care of children born preterm
    corecore