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Abstract 
Late fetal and early neonatal life is a period of rapid neurological development, with 

dramatic structural and functional changes unfolding to create the complex neuronal 

networks of the mature brain. Disruptions to early life experience can have profound effects 

on the developing brain, with alterations to network formation that can have life-long 

impacts. A common adverse early life condition in humans is premature birth, which often 

results in neurodevelopmental deficits. This project develops a mouse model of prematurity 

to investigate the impact that being born early has on the development of the sensorimotor 

networks. It finds, using measures of behavioural development, and cellular and synaptic 

maturation of neurons that the developing brain is remarkably robust. If an animal can 

survive the initial dramatic changes of being born, the sensory networks of the brain 

continue to develop along their typical trajectory. This project further explores the impact of 

premature birth on sensory network development, with a neuroimaging experiment in 

human preterm infants. A somatosensory stimulation based functional magnetic resonance 

imaging paradigm is established to investigate evoked responses in the preterm infant brain. 

In vivo neuroimaging techniques offer valuable information about the functional 

development of neuronal networks. This project also utilises a newly established pan-

cortical calcium imaging technique to investigate the postnatal development of cortical 

activity in mice. Recordings of both endogenously generated and sensory stimulated activity 

in healthy and sensory deprived conditions are made at high spatial and temporal 

resolution. It finds complex patterns of spontaneous activity across the cortex that have 

intracortical coordination, that are independent of sensory experience in the first postnatal 

week. Somatosensation is active from the first postnatal day and the developmental 

trajectory of evoked cortical activity is mediated by early life sensory experience. This thesis 

details an investigation into the development of the sensorimotor networks in both healthy 

and adverse early life environments, discovering both the vulnerability and robustness of 

their functional development.  
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The brain is a complex structure that has evolved to effectively process the information that 

is received from the external environment. Major sensory inputs from the environment - 

visual, auditory, and tactile - all drive neural networks that are specialised to receive and 

process incoming sensory stimulation. These sensory pathways have a structure that is 

evolutionarily conserved across mammalian species, where sensory stimulation is detected 

at the periphery by sensory receptors and this information ascends to the cortex via 

subcortical structure such as the thalamus (Hodos and Butler, 1997; Kaas, 2008). Sensory 

information from the environment is often complex and multimodal, and processing of this 

information is required for an animal to navigate the world they live in. The brain does not 

come fully formed and capable of such processing abilities. Interpretation of incoming 

sensory signals must be learned and calibrated, a process that requires the organisation and 

cooperation of many cells (Kostović and Jovanov-Milosević, 2006). Disruptions to sensory 

experience early in life can have a profound effect on the development of functional 

neuronal circuits in the brain (Wiesel and Hubel, 1963). Critical periods of heightened 

sensitivity, which in normal circumstances are a key period of anatomical and physiological 

plasticity are times when developing neural circuits are particularly vulnerable to disruptions 

in sensory experience (Hensch, 2004).  

 

1.1 Primary sensory networks 

The basic structure of the neocortex is conserved across mammalian species. It is comprised 

of horizonal layers and is organised vertically into functional columns of 300-600µm in 

diameter (Mountcastle, 1997). Afferent neurons from the thalamus project into the cortex 

synapsing mainly into layer IV. There are connections between layers within cortical 

columns and corticocortical connections between cortical regions (Purves et al., 2001a). The 

primary sensory regions of the cortex have organised structures which are important for 

faithful representation of incoming sensory information in the mature system (Gilbert and 

Wiesel, 1992; Diamond, Petersen and Harris, 1999; Carl C H Petersen, 2007; Tsukano et al., 

2017).  

In rodents, tactile stimulation provided by whisker deflection is an important source of 

sensory information about the environment around them. Because of this it is a prominently 
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used model for investigating the development of sensory networks. Whisker tactile 

information ascends the pathways from the mechano-gated sensory neurons of the 

trigeminal nerve which initially synapse in the trigeminal nuclei of the brainstem. The 

topographical organisation of the whiskers is preserved in the brainstem in ‘barelettes’ 

(Veinante and Deschênes, 1999). From here information travels to the ventral posterior 

medial (VPM) nucleus of the thalamus, which is also topographically organised to preserve 

the whisker pattern, in ‘barreloids’ (Brecht and Sakmann, 2002). The final stage of this 

pathway is thalamocortical projections primarily into layer IV of the cortex which form 

discrete clusters known as ‘barrels’ (Woolsey and Van der Loos, 1970). This topographical 

organisation means that spatially adjacent whiskers are represented in adjacent regions 

throughout the sensory pathway, providing a faithful representation of whisker organisation 

in the cortex.  The thalamocortical projections form excitatory connections with spiny 

stellate neurons (Fox, 1995). The cell bodies of these cortical neurons form a wall around 

the thalamocortical projection clusters, sending dendrites into the barrel centre to form 

synaptic connections (Benshalom and White, 1986; Feldmeyer, 2012). This topographical 

organisation through the sensory pathway allows sensory information from individual 

whiskers to precisely input into the cortex (Carl C H Petersen, 2007).  

The other sensory systems, such as visual and auditory pathways have a similar periphery to 

central layout. Sensory information is received through the sensory organs - the retina and 

the cochlear - and information ascend the pathway relaying through subcortical regions and 

terminating in the primary sensory cortex (Malmierca, 2003; Seabrook et al., 2017). As with 

the whisker related organisation of the somatosensory system the visual and auditory 

pathways have topographical organisation throughout (Dräger, 1975; Purves et al., 2001c). 

This sensory pathways organisation, from peripheral sensory receptors to sensory cortex via 

subcortical relays is conserved across mammalian species  including the human (Kaas, 2008).  

 

1.2 Development of the sensory networks 

 Structural changes to the developing sensory networks  

The highly organised sensory networks, which faithfully represent information from the 

external environment, develop during prenatal and early postnatal life. In humans the last 
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trimester of gestation is a period of rapid neurological development, with profound 

molecular, structural and function changes occurring within the brain (Kostović and 

Jovanov-Milosević, 2006). At 30 weeks gestation the brain is only 50% of its term-birth 

weight (Guihard-Costa and Larroche, 1990), with a 4-5 fold increase in the size of the cortex 

(Hüppi et al., 1998; Kapellou et al., 2006) and dramatic development of gyri (Dubois et al., 

2008) occurring in this final gestation period. During this period there is extensive migration 

of thalamocortical afferents (Allendoerfer and Shatz, 1994; Kostović and Judas, 2010; Krsnik 

et al., 2017), which are the primary subcortical input into the cortical plate. Alongside the 

migration of thalamocortical fibres there is a rapid increase in the number of synapses in the 

cortex and dendritic arborisation of cortical neurons (Molliver, Kostović and van der Loos, 

1973; Huttenlocher and Dabholkar, 1997). 

 

Key neurodevelopmental processes are conserved across mammalian species but the 

specific timing of these developmental events can be different (Clancy et al., 2007). Rodents 

are born in a relatively immature state compared to humans (Clancy, Darlington and Finlay, 

2001). Many of the events described above, which occur during the third trimester in 

humans, happen postnatally in rodents. The majority of cortical cell migration in humans 

happens by the end of the second trimester (Kostović and Jovanov-Milosević, 2006), 

whereas in rodents this is still occurring during the early neonatal period (Fox, 1995; Inan 

and Crair, 2007). Excitatory cortical neurons are born in the ventricular zone (Gilmore and 

Herrup, 1997) and begin to migrate to the cortical plate between embryonic day (E) 13-17 in 

the mouse (Figure 1.1). Inhibitory cortical neurons are born in the subventricular zone and 

migrate to the cortical layer, during late embryonic and early postnatal life in rodents 

(Kirischuk, Luhmann and Kilb, 2014). The cortical plate differentiates into the 6 layers seen 

in the mature cortex in an inside to outside sequence (Angevine and Sidman, 1961). Layer VI 

excitatory neurons are born first and migrate to the pial surface, with more superficial layer 

neurons being born later and migrate through these lower layers of more mature cells. 

There are two transient neuron population that are born during this early development, 

Cajal-Retzius (CRNs) and subplate neurons (SPNs). CRNs migrate to the pial surface which 

will eventually become layer I (Kirischuk, Luhmann and Kilb, 2014) and SPNs are located 

below layer VI (Patrick O Kanold and Luhmann, 2010). These neuron populations both 

facilitate the migration and organisation of cortical neurons during layer formation 
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(Luhmann et al., 2016a), along with radial glia (Barry, Pakan and McDermott, 2014). In 

rodents, layers V and VI are present at birth and cortical migration is complete by the end of 

the first postnatal week, where both excitatory and inhibitory neurons are present across 

the cortical layers. As in humans once neurons reach the cortical plate they undergo 

maturation, in the form of cellular morphology changes such as dendritic arborisation 

(Catalano, Robertson and Killackey, 1996; Baloch et al., 2009), a dramatic increase in 

synaptic density (Ashby and Isaac, 2011) and changing molecular composition (Sanderson 

and Murphy, 1981). In rodents the thalamocortical projections begin to innervate late in 

gestation (embryonic day 18) and continue into the neonatal period (Molnár and 

Blakemore, 1995), occurring simultaneously with cortical layer migration. These 

thalamocortical projections are topographically organised before they reach their 

destination in layer IV of the cortex (Erzurumlu and Jhaveri, 1990; Auladell et al., 2000), with 

further refinement of their organisation in the postnatal period (Martini et al., 2018). 
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Figure 1.1 Schematic of the late prenatal and postnatal cellular development of the rodent cortex. 
This is a simplified schematic of the major events occurring during cortical layer development during 
late embryonic and early postnatal life in the rodent. Cajal-Retizus cells and subplate neurons are 
transient early developing neuron populations that facilitate the development of the cortical layers. 
Excitatory cortical neurons are born in the ventricular zone (VZ) and migrate by radial glia to the 
cortical plate. Inhibitory neurons are born in both the subventricular zone (SVZ) and the marginal zone 
(MZ) and migrate tangentially. Once neurons reach their destination in the cortical plate the undergo 
maturation processes such as the formation of projections and synaptic connections.  
Modified from Luhmann et al., 2016. 
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 Developmental behavioural changes 

The different timings of structural development of the sensory systems in rodent and 

humans is observed in behavioural development as well.  Rodents are born functionally 

blind and deaf with their eyes and ear canal closed, with active sensing in these networks 

does not beginning until the second postnatal week (Froemke and Jones, 2011; Jing Shen 

and Colonnese, 2016). The somatosensory network develops earlier, with withdrawal 

responses to tactile stimulation being found at embryonic day 13 (Schiffman and McHale, 

1990) and cortical activity following tactile whisker stimulation present at birth (Mitrukhina 

et al., 2015b). Tactile sensory experience continues to develop postnatally with active 

whisking also fully emerging in the second postnatal week (Landers and Philip Zeigler, 2006). 

This development in sensory perception ability allows for the development of more complex 

behaviours that integrate sensory experience (Arakawa and Erzurumlu, 2015a). During the 

first few postnatal weeks a variety of behaviours develop that allow pups to interact with 

their environment and interpret the world around them (Fox, 1965).  

Active sensing in humans begins before birth. Responses to tactile stimulation are observed 

from as early as 8 weeks of gestation (Montagu, 1986) and responses to auditory 

stimulation are observed in-utero from 19 weeks gestation (Hepper and Shahidullah, 1994). 

Cortical activity in response to external stimulation is observed in preterm infants in all 

primary sensory networks (Majnemer, Rosenblatt and Riley, 1990; Eldredge and Salamy, 

1996; Taylor, Boor and Ekert, 1996; Smit et al., 2000; Chipaux et al., 2013)(Kaminska et al., 

2017) indicating that active sensing in humans is present before term birth.  

 

 Activity-dependent neonatal brain development  

The developmental changes in the immature brain are a multistage process. Initially 

genetically-driven molecular cues guide the formation of the embryonic brain, signalling 

migration and maturation of neurons (Yamamoto and López-Bendito, 2012). This results in 

the early parcellation of different brain regions, formation of gross network connections and 

activity in the brain begins. Initially this activity is intrinsically generated by neurons and 
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begins to refine the network connections (Blankenship and Feller, 2010). This leads to a 

rapid maturation of the neuronal networks, organising them so they are prepared to 

process information from the external environment. This leads to the final stage of the 

developmental process, where once the sensory pathways are established enough external 

sensory information generates activity in the network that further refines its organisation 

(Leighton and Lohmann, 2016). This pre-sensory maturation and organisation of the 

networks by spontaneously generated activity means that effective processing in the cortex 

occurs as soon as external sensory information starts (Zhang et al., 2012; Ko et al., 2013). 

These stages of development do not happen in discrete periods but are overlapping and 

influence each other. Spontaneously occurring activity is known to have a role in gene 

regulation (Buonanno and Fields, 1999) and molecular signalling  during neuron migration in 

the developing brain (Ming et al., 2001; Tang, Dent and Kalil, 2003; Hanson and Landmesser, 

2004; Yamada et al., 2010). Once active sensing begins, spontaneous activity does not 

disappear, although its patterns and origins transition to a more mature state around the 

period of active sensation (Colonnese et al., 2010; Minlebaev et al., 2011).  

 

 Generation of spontaneous activity  

Early brain activity is vitally important for the formation of neural circuits (Spitzer, 2006; 

Kirkby et al., 2013; Luhmann et al., 2016a). Spontaneously generated activity in the sensory 

networks begins embryonically in rodents (Jones, Jones and Paggett, 2001; Yamamoto and 

López-Bendito, 2012; Maccione et al., 2014) and continues into early postnatal life, 

increasing with development (Luján, Shigemoto and López-Bendito, 2005). Spontaneous 

activity has been defined as neuronal activity that occurs in the absence of external 

stimulation (Colonnese and Khazipov, 2012). Recordings of the immature cortex during 

restful behaviour have revealed spontaneously occurring activity, in both rodents and 

humans (Colonnese and Khazipov, 2012). This endogenously generated spontaneous activity 

has been reported throughout the developing sensory networks. In the visual and auditory 

networks coordinated waves of activity are generated in the periphery by the retina 

(Torborg and Feller, 2005) and the cochlear (Wang et al., 2015). This activity propagates 

through the sensory pathways to the primary sensory cortex (Ackman, Burbridge and Crair, 

2012; Babola et al., 2018).  
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Investigations into the generation of spontaneous activity in the somatosensory network 

have found it to be not as clear cut as the visual and auditory systems. Some of the 

spontaneous activity observed in the somatosensory cortex is generated by twitch 

movements of the limbs and whiskers (Khazipov, Sirota, Leinekugel, Gregory L Holmes, et 

al., 2004; Tiriac et al., 2012; Akhmetshina et al., 2016). These small fast movements, known 

as myoclonic twitches, occur during sleep and are generated by spontaneous activity bursts 

in the spinal cord (Khazipov, Sirota, Leinekugel, Gregory L Holmes, et al., 2004). They are 

discrete movements, sometimes of individual joints and whiskers and others a combination 

of a few simultaneously (Tiriac et al., 2012; Blumberg et al., 2013). These movements result 

in activation of the somatosensory cortex in discrete areas related to the area of the body 

moved.  Not all of the spontaneous activity observed in the somatosensory cortex is 

stimulated by movement. Mizuno et al., 2018 found that 89% of activity in layer IV of the 

barrel cortex was not correlated with whisker movements, suggesting that most 

spontaneous activity observed in the barrel cortex in the neonate is endogenously driven. In 

addition silencing of the whisker pad results in a suppression but not totally elimination of 

barrel cortex spontaneous activity (J.-W. Yang et al., 2009), meaning that some of this 

activity is generated in the central network such as the thalamus or cortex rather than the 

sensory periphery (Khazipov, Sirota, Leinekugel, Gregory L Holmes, et al., 2004; Adelsberger, 

Garaschuk and Konnerth, 2005).  

 

 Spatial pattern of spontaneous activity  

The endogenously generated activity in the sensory networks is coordinated, with non-

random spatial and temporal patterns (Thivierge, 2009). These precise patterns of activity 

play an important role in the development of the sensory systems which require a highly 

organised structure to effectively process sensory information (Kirkby et al., 2013). In the 

visual and auditory networks the endogenously generated activity propagates in waves, and 

these wave patterns are conserved throughout the pathways (Ackman, Burbridge and Crair, 

2012; Babola et al., 2018). In the somatosensory network activity is more discrete, with 

bursts of activity often confined to functional cortical columns (J.-W. Yang et al., 2009; 

Mizuno et al., 2018). These difference in patterns of activity are reflective of the continuous 
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retinotopic and tonotopic organisation of the visual and auditory networks and the more 

discrete topographical map of the somatosensory system (Carl C H Petersen, 2007; 

Rothschild, Nelken and Mizrahi, 2010; Garrett et al., 2014). These coordinated patterns of 

activity are important for the development of organised functional networks, as alternations 

to the patterns of early spontaneous activity results in disrupted formation of the sensory 

pathways. For example, using genetic manipulations to disrupt the pattern of spontaneous 

activity in the visual pathway during the postnatal week results in imprecise mapping in the 

visual cortex  (Cang et al., 2005a), and suppression of spontaneous activity in the 

somatosensory cortex resulted in insufficient development of both thalamocortical (Yamada 

et al., 2010) and callosal projections (C.-L. Wang et al., 2007). 

Rodents can move at birth and produce coordinated wakeful movements as well as 

myoclonic twitches (Tiriac, Del Rio-Bermudez and Blumberg, 2014). These wakeful 

movements result in large amounts of somatosensory stimulation which do not have the 

localised and organised spatial activity restrictions that spontaneous generated twitching 

does (Dooley and Blumberg, 2018). This spatially-unrestricted activity would be expected to 

disrupt the formation of the organised topographic map of the somatosensory cortex. It was 

discovered that this was prevented by a unique inhibitory gating mechanism in the 

subcortical areas of the pathway that prevents this tactile experience from reaching the 

immature cortex  (Tiriac et al., 2012; Tiriac and Blumberg, 2016; Dooley and Blumberg, 

2018). This further emphasises the importance of patterned spontaneous activity in the 

developing sensory pathways, with tight control of activity being a characteristic of these 

systems.  

This spontaneous activity is coordinated and optimised to organise and stabilise the initial 

topographical organisation of the incoming thalamocortical projections in the primary 

sensory cortical regions (Colonnese and Phillips, 2018). As well as migrations of 

thalamocortical projections during this early postnatal period interhemispheric connections 

are also forming. One of the major interhemispheric connections is through the corpus 

callosum. These projections are developing during the first postnatal week in rodents, 

crossing the midline at P3 and penetrating the grey matter of the opposite hemisphere by 

P6 (C.-L. Wang et al., 2007). After entering the cortex they continue further refinement, with 

visual cortex connections reaching a mature arrangement at around P12, the time of eye 
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opening  (Ivy and Killackey, 1981). The migration and organisation of these projections also 

requires spontaneous cortical activity (C.-L. Wang et al., 2007; Tagawa, Mizuno and Hirano, 

2008; Suárez et al., 2014). It was discovered that that the symmetry of hemispheric activity 

was more important that absolute activity levels (Suárez et al., 2014), suggesting that, as 

with development of thalamocortical connections, the organisation of activity is vitally 

important to the formation of callosal projections.  

In the mature brain interhemispheric connections are important in the transferring and 

integrating of lateralised sensory inputs (Ebner and Myers, 1962; Shuler, Krupa and 

Nicolelis, 2001, 2002) and mediate the coordination of spontaneous activity between 

hemispheres (Mohajerani et al., 2010). Even while these pathways are forming, during the 

first postnatal week, it has been found to have an important role in spontaneous activity 

patterns in the sensory cortex, with lesions of the callosal fibres during the first postnatal 

week resulting in increased activity bilaterally in the primary somatosensory cortex 

(Marcano-Reik and Blumberg, 2008).  

 

 Temporal pattern of spontaneous activity  

As well as spatial organisation to the activity in the developing brain different temporal 

patterns have been discovered. Early network oscillations (ENOs) are present in the 

developing sensory cortex (Yang et al., 2009; Koepsell et al., 2010; Li et al., 2017), including 

spindle bursts and gamma oscillations (Figure 1.2). Gamma oscillations are spatially 

restricted to functional cortical columns occurring in short bursts of around 100-300ms 

every 10-30s (Khazipov, Minlebaev and Valeeva, 2013). Spindle bursts have a longer 

duration of around 0.5-3s and occur spontaneously about every 10s, and synchronising 

activity across multiple columns at once (Yang et al., 2016). These oscillation patterns have 

also been recorded in the developing thalamus (Minlebaev et al., 2011; Yang et al., 2013). In 

addition to these discrete activations of the sensory cortices, more wide spread propagation 

of  spontaneous activity travelling across the cortex has been reported (Garaschuk et al., 

2000; Adelsberger, Garaschuk and Konnerth, 2005; Namiki et al., 2013; Ackman, Zeng and 

Crair, 2014). Long lasting oscillations have been recorded in the developing cortex, that 

occur less frequently and have a larger spatial extent (Allène et al., 2008; Yang et al., 2009). 
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These different temporal patterns of activity are thought to play unique roles in neuronal 

network development. In the somatosensory cortex gamma oscillations are confined to 

individual barrels  and are thought to facilitate to organisation of the cortical layers, 

whereas spindle bursts spread over several different barrels and play a role in the 

coordination of activity between them (Suchkov, Sharipzyanova and Minlebaev, 2018). 
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Figure 1.2 Examples of early network oscillations (ENOs) in the neonatal rodent cortex. 
In vivo spontaneous activity recorded by multielectrode array implanted in the rat somatosensory 
cortex during the first postnatal week. Showing examples of spindle bursts (S) and gamma oscillations 
(g). (ii) is an expanded timescale showing period from the red box.  
Modified from (Yang et al., 2009). 
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 Activity in the immature human brain 

The temporal patterns of activity found in the immature brain result in discontinuous burst-

like recordings  (Dreyfus-Brisac and Larroche, 1971; M. André et al., 2010).  From EEG 

recordings in preterm infants this bursting pattern of activity in the immature brain has also 

been found in humans (Vanhatalo and Kaila, 2006a). Activity bursts that appear to be 

homologues for spindle bursts, called delta brushes, have been identified in the preterm 

brain, (Lamblin et al., 1999; Vanhatalo et al., 2002; M André et al., 2010; Kaminska et al., 

2017). Furthermore, gamma oscillations have recently been discovered in the auditory 

cortex of preterm infants (Kaminska et al., 2017). EEG recordings in preterm infants 

revealed that spontaneous activity is present at 24 weeks gestation, and continues through 

the third trimester becoming more temporally synchronised with development (Vanhatalo 

and Kaila, 2006b). This activity is particularly prominent over primary sensory cortical 

regions around 30 weeks, which is when thalamocortical projections are entering the cortex 

(Vanhatalo and Kaila, 2006b). As with the gross structural maturation of the developing 

brain, the transient, coordinated activity patterns in later fetal development in humans 

appears to parallel the development occurring in rodents during early postnatal life 

(Kostović and Jovanov-Milosević, 2006).  

 

 Developmental transition to mature activity states 

Activity patterns found in the immature brain are grossly different to those occurring in 

adults (Cirelli and Tononi, 2015). The discontinuous activity that is characteristic of the 

developing brain (Figure 1.2) is not present in adults, where it has been replaced by a 

continuous oscillating brain state. The activity in the developing brain is not thought to just 

be a underdeveloped version of the adult, but appears to be specialised to facilitate the 

formation of organised sensory systems (Colonnese and Phillips, 2018). The immature 

network is arranged to amplify spontaneously generated activity, so even weak signals can 

reach the cortex – with this amplification process reducing around the emergence of active 

sensing (Colonnese et al., 2010). The local neuron populations in the sensory cortices are 

highly synchronised in their activation early in development, but activity becomes more 
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sparse over the neonatal development period (Peyman Golshani et al., 2009; Rochefort et 

al., 2009). Dense firing patterns are poor at discriminating incoming sensory information 

(Smith et al., 2015) but are primed for transmitting topographical information to the cortex 

with enough signal to induce plasticity and formation of the network (Colonnese and 

Phillips, 2018). 

As the neuronal networks mature, they go from a pre-sensory state where this organisation 

and formation of networks is occurring to actively sensing and processing external 

information.  There is a transitionary period where the immature activity patterns change, 

and mature ones begin to emerge. In rodents this transition occurs in the second postnatal 

week (Colonnese et al., 2010). In the visual network responses to light stimulation begin 

around P10 and occur alongside spontaneous retinal wave activity, and then as full active 

vision emerges at P12 the background activity in the visual cortex becomes more 

continuous, with low amplitude slow-wave activity present between activity bursts 

(Colonnese et al., 2010; J. Shen and Colonnese, 2016) (Figure 1.3).In the somatosensory 

cortex a similar transition occurs a couple of days before active whisking begins (Minlebaev 

et al., 2011). The dense firing patterns of local neuron populations also transitions around 

this time, with firing becoming more sparse, as found in the mature cortex (Peyman 

Golshani et al., 2009; Rochefort et al., 2009). During dense firing patterns adjacent neurons 

fire simultaneously and with maturation less coordinated firing of local neurons is found 

(Figure 1.4). These dense firing patterns and thought to be suited to amplify incoming 

signals that may be weak in the immature network (Colonnese et al., 2010), with sparse 

cellular firing thought to be more efficient at processing information (Olshausen and Field, 

2004) and so more suited to the requirements of the mature sensory cortex. During this 

transition period spontaneous cortical activity goes from being driven by thalamocortical 

inputs to intracortical origins (Minlebaev et al., 2011), which exhibit bistable network 

activity,  resulting  up and down states (Colonnese, 2014). 

The transition from discontinuous to continuous activity patterns is also found in the 

developing human. Over the preterm period cortical activity recordings reveal an increase in 

frequency of activity resulting in shorter periods of quiescence. Around term (~40 weeks 

gestation) activity patterns stop bursting and become more continuous (Tolonen et al., 

2007), maturing to adult like patterns over the first few postnatal months (Vanhatalo and 
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Kaila, 2006b). Although active sensation develops earlier in humans than rodents and is 

present in preterm infants the cortex, is thought to still be poorly connected for sensory 

inputs and continues to develop during the third trimester (Pihko and Lauronen, 2004; 

Tolonen et al., 2007; Fabrizi et al., 2011). Cross cortical connections are also developing 

during this period (Kostović and Jovanov-Milošević, 2006) meaning this transitionary activity 

period in the human infant is occurring alongside the structural  formation of neuronal 

networks as in rodents.  

 

Figure 1.3 Development of discontinuous to continuous activity in the rodent neonatal cortex 
a) Example local field potential recordings from the neonatal rat visual cortex (Shen and Colonnese, 
2016). With periods of rapid burst activity (and blue) and low frequency activity (red) highlighted. 
b) A schematic of the activity patterns recorded at each age. At P4 activity is discontinuous, with rapid 
early network oscillations followed by network silence. By P10 there is some low frequency activity 
between bursts and by P16 activity is continuous with slow-wave activity interjected with rapid bursts 
of activity.  
Figure modified from (Shen and Colonnese, 2016). 
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Figure 1.4 Dense to sparse spontaneous firing patterns of local neurons in the visual cortex 
a) Images from in vivo two-photon calcium imaging (OGB-1 dye) in layer 2/3 of the visual cortex, and 
b) baseline corrected calcium transient wave forms of delineated neurons - showing activity patterns 
from neuron population before and after eye opening.  
Before opening these neurons usually fire simultaneously, but after their firing becomes more 
independent (sparse). 
Modified from (Rochefort et al., 2009). 
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 Critical periods of development 

During development there are certain windows of time when neuronal network formation is 

particularly sensitive to sensory experience and a heightened level of plasticity is present; 

these time windows are known as critical periods (Berardi, Pizzorusso and Maffei, 2000; 

Feldman, 2009). These critical periods have been demonstrated in all the major sensory 

modalities, across a variety of species  (Banks, Aslin and Letson, 1975; Fox, 1992; Issa et al., 

1999; Hensch, 2004; Barkat, Polley and Hensch, 2011). Critical periods are associated with 

dramatic changes in synaptic connectivity and function (Hensch, 2005; Feldman, 2009). This 

heightened plasticity, often in the form of long-term potentiation (LTP) facilitates the rapid 

formation of neuronal networks occurring during these early developmental periods. There 

is a critical period in the barrel cortex  during the first postnatal week, where it has been 

demonstrated that LTP in thalamocortical afferents projecting into layer IV is at its peak at 

P3 and reduces around P8 (M. C. Crair and Malenka, 1995). It is at the end of this period that 

spontaneous activity is transitioning from immature to mature patterns (Minlebaev et al., 

2011), and shortly after this active whisking begins (Gordon and Stryker, 1996). The barrel 

cortex layer II/III critical period is later, in the second to third postnatal week (Stern, 

Maravall and Svoboda, 2001; Wen and Barth, 2011; Erzurumlu and Gaspar, 2012), along 

with a critical period for connectivity between these two layers (Maravall, Stern and 

Svoboda, 2004). In the rodent visual network, the initial postnatal days are a pre-sensory 

period where vision is not active. During this period spontaneous activity is vital for the 

initial formation of the retinotopic map in the visual cortex (Cang et al., 2005b; Huberman, 

Speer and Chapman, 2006). Shortly after eye opening plasticity in the visual cortex increases 

and a critical period for ocular dominance occurs, which is a sensory experience dependent 

process (Gordon and Stryker, 1996; Hooks and Chen, 2007). It appears that the critical 

periods for sensory cortex development are multi levelled and different mechanisms 

mediate them.  

One cellular mechanism known to play a role in critical periods of development is a 

phenomena known as silence synapses (Wu, Malinow and Cline, 1996). These are 

glutamatergic synapses that contain NMDA receptors (NMDAr) but not AMPAr. NMDAr 
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have a magnesium molecule blocking them at resting membrane potential and so are not 

readily activated (Nowak et al., 1984). Activation of these synapses during the critical period 

results in plasticity where AMPAr are inserted into the post synaptic membrane and these 

synapses become active (Liao, Hessler and Malinow, 1995; Isaac et al., 1997; Ashby and 

Isaac, 2011). The prolonged activity of spindle bursts occurring in the sensory cortices during 

development are thought to be ideal for activating NMDA only synapses and facilitating this 

unsilencing process (Colonnese and Phillips, 2018). This involvement of NMDAr in the critical 

periods of sensory development has been found across the sensory modalities - in the 

somatosensory (Schlaggar, Fox and O’Leary, 1993; M. C. Crair and Malenka, 1995; Iwasato et 

al., 2000) visual (Erisir and Harris, 2003), auditory (Feldman, Brainard and Knudsen, 1996) 

and olfactory cortex (Poo and Isaacson, 2007). To form synaptic connections dendrite and 

axons must migrate close enough to one another. Spontaneous synaptic activity plays a role 

in activation of NMDAr receptors in immature neurons and blocking NMDAr receptors 

during this period results in a dramatic reduction in dendritic arbour complexity (Andreae 

and Burrone, 2014). Alterations to the function of NMDAr during this critical period has 

been found to disrupt the formation of the organised arrangement of the barrel cortex, 

both in the thalamocortical projections cortex (Iwasato et al., 2000) and the within cortex 

columnar organisation  (Fox et al., 1996). Silent synapses are present during the critical 

period of thalamocortical maturation in the barrel cortex during the first postnatal week, 

but have disappear by P8/9, which coincides with the closure of the critical period and the 

loss of heightened LTP (Isaac et al., 1997). The critical period of ocular dominance formation 

in the visual cortex has been found to be mediated by the function of NMDAr (Fagiolini et 

al., 2003) and that the maturation of silent synapses can govern the duration of this period 

(Huang et al., 2015).  

This evidence indicates that activity during critical period of development is vitally important 

for the successful formation of sensory networks. During these critical periods the neuronal 

networks are primed for changes and this makes them particularly vulnerable to insult. 

Seminal work by Wiesel and Hubel in the 1960’s discovered that deprivation of visual 

experience during the critical period of development disrupted the formation of the visual 

cortex structure and function (Wiesel and Hubel, 1963). Subsequently this has been shown 

across the sensory modalities (Hensch, 2004), and the impact of this altered sensory 
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experience has the most impact during these critical periods of development. In the 

somatosensory pathway, whisker damage at birth affected the development of the 

topographical organisation of the cortex but if this damage occurred at P5 development 

happened normally (Weller and Johnson, 1975). It is not just in controlled sensory 

deprivation that these altered early life experiences occur. Changes to cortical activity in the 

developing cortex have been found in a mouse model of autism (Fragile X syndrome) 

(Berzhanskaya et al., 2016). In the pre-sensory period the visual cortex was hypo-excitable 

with reduced spontaneous firing, and although onset of active visual responses happened at 

the expected time, altered sensory-evoked functional activity in the mature cortex was 

found. Neonatal hypoxic-ischemic (HI) injury has also been found to reduce the plasticity 

during critical periods of development in both the visual (Failor et al., 2010) and 

somatosensory cortices (Ranasinghe et al., 2015). Neonatal HI injury also depressed 

spontaneous activity in the developing rodent cortex, and reduced spindle burst events 

(Ranasinghe et al., 2015). Interestingly, EEG recordings in preterm infants have found a 

similar reduction in background activity, which has been used as a marker for neonatal brain 

injury (Wikström et al., 2012; Ranasinghe et al., 2015). In humans the rapid formation of 

sensory networks is occurring in late gestation (Kostović and Jovanov-Milosević, 2006), and 

a common clinical occurrence is premature birth, resulting in infants being outside of the 

uterus during this important developmental period (Harrison and Goldenberg, 2016). Many 

preterm infants develop sensory neurological deficients (Davis et al., 2001; Suellen M. 

Walker et al., 2009; Hellström, Smith and Dammann, 2013; Wickremasinghe et al., 2013). 

These changes in neuronal network development in response to clinically relevant 

environmental changes makes the investigation of the mechanisms underlying them an area 

of great interest.  

 

1.3 Project outline 

Late fetal and early neonatal life is a period of rapid neurological development with many 

structural and functional changes unfolding (Gilmore and Herrup, 1997; Kostović and 

Jovanov-Milosević, 2006; Molnár et al., 2006; Wang et al., 2010; Erzurumlu and Gaspar, 

2012). This period is primed for the formation and maturation of neuronal networks, which 
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are required in the mature animal for processing and interpreting information from the 

world around them. Neuronal activity has a vital role in this development, with disruptions 

to it in the maturing system having consequence for the functional connectivity of neuronal 

networks later in life (Spitzer, 2006; Blankenship and Feller, 2010; Kirkby et al., 2013; 

Leighton and Lohmann, 2016; Luhmann et al., 2016a). These early life disruptions can come 

from neonatal environmental changes, such as specific sensory deprivations or dramatic 

whole organism changes such as premature birth. These altered early life conditions can 

result in changes to neurodevelopmental trajectories on a number of scales, including; 

changes to synapse formation and cellular morphology (Burd et al., 2010a; Chen, Bajnath 

and Brumberg, 2015) that can lead to altered neuronal network activity (Ranasinghe et al., 

2015; Sieben et al., 2015), that may play a role in the altered behaviours found in animals 

who experience altered early life environments (Toso et al., 2005; Arakawa and Erzurumlu, 

2015a). 

This project investigates functional development of the sensory networks in both human 

preterm infants and neonatal mice, in both healthy and adverse early life environments. The 

differential developmental time scales between these species (Clancy et al., 2007) means 

that the early neonatal period of rodent development is informative of the preterm human 

brain. Neonatal mice in both health, premature and sensory deprived conditions are used to 

investigate the specific roles of early life experience on the development of sensory 

perception and functional network connectivity. A mouse model of prematurity is used to 

investigate developmental changes at a behaviour, cellular and synaptic level. Pan-cortical 

calcium imaging is utilised to investigate the functional activity of the developing mouse 

brain in both healthy and sensory deprived conditions, to explore the developmental 

trajectories of endogenously generated and sensory stimulated activity and the role that 

evoked sensory experience plays.  

Naturally premature birth seems to be a uniquely human experience (Phillips, Abbot and 

Rokas, 2015a). Animals models of clinical pathologies offer a wealth of experimental 

exploration that is not possible in the human infant, but the ideal way to explore the impact 

of preterm birth on human neurodevelopment is with direct investigation of the human 

brain. This project further explores the impact of preterm birth on the development of the 

sensory networks with a neuroimaging study in preterm infants. It utilises the high spatial 
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resolution of functional magnetic resolution to explore the evoked activity in the central 

network in response to somatosensory stimulation.  
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 Thesis organisation  

This thesis is divided into three studies that are presented in individual chapters. 

 

Chapter 2 documents the development of a mouse model of premature birth. It investigates 

the neonatal development of the sensorimotor networks following this altered early life 

experience, using behavioural assays, electrophysiological investigation of cortical neuron 

functional maturation, and the structural development of thalamocortical projections in the 

somatosensory cortex. It seeks to investigate the impact that being born early has on the 

developing brain.  

 

Chapter 3 documents the development of an in-vivo pan-cortical calcium imaging technique 

in neonatal mice. It investigates the development of cortical activity during the first 9 

postnatal days, in both healthy and sensory deprived animal. Both spontaneously occurring 

and sensory stimulated activity is recorded, and the developmental trajectory of their 

spatiotemporal patterns are explored. Deprivation of early life somatosensory experience 

allows the investigation of which aspects of this functional development are experience-

dependent. 

 

Chapter 4 documents the development of a functional imaging paradigm in preterm human 

infants, to explore the development of the somatosensory network using evoked-sensory 

experience. Tactile stimulation was delivered during functional magnetic resonance image 

acquisition carried out on preterm infants at term equivalent age during natural sleep. The 

study both investigated the feasibility of this protocol for preterm infants and validates the 

sensory stimulation paradigm in a healthy adult population.  
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2 Mouse Model of Prematurity 
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2.1 Introduction 

 Clinical prematurity  

Prematurity is a major global health problem (Harrison and Goldenberg, 2016). It is defined 

as births before 37 weeks of gestation and occurs in around 10% of pregnancies, and is 

associated with an increased risk of mortality and morbidity (Blencowe, Cousens, et al., 

2013). Medical advancements in recent decades means the rate of mortality has declined 

(Ananth et al., 2005; Iams et al., 2008; Saigal and Doyle, 2008), with infants as young as 22 

week surviving (Ishii et al., 2013; Rysavy et al., 2015). While morbidity rates have also seen 

some decline (Wilson-Costello et al., 2007; Hack and Costello, 2008; Moore et al., 2012; 

Radesky, 2017), they are still a major problem, with many preterm infants developing 

neurological sequelae and life-long disabilities (Allen, 2008; Kidokoro et al., 2014; Soleimani, 

Zaheri and Abdi, 2014; Dusing and Tripathi, 2015; Ortinau and Neil, 2015; Ream and 

Lehwald, 2018) - with estimates that around half of all childhood disabilities are an outcome 

of preterm birth (Glass et al., 2015). There are sex differences in outcomes of preterm birth, 

with boys being born prematurely more often and having worse long-term outcomes (Zeitlin 

et al., 2002; Ingemarsson, 2003; Kent et al., 2012; Shim et al., 2017; Lorente-Pozo et al., 

2018). Cerebral palsy (CP) is a group of disorders that affect movement and posture (Bax et 

al., 2005) and is one of the major neurodevelopmental complications in preterm infants, as 

are other motor deficits (Allin et al., 2006). Sensory processing changes are seen following 

preterm birth, with impairments to hearing (Davis et al., 2001) and vision (Hellström, Smith 

and Dammann, 2013) being common, as well as changes in somatosensory processing (Bart 

et al., 2011; Chorna et al., 2014; Cabral et al., 2016). 

The severity of prematurity is subcategorised, into extremely preterm (<28 weeks 

gestation), very preterm (28-<32 weeks) and moderate to late preterm (32-<37 weeks) 

(Quinn et al., 2016).  The severity of outcomes is correlated with gestation length at birth, 

with infants born earlier generally having poorer outcomes (Himpens et al., 2008; Stoll et 

al., 2010; Sansavini et al., 2011; Blencowe, Lee, et al., 2013; Ishii et al., 2013). However, 

even late preterm infants (Morse et al., 2009; Osrin, 2010; Teune et al., 2011; Dusing and 

Tripathi, 2015) and infants with mild presentation in infancy (Prempunpong et al., 2018) are 

more likely to have adverse outcomes than full-term infants. This includes initial outcomes 
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such as increased mortality (Bulut, Gürsoy and Ovalı, 2016), risk of respiratory distress 

(Colin, McEvoy and Castile, 2010; Consortium on Safe Labor et al., 2010; Natile et al., 2014), 

rates of sepsis (Wang et al., 2004; Melamed et al., 2009) and occurrence intraventricular 

haemorrhage (Bastek et al., 2008; Melamed et al., 2009). Late preterm infants are also more 

likely to develop long-term developmental morbidities, including motor delays  (Woythaler, 

McCormick and Smith, 2011; Odd et al., 2013) and increased occurrence of cerebral palsy 

(Petrini et al., 2009; Hirvonen et al., 2014), and higher rates of asthma (Goyal, Fiks and 

Lorch, 2011; Liu et al., 2014; Zhang et al., 2018). Several studies have found that children 

born in the late-preterm period have poorer cognitive and academic performance (Chyi et 

al., 2008; Morse et al., 2009; Baron et al., 2011; Chan et al., 2016), and even some 

alterations in structural development of the brain have been found, with smaller tissue 

volumes during childhood being reported (Brumbaugh et al., 2016).  

The mechanisms behind these long-term developmental abnormalities is a complex issue, as 

prematurity is often accompanied with comorbidities which could contribute. It is thought 

that intrauterine infection is the cause of up to 40% of spontaneous preterm deliveries 

(Lamont, 2003; Bastek, Gómez and Elovitz, 2011; Agrawal and Hirsch, 2012; Galinsky et al., 

2013). This condition exposes the fetus to an adverse environment before being born early, 

and this has been shown to have implications for neurological development (Malaeb and 

Dammann, 2009; Burd, Balakrishnan and Kannan, 2012; Mwaniki et al., 2012; Cordeiro, 

Tsimis and Burd, 2015; Hagberg et al., 2015). Another common cause of preterm birth are 

placental pathologies  (Morgan, 2016), which can compromise the supply of oxygen to the 

fetus and has also been implicated in long-term neurodevelopmental problems (Gagnon, 

2003) 

When an infant is born early many of its organ systems, such as the cardiovascular (Seri, 

2001; Bennet et al., 2012; Brew, Walker and Wong, 2014; Fyfe et al., 2014; Wu, Azhibekov 

and Seri, 2016) and respiratory (Fraser, Walls and McGuire, 2004; Moss, 2006; Jones, 2009) 

systems, are underdeveloped and are not yet ready to sustain the infant outside the uterus. 

As a result, postnatal hypoxic and ischemic episodes are common in preterm infants and can 

have detrimental effects on the development of the brain (Logitharajah, Rutherford and 

Cowan, 2009; Scafidi et al., 2009; Gopagondanahalli et al., 2016). The immune system is also 



43 
 

underdeveloped meaning neonatal infection is more likely (Melville and Moss, 2013), which 

is linked to adverse neurodevelopmental outcomes (Mwaniki et al., 2012). 

The mechanisms underlying neurodevelopmental changes in preterm infants are not fully 

understood - due to the complex nature of the premature situation, the quickly changing 

structure of the brain during the preterm period, and the limited experimental exploration 

possible in human infants. Each preterm infant is unique in their early life experience and 

their long-term outcomes. It may be that different components of the preterm experience 

are contributing to the neurodevelopmental disruptions in different ways.  

 

 Animal models of prematurity  

Animal models are a valuable experimental resource when trying to elucidate the 

mechanisms behind clinical neurodevelopmental injury such as in preterm birth. The timings 

of these key neurodevelopmental processes are different between species (Clancy et al., 

2007), with many of the events occurring in the third trimester of gestation in humans 

happening postnatally in rodents. Cortical neuron migration is mostly completed during 

fetal development in humans (Kostović and Jovanov-Milošević, 2006) but formation of 

cortical layers occurs postnatally in rodents (Kirischuk, Luhmann and Kilb, 2014) – with the 

peak in brain growth occurring during the final gestational weeks and in the second 

postnatal week for rodents (Dobbing and Sands, 1979). Once cortical neurons reach their 

destination they undergo maturation, such as axonal and dendritic growth (Semple et al., 

2013). Subcortical projections, such as thalamocortical neurons develop at a similar time, 

again being different in humans and rodents (Molnár and Blakemore, 1995; Kostović and 

Jovanov-Milošević, 2006). The formation of synapses spans a long period, starting 

embryonically and continuing into postnatal life, in both (Huttenlocher and Dabholkar, 

1997; Li et al., 2010; Pressler and Auvin, 2013; Semple et al., 2013). There are also 

differences in key timings for the emergence of functional and behavioural aspects of brain 

development. Rodents are born blind and deaf and do not develop active sensing until the 

second postnatal week of life (Froemke and Jones, 2011; Jing Shen and Colonnese, 2016). 

Whereas cortical processing of visual and auditory stimulation is present in preterm human 

infants (Pryds, Greisen and Trojaborg, no date; Eldredge and Salamy, 1996), with continued 



44 
 

development of acuity during the postnatal period (Catford and Oliver, 1973; Litovsky, 

2015). 

Previous animal models of prematurity have considered these developmental timing 

differences and the common comorbidities in human preterm birth. Documented models 

include those based on: intrauterine infection and inflammation (Rousset et al., 2008), 

intrauterine and neonatal hypoxic injuries (Brockmann et al., 2013), and premature birth in 

isolation (Calmus et al., 2011). A variety of species have been used including rats (Rousset et 

al., 2006), mice (Toda et al., 2013; McCarthy et al., 2018), rabbits (Gorenberg et al., 2005; 

Balakrishnan et al., 2013), guinea pigs (Shaw et al., 2016), sheep (Penning et al., 1994; Back 

et al., 2012), pigs (Sangild et al., 2013; Andersen et al., 2016)and non-human primates (Dieni 

et al., 2004; Loeliger et al., 2006; Verney et al., 2010). These models result in a variety of 

neurodevelopmental changes on a structural, functional and behavioural level.  

Impairments in the development of sensory motor behaviours during the neonatal period 

have been found in a variety of animal models. Intrauterine acute oxygen deprivation was 

found to impair lamb behaviour immediately following birth, including time to standing and 

to suckling (Castillo-Melendez et al., 2013). Movement and suckling impairments were also 

found in P1 rabbits following intrauterine infection (Balakrishnan et al., 2013), and 

prematurely born pigs took longer to stand and walk after birth compared to term controls 

(Andersen et al., 2016). In rodents a variety of reflexive behaviours that integrate 

sensorimotor abilities develop during the first 3 postnatal weeks (Fox, 1965). The 

development of these behaviours have been found to be delayed following intrauterine 

infection in both mice (Chahboune et al., 2009a) and rats (Toso et al., 2005). Although 

neonatal hypoxic ischemic (HI) injury was not found to impair the development of these 

early behaviours (Brockmann et al., 2013; Feather-Schussler and Ferguson, 2016) it does 

reduce locomotion and exploratory behaviour in adolescent rats (Girard et al., 2009).  

Gross morphological changes to the brain have been found in animal models of preterm 

comorbidities. Reductions in brain weights have been found following acute neonatal HI 

injury (Brockmann et al., 2013), chronic neonatal hypoxia (Fagel et al., 2006) and 

intrauterine infection (X. Wang et al., 2007a; Rousset et al., 2008). Further investigation 

found that these models of insult resulted in reductions in cortical volume, including 

neonatal HI injury in rodents (Failor et al., 2010; Brockmann et al., 2013) and intrauterine HI 
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injury (Dean et al., 2013) and  infection (Dean et al., 2011) in sheep. Chronic neonatal 

hypoxia in mice resulted in a reduction in cortical volume at P11, which was found to be a 

result of reduced cortical neuron count (Fagel et al., 2006). Interestingly, following the 

return to normoxic conditions at P11 this cortical deficit recovered, due to increased 

neurogenesis, demonstrating remarkable resilience of the developing brain to injury. In 

many studies no change in cortical neuron numbers were reported but changes in the 

morphology of cells were. Intrauterine infection was found to reduce the complexity of the 

dendritic arbour of cortical excitatory neurons and the number of spines on them in both 

rabbits (Balakrishnan et al., 2013) and mice (Burd et al., 2010a). A reduction in dendrites 

and spines was also found following intrauterine hypoxia in sheep (Dean et al., 2013) and 

neonatal HI injury in rats (Ranasinghe et al., 2015). Prematurely born rhesus monkeys, who 

underwent neonatal care for the first few weeks of life had altered cortical neuron synapse 

morphology but no change in the density (Bourgeois, Jastreboff and Rakic, 1989). 

Changes to cell morphology can result in changes to their function. Early brain activity 

recordings (EEG) in preterm infants have been found to be predictive of 

neurodevelopmental out comes in humans (Wikström et al., 2012; Hüning et al., 2018). 

Changes to cortical function have been found in several animal studies of moderate 

neonatal HI injury at P2. At the end of the first postnatal week a reduction in gamma 

oscillation in the prefrontal cortex was found (Brockmann et al., 2013). During the first 2 

postnatal weeks a reduction in background cortical activity was also found (Ranasinghe et 

al., 2015) which was not found in the same model at 4 weeks old (Failor et al., 2010), 

suggesting that this is a transient functional change occurring during a critical period of 

cortical development. It was also discovered that HI injury impaired plasticity during critical 

development periods in both the visual (Failor et al., 2010) and somatosensory cortex 

(Ranasinghe et al., 2015). Even if these activity changes are transient their presence during 

the critical periods of functional network development could result in long-term deficits in 

sensory function.  

All the rodent models described here used comorbidities associated with prematurity during 

the early neonatal period to mimic insults in human preterm infants. Few rodent studies 

have investigated the long-term developmental outcomes following birth before term. One 

of the challenges of animal models of prematurity is survival. Spontaneously occurring 
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preterm birth is uncommon in species other than humans (Rubens et al., 2014; Phillips, 

Abbot and Rokas, 2015b) and when premature birth is induced experimentally, long-term 

offspring survival is reduced (Loctin and Delost, 1983). However, a successful induction of 

prematurity with viable offspring in mice has been achieved and long-term investigation of 

neurodevelopment carried out (Toda et al., 2013). This study finds an acceleration of 

thalamocortical development in the somatosensory pathway which is an interesting 

contrast to deficits in development found in many comorbidity models. The specific role of 

being born early in the premature infant in isolation of other pathophysiological changes is 

an interesting and relatively underexplored topic.   

 

 Aims 

This study uses a similar approach to Toda et al., 2013., using a progesterone antagonist to 

induce preterm birth, in isolation of other comorbidities. Toda et al., 2013 induce early birth 

in ICR mice by subcutaneous injection of 150µg of RU486 on embryonic day 17. This study 

uses the same drug quantity and delivery method to induce early birth in C57/BL6 mice. Due 

to the differing gestation lengths of different mouse strains (Murray et al., 2010) the earliest 

possible induction for C57/BL6 mice will be trialled to maximise the degree of prematurity in this 

study.  

This study asks the question of how being born early affects the development of the 

mammalian brain, with focus on the development of the sensorimotor networks which are 

in a particularly vulnerable developmental stage during the preterm period. This will help to 

tease apart the complex situation of prematurity and shed light on how the altered 

environment of being outside of the uterus before fetal development is complete affects 

the development of the brain.  As previously discussed late preterm infants and those with 

mild clinical presentations can still develop long-term neurological alterations. By exploring 

an animal model of exclusive prematurity it may be possible to identify the mechanisms that 

alter neurological development in these situations. When a human clinical situation is as 

complex and varied as the preterm infant experience it is valuable to understand the 

contribution of different factors as this can allow a more individualised approach to each 

unique situation. There is relatively little evidence about the contribution of being born 
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early on the development of the mammalian brain and so this study will be a valuable 

contribution to the existing body of work in the field of animal models of prematurity.   
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2.2 Methods  

All procedures were carried out in accordance with UK Home Office guidelines set out in the 

Animals (Scientific Procedures) Act 1986. 

 

 Breeding 

C57BL/6 adult mice (over 8 weeks old) were purchased from Harlan Laboratories (UK).  They 

were reared in normal 12hr light/dark cycles, with ad libitum access to food and water. 

Timed breeding was carried out, where estrus states of females was assessed by vaginal 

cytology (Byers et al., 2012), and if found at a receptive stage they were housed with a male 

for 1 hour (9-10am). Successful mating was confirmed by the presence of a vaginal plug 

(Behringer et al., 2016). This time point was assigned post-conception (PC) day 0. All 

experiments were time matched to this timepoint. (timeline of experimental procedures is 

outlined in Figure 2.1) 

 

 Preterm induction 

A drop in progesterone levels precedes parturition in rodents (Pasqualini, Kincl and Sumida, 

1985). As such, artificially reducing progesterone signalling, by blocking the activation of 

progesterone receptors, can be used to induce preterm birth. RU489 (also known as 

mifepristone), a competitive progesterone receptor antagonist, has previously been used in 

mice for this purpose (Dudley et al., 1996), and the dose used in this study is based on these 

findings.  

A subcutaneous injection of RU486 (Bio-Techne Ltd, UK) (150μg dissolved in 100μl 2% DMSO 

(Sigma-Aldrich) in sesame oil (Sigma-Aldrich)) was administered on PC 17d + 9hrs to induce 

preterm birth. Vehicle control dams received a 100μl subcutaneous injection of sesame oil 

at the same time point. Dams were monitored by video surveillance (H.264 DVR - RF 

Concepts Ltd. UK) with an IR sensitive camera (RF Concepts Ltd, UK) from the time of 

injection to birth of her litter, to assess precise gestation length and monitor wellbeing. 6-12 

hours after birth the number of pups were counted, dead pups removed, and live pups 
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weighed (TS120, OHAUS, Switzerland). Then mother and surviving pups were returned to 

the standard unit house, in a Tecniplast (UK) 1284 conventional cage. Pups were weighed 

daily, and an assessment of developmental stage was made based on the Jackson 

Laboratory’s (USA) ‘Appearance by Age’ chart. 

An additional cohort of natural births was collected. Time breeding was carried out and at 

PC17d + 9hrs dams were placed under video surveillance, for precise recording of gestation 

length. 6-12 hours after birth the number alive and dead of pups were counted, and living 

pups were weighed. Offspring from these litters were not further assessed. 

In alternative animal models of prematurity sex differences in outcomes have been seen 

(Johnston and Hagberg, 2007; J.D.L. Bergeron et al., 2013; Shaw et al., 2016), so in all 

experiments male and female offspring were used, and sex was considered in statistical 

analysis. Sex was visually assessed by anogenital distance (Greenham and Greenham, 1977). 
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Figure 2.1 Timeline of preterm mouse model experimental procedure  
a) Preterm birth was induced at post-conception day (PC) 17 resulting in births on PC18. Control 
animals received a vehicle at PC17 and term litters were born between PC19 and PC21.  
b) Pups underwent experiments during the first 3 postnatal weeks (before weaning). Weights were 
taken daily from PC20 to PC40. In the same animals, developmental behaviours were recorded daily 
from PC20-35 and open field exploration investigated at PC40. In animals from other litters 
electrophysiological (EPhys) recordings were taken on PC22d, 23d, 24d and 28d, and brain fixed for 
histological investigation on PC22, 23 and 24. Both preterm and control groups were collected for all 
experimental protocols.   
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 Electrophysiology  

 Solutions 

Details of the solutions used for whole cell patch clamp solutions are below. Compounds 

were purchased from Sigma-Aldrich Ltd (UK), Fisher scientific UK Ltd (UK) and Hellobio (UK). 

 

2.2.3.1.1 Artificial cerebrospinal fluid  

Compound Concentration (mM) 

NaCl 119 

KCl 2.5 

Glucose 11 

NaH2OPO4 1 

NaHCO3 26.5 

MgSO4 9/1.3* 

CaCl2 2.5 

*Slicing/recording concentrations 

Saturated in 95% oxygen and 5% carbon dioxide 
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2.2.3.1.2 Current clamp internal solution 

Compound Concentration (mM) 

KMeSO4 130 

NaCl 8.5 

HEPES 5 

EGTA 0.5 

Mg-ATP 4 

Na-GTP 0.3 

Adjusted to pH 7.25 using concentrated KOH, and osmolarity of 285 mOsM 

Junction potential = 9mV 

 

2.2.3.1.3 Voltage clamp internal solution 

Compound Concentration (mM) 

CsMeSO4 135 

NaCl 8 

HEPES 10 

BAPTA 5 

Mg-ATP 4 

Na_GTP 0.3 

QX314 5 

Adjusted to pH 7.25 using concentrated CsOH, and osmolarity of 285 mOsM 
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 Slice preparation  

Brain slice experiments were carried out on PC 22-24d and 28d. Pups were killed by UK 

Home Office Schedule 1 procedure (cervical dislocation).  Brains were rapidly dissected out 

and placed in ice cold slicing ACSF. Slices were collected to preserve long range 

thalamocortical projections (Agmon and Connors, 1991). The rostral portion of the brain 

was removed with a scalpel blade at a 45-550 angle (reducing angle with PC age), the right 

hemisphere was removed at a 900 angle to the first cut, and any remaining cerebellum was 

removed (Figure 2.2). The rostral cut surface of the brain was superglued into the vibratome 

cutting chamber (Leica VT1200 vibratome, Leica Microsystems, UK) and submerged in cold 

slicing ACSF, with the pial surface facing the blade. The top portion of the brain was 

discarded (1000µm at PC 22-24d and 1500µm at PC 28d) and 5 slices of 400µm were cut and 

collected in cold cutting ACSF. Slices were transferred into recording ACSF at room 

temperature and allowed to rest for at least 1 hour before experiments and were usually 

viable for 6-8 hours.  

 

Figure 2.2 Orientation of gross brain dissection for slice preparation  
First the rostral portion of the brain was dissected away at 45-550 from the midline (a) and then the 
right hemisphere was dissected away at 900 to this initial cut (b).  
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 Whole cell recordings 

Whole cell patch clamp recordings were made in Stellate neurons in layer IV of the barrel 

cortex. Slices were placed in the recording chamber of a Zeiss Axioskop microscope (Carl 

Zeiss Ltd, UK) and held into place with a slice anchor (Harvard Apparatus Ltd). Temperature 

has been shown to be important in both synaptic transmission (Hardingham and Larkman, 

1998) and intrinsic cellular states (Simkus and Stricker, 2002), so slices were perfused 

continuously with ACSF (using a MINIPULS 3 - Gilson U.K)  kept at 32±10C - using a single 

channel heat controller (TC-324B, Harvard Apparatus Ltd). 

The barrel cortex was visualised at low power (Zeiss 2.5x) magnification using infrared 

differential interference contrast (DIC) optics (Figure 2.3a). Patching was performed under 

high power (Olympus 40x) magnification, and stellate neurons were identified by their 

characteristic small, spherical shape (Figure 2.3b), and later confirmed by their 

electrophysiological properties.  
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Figure 2.3. Visualisation for whole cell patch clamp experiments  
(a) 2.5x magnification image of the barrel cortex. (b) 40x magnification of barrel cortex, with spiny 
Stellate neurons (sc) identified. 

 

Microelectrodes with a tip resistance of 3-6MΩ were made using borosilicate glass 

capillaries (Harvard Apparatus) pulled with a micropipette puller (Model P-87, Sutter 

Instrument Co.). Recordings were performed with a Multiclamp 700A amplifier (Molecular 

Devices, USA) and digitised with a Micro1401 data acquisition box (Cambridge Electronic 

Design Ltd, UK), and acquired using Signal (version 5 - Cambridge Electronic Design Ltd, UK). 

Signals were acquired at a 10kHz sampling rate, and were Bessel filtered at 4kHz. High 

quality recordings were confirmed by: a gigaohm seal achieved before breaking in and 

access resistance <25MΩ throughout the recording. 

Whole cell current clamp recordings were made with patch electrodes filled with current 

clamp intracellular solution (section 2.2.3.1.2). Recordings were made at resting membrane 

potential (RMP) and -70mV holding potential (before junction potential correction), which is 

close to RMP in mature stellate neurons (Fleidervish, Binshtok and Gutnick, 1998). A 

protocol of an injected hyperpolarisation current step (-0.05V, 500ms), followed by 18 

increasing (in amplitude) depolarising square wave pulses (0-0.36v in 0.02 steps, 500ms) 

was run on each cell. A separate depolarisation protocol, with fine increments (40 increasing 

ramp steps, with a change of 20mV over 100ms, start points from 0.01 to 0.21V) was used 

to determine the minimal current injection require to drive the membrane to threshold and 

fire an action potential (AP) (rheobase).  
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Voltage clamp recordings were made with patch electrodes filled with voltage clamp 

intracellular solution (section 2.2.3.1.3). 50μM picrotoxin (PTX) and 500nM tetrodotoxin 

(TTX) were added to the standard ACSF for these experiments, to block GABAA receptors 

and voltage-gated sodium channel current respectively.  Spontaneous miniature excitatory 

postsynaptic currents (mEPSCs) were recorded. AMPAr and NMDAr have differential 

likelihood of opening at different membrane potentials due to magnesium blocking NMDAr 

receptors at hyperpolarised membrane potentials (Nowak et al., 1984). By recording at both 

-70 and +40mV holding potential AMPAr and NMDAr mediated activity was isolated. These 

were recorded in 2 second sweeps, with a 50ms, 5mV pulse at the start to each, with 

alternation between the holding potential occurring every 60 sweeps, for approximately 200 

sweeps per holding potential per cell (minimum 130 sweeps).  

 

 Analysis  

Fast spiking interneurons are also present in the barrels and have similar morphological 

characteristics when visualised in this experimental protocol. They however have distinct 

firing patterns in response to depolarisation steps (Gibson, Beierlein and Connors, 2005; 

Daw, Ashby and Isaac, 2007), making it possible to identify them post hoc and eliminate 

them from the analysis pool.  

 

2.2.3.4.1 Current clamp recordings 

Current clamp recordings were analysed with custom software in Matlab R2015a 

(Mathworks, UK). Junction potential (Gorman and Murphy, 1949) was calculated and 

included in the analysis to adjust membrane potential calculations to the actual value.   

Passive membrane properties were measured from the hyperpolarisation step of the 

protocol (Figure 2.12a). Resting membrane potential (RMP) was calculated from the mean 

membrane voltage when no current injection was present at the start of the protocol.  Input 

resistance (Ri) was calculated using Ohm’s law (V = I x R), taking V from the steady state 

membrane potential change driven by the hyperpolarisation step (Figure 2.12a). The 

membrane time constant (tau) and sag were measured by fitting an exponential to the 
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membrane charging curve, with Ri used to guide its final value. Tau was defined as the point 

where the membrane potential reached 63% of this final value and sag is the difference 

between the voltage change estimated by the exponential fit and the actual membrane 

charge curve.  

An automated analysis script was used to detect all APs triggered by the depolarising 

current steps (peak voltage that occurred after a first derivative value of >30V/s). The first 

AP generated by each cell was used to analyse waveform properties. The first derivative of 

the waveform was calculated, and the maximal rise time was taken as the largest value 

(Figure 2.13d) and the threshold was designated as the point at which the rise time became 

greater than 11.25V/s (Figure 2.13b). The height of the waveform was the voltage change 

between the threshold and the peak of the waveform (Figure 2.13c), and the width was 

taken at half of the AP height (Figure 2.13e). As a measure of excitability, the total number 

of APs fired during the depolarisation protocol was calculated and normalised to the 

number of steps they were fired during (which step AP firing began varied between 

neurons).  

 

2.2.3.4.2 Miniature excitatory post-synaptic currents 

Voltage clamp recordings were analysed in Clampfit 10.5 (Molecular Devices, LLC). 

Templates of averaged event shape were created for both +40mV and -70mV recordings, 

based on two randomly selected data files. They were then tested on 10 additional random 

recordings, and manually checked to confirm they did not produce false positives or 

negatives. Then all traces were analysed with the software’s automated template search, 

which marks events that match the custom templates. This gave the number of events in 

the recording, and the amplitude (the change from baseline to peak) can be calculated for 

each event. 

 



58 
 

 Histology 

Brains were collected at PC 22-24d and 28d. Pups were killed by UK Home Office Schedule 1 

procedure (cervical dislocation).  Brains were dissected out and placed in 4% 

paraformaldehyde for 48hrs at 4oC. They were then transferred into PBS and stored at 4oC. 

 

 Cytochrome oxidase staining 

Whole brains were encased in low melting point agarose (2-3% in distilled water) block to 

provide stability while sectioning. Coronal sections were cut through the barrel cortex at 

50µm thickness (Leica VT1200 vibratome, Leica Microsystems, UK), and placed in PBS in a 24 

well plate (Greiner Bio-One, UK). Sections were washed a further two times in PBS for 5 

minutes, and then incubated in 1ml of Cytochrome stain (see below) for 36 hours in a 370C 

water bath. Sections were then rinsed twice in 0.1M Tris buffer (pH 8) (Sigma-Aldrich, UK), 

mounted on slides (Leica Microsystems, UK), left to air dry overnight, then cleared in 

Histoclear for 10 minutes (Sigma-Aldrich, UK) and then cover slipped (VWR, UK) using DPX 

(Sigma-Aldrich). 

 

Cytochrome Oxidase Stain 

 

DAB 3mg 

Cytochrome C 1.5mg 

Sucrose 225mg 

0.1M phosphate 

buffer 5ml 

All compounds were purchased from Sigma-Aldrich (UK). 

 

 Analysis 

Optical density of the cytochrome oxidase staining was measured to quantify barrel 

structural development. The coronal brain section where the hippocampus was first visible 
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was identified and the 1st and 6th section from this point were analysed. Images were 

captured on a contrast microscope (DM IRB – Leica Microsystems, UK) at 2.5x magnification, 

with a Nikon colour microscope camera (Nikon UK Limited), as 1600X1200 pixel TIFF files. 

Images were analysed using Fiji (ImageJ). Images were rotated so barrels were parallel to 

the top of the image, then inverted and smoothed using a mean filter at a five-pixel radius. 

A narrow rectangle was drawn across the 3 barrels and 2 septums (Figure 2.11d) and the 

pixel density plotted. In young animals the barrels are not visible (Figure 2.11c). The location 

of the ROI was determined using the pia surface and the hippocampus as landmarks and 

sections from older animals where the barrels were visible. The value at the peaks (barrels) 

and troughs (septums) of the plot were used in Equation 1, along with the mean pixel value 

of the whole slice (T) to give a ratio of barrel to septum optical density (BFI-CO) [adapted 

from (Toda et al., 2013)]. 

Equation 1.  BFI-CO = ((Barrel 1 + Barrel 2 + Barrel 3) / 3) – ((Septum 1 + Septum 2)/2) / T 

 

The width of the cortex was measured on the section where the hippocampus was first visible - from 
the pia surface to the corpus callosum at the outer edge of the hippocampus ( 

Figure 2.4).  

 
 
Figure 2.4 Measuring cortical thickness. 
The location cortical thickness measurements were taken 
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 Behaviour 

A series of behavioural tests - similar to those reported in  (Fox, 1965; Arakawa and 

Erzurumlu, 2015a; Feather-Schussler and Ferguson, 2016) - which are designed to assess 

motor and sensory development were carried out between PC 22-35d. The cohort includes 

20 pups in each group, from 6-7 litters, with 10-14 subjects being assessed at each time 

point, with balanced male and female participation. Testing was carried out at the same 

time each day, and light and noise levels were kept consistent. Subjects went through all 

behavioural assays in a set order and were then placed back in their home cage.  

 

 Righting reflex 

Pups were placed in a circular 20cm Pyrex staining dish on their back. The time taken to roll 

over and place all four paws on the surface was recorded. If this time exceeded 30 seconds 

the pup was righted by the experimenter - to conform to the specifications of the Home 

Office PPL 30/3108 – and was recorded as 30s. This was repeated twice each day. 

 Cliff avoidance 

Pups were placed with their head and forepaws over the edge of a 10cm high custom-made 

cliff drop (a flat surface with a 900 angle edge). The time taken to back away and turn 450 

from the edge was recorded. Again, PPL specifications allowed up to 30s to complete the 

task and if pups failed or fell off the apparatus a time of 30s was recorded. This was 

repeated twice each day. 

 

 Negative geotaxis  

Pups were placed head down on a custom made 450 slope, which was covered in fine mesh 

to allow some traction. Time taken to turn 1800 and face up the slope was recorded. Again, 

30s was allowed and if pups failed or fell off the apparatus a time of 30 seconds was 

recorded. This was repeated twice each day. 
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 Grasping reflex  

A thin steel rod (galvanised steel, 1mm diameter) was placed under the palmar surface of 

the forepaws and the response recorded. This behaviour was graded by the following 

system: No grasping = 0 points, bent digits = 1 point and full grasping = 2 points. If grasping 

was present the rod was slowly raised until the pup was stretched out with hind paws 

remaining on the surface. Whether the pup remained grasping was recorded (1 point for 

success). This was repeated for right and left paw twice each day. 

 

 Whisking behaviour  

Pups where observed for 60 seconds to detect the presence of whisking behaviour. This 

behaviour was graded by the following system: No whisker movement = 0 points, whisker 

twitching = 1 point and full whisking = 2 points. There were two 60s observation periods 

each day. 

 

 Whisker stimulation  

Pups were presented with manual whisker stimulation using a thin steel rod (galvanised 

steel, 1mm diameter) for 30 seconds at a 1Hz frequency across the entire whisker field - 

with care taken not to touch the face. Head movements in response to stimulation were 

counted. This stimulation was presented twice per day on left and right whisker fields.  

 

 Tactile stimulation 

Pups were presented with a tactile stimulation using a small plastic rod (3mm diameter), 

which was used to manually touch 7 points on their body (head, back, tail, forepaws and 

hind paws), 5 times each, in rotation. Twitching or withdrawal responses to each stimulation 

were counted.  
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 Open field 

At PC 40d (weaning age) pups were presented with an open field experiment. They were 

placed in a clear plastic 30x50x25cm (width x length x height) arena and left alone in the 

room to freely move for 6 minutes, whilst being recorded (Quickcam - Logitech, 

Switzerland). Subject movement was tracked using an open source Matlab toolbox 

(Autotyping, University of Pennsylvania). The first 60 seconds were discarded, allowing time 

for the experimenter to leave the room and for the mouse to acclimatise from being 

handled. The subsequent 5 minutes of open field movement were quantified, giving values 

for distance moved, average speed and a ratio of time spent in the outer 5cm and inner 

region of the arena (thigmotaxic behaviour).  

 

 Statistical analysis 

Statistical analysis was performed using R version 3.5.0 (The R Project).  

Data was checked for normality of distribution using both a Shapiro-Wilk’s test and visual 

assessment using a histogram and quartile-quartile plot. If either group failed normality 

testing non-parametric tests were used, typically a Mann-Whitney U test, with two tailed t-

tests and ANOVAs being used for normally distributed data.  

Most data are presented as boxplots, where mean, 25th and 75th quartiles are shown in the 

main box, and whiskers representing the largest values, with observations more than 1.5 

times the IQR shown as outlier points.  

Longitudinal behavioural data had individual subjects repeatedly tested across time. The 

data did not meet requirements for a repeated measure two-way ANOVA as there were 

missing values, the distributions were not normal and there was not homogeneity of 

variance  (Liu, Cripe and Kim, 2010). Instead mixed-model regression analysis was carried 

out on this data. Another data assumption that influences model choice is the linearity, 

which the data was assessed for. All data sets appeared to be non-linear so generalised 

additive mixed models (GAMM) were used, with the package MGCV (Wood, 2006). This uses 

smooth spline fitting to model non-linear relationships. Age and group were accounted for 

as fixed independent variables and animal ID as a random factor in all models, and other 
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random variables (sex, litter, litter size, gestation length of controls, repeated trial) were 

considered and dropped in a stepwise process if they did not significantly contribute to the 

model fit. Different distribution and types of data (e.g. continuous or count) were accounted 

for in the model using different family options as is standard with generalised linear 

modelling. Model fit was checked by assessment of the residuals for normality and 

heteroscedasticity, and by how well predicted values correlated to raw data. Final model 

assessment was made by adjusted R-squared (R-sq.) values, indicating the goodness of it as 

a proportion of the variance in the data that was explained by the model.  

Sample sizes were calculated a priori, using G*Power (version 3.0.10) – with two tails, a 

power of 0.90 and an α error of 0.05. Effect sizes were determined for each experimental 

section individually based on previous experimental findings. For electrophysiological 

experiments unpublished data of normal electrical development of Stellate neurons in mice 

during the first 2 postnatal weeks was used (collected in Dr Ashby’s laboratory, University of 

Bristol). Histology effect size was determined from previous published experiments 

investigating the anatomical development of barrels following early delivery (Toda et al., 

2013), and behavioural experiment effect size from previous published data on the 

developmental trajectory during the early neonatal period and in impact of altered sensory 

experience (Arakawa and Erzurumlu, 2015b).  
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2.3 Results 

All data in this section are presented as post-conception (PC) days. PC0d is given to the hour 

that pregnancy was confirmed with the presence of a vaginal plug (Behringer et al., 2016), 

and all experimental time points are matched to this hour.  

 

 A mouse model of premature birth 

Clinical preterm birth is a complicated situation of comorbidities. Previous rodent models of 

prematurity have investigated the effects of one or more comorbidities, but little 

information is available about the effects of preterm birth alone. In this study the effects of 

being born before term gestation are investigated with a mouse model of prematurity. This 

model uses a progesterone receptor antagonist to induce premature birth in isolation of the 

comorbidities, and offspring development during the first few postnatal weeks is 

investigated.  

First the success of inducing premature birth with this model needs to be confirmed 

Premature birth was induced by a single administration of the progesterone receptor 

antagonist RU486 by subcutaneous injection into pregnant dams at PC 17d + 9hrs. RU486 

administration triggered parturition within the next 18 hours, resulting in significantly 

shorter gestation lengths compared with animals who received a vehicle only injection at 

the same time point (Figure 2.5a) (p <0.001 - Mann-Whitney U test) [n: preterm = 35; 

vehicle = 21, litters]. The average control gestation length is 19.5d±17.5hr and in preterm 

induction it is 18d±1.3hrs, meaning preterm birth in this model is 92.5% of average 

gestation. This gestation length is in line with the clinical definition of prematurity in 

humans, which is live births occurring before 37 weeks gestation (92.5% of 40 weeks full 

term gestation) (Gibson and McKeown, 1951). 

Clinically preterm birth is associated with increased mortality (Manuck et al., 2016), even in 

late preterm infants (Jain, 2007). The survival fraction of litters was calculated as the 

percentage of living pups against the total litter size. In this model of preterm birth there 

was a reduction in pup survival at birth compared to control litters (Figure 2.5b) (p <0.001 - 

Mann-Whitney U test) [n: preterm = 32; vehicle = 21, litters]. Further mortality was 
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observed in preterm pups over the first 24 hours, with survival dropping from 54% at birth 

to 45% by P1. No pup deaths were observed in the control group over the first 24 hours. 

PC18d is the earliest preterm birth that resulted in live offspring for longitudinal assessment 

with this protocol. On 5 occasions preterm birth occurred before PC18d (17d+21 hrs ± 2.4 

hrs) and in all cases no pups survived beyond 2 days old. As such this protocol is on the cusp 

of prematurity that can be investigated in mice with no additional support for survival given. 

Clinically a differential effect of preterm birth is seen in male and female offspring 

(Ingemarsson, 2003; Johnston and Hagberg, 2007; Shim et al., 2017), so sex was considered 

in this study. There was no significant difference between the ratio of live male and female 

pups in preterm or control litters (p = 0.7524 – Fishers Exact test) [n: preterm – 20/7, control 

– 20/7, (pups/litters)].  

Surviving pups were weighed on the day of birth. Animals from preterm litters were 

significantly smaller than those from control litters (Figure 2.5c) (p <0.001 – unpaired, t-test) 

[n: preterm = 23; vehicle = 14, litters].  

The control group for this study received vehicle injections at the same time point as 

preterm inductions were given. This is to control for the potential stress that receiving an 

injection induces in the mother. To see whether vehicle control injections affected 

pregnancy a cohort of natural births were compared to the vehicle control group.  

Gestation lengths in vehicle control pregnancies were not different to untreated ones 

(Figure 2.5a) (p = 0.714 - Mann Whitney U) [n: natural = 8; vehicle = 21]. This suggest that 

the vehicle injections used as a control in this protocol do not induce premature labour. 

There was also no adverse effects on pup survival (Figure 2.5b) (p =0.4847 - Mann-Whitney 

U test) [n: natural = 7; vehicle = 21], and birth weights were the same between vehicle 

injected and natural litters (Figure 2.5c) (p =0.432 – unpaired, t-test) [n: natural = 7; vehicle 

= 14]. Natural pregnancy litters were not investigated further.  
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Figure 2.5 Initial outcomes of mouse model of prematurity  
Injection with RU486 at post conception day 17 resulted in shorter gestation lengths (a) (p < 0.001), 
with reduced pup survival at birth (b) (p < 0.001) and lower birth weights (c) (P < 0.001) compared to 
vehicle injected control births. Vehicle injection does not affect the gestation length (a), pup survival 
(b), or birth weight (c) when compared to natural untreated pregnancies.  
n# (litters) - Gestation length [n: preterm = 35; vehicle = 21; natural = 8], Survival [n: preterm = 32; 
vehicle = 21; natural = 7], Birth weight [n: preterm = 23; vehicle = 14; natural = 7] 
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In control pregnancy cohorts there were a wide range of gestation lengths - between PC18d 

+ 18hrs and PC20d + 21 hrs. This difference in gestation length correlated with litter size, 

with larger litters being born earlier (Figure 2.6a) (r = 0.6559, p < 0.001 – linear regression), 

which agrees with previous reports (Biggers et al., 1963). The pups born from larger litters 

are also born smaller (Figure 2.6c) (r = 0.573, p<0.001), which has been reported in a variety 

of species (Werner and Griebeler, 2011). This relationship with litter size and gestation 

length is not evident in the preterm cohort (Figure 2.6b), as birth is artificially induced and 

there is little variance in gestation length (Figure 2.5a). There is however still a significant 

relationship between litter size and birth weight (Figure 2.6d) (r = 0.3, p < 0.01), suggesting 

that pups in large litters are smaller from before their natural birth date.  
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Figure 2.6 Correlations between gestation length, litter size and pup birth weights  
In control pregnancies there is a negative correlation between litter size and gestation length (a) and 
average litter birth weight (c), with larger litters being born earlier (r = 0.659, p < 0.001) and the pups 
being smaller (r = 0.573, p < 0.001) – shown as raw data points, with linear regression line + standard 
error. There is no correlation seen between litter size and gestation length in preterm pups (b) but there 
is a significant negative correlation between birth and litter size (d) (r = 0.3, p < 0.01)  
n# (litters) - Gestation length vs litter size [n: preterm = 21; vehicle = 21], Birth weight vs litter size [n: 
preterm = 19; vehicle = 18] 
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As preterm pups are born on an earlier gestational day, and so have had less development 

time it is not surprising that preterm pups are smaller at birth. To assess whether 

prematurity affected continued growth, pups were weighed daily the first three postnatal 

weeks and weights of preterm pups were compared to control pups at matched post-

conception ages (Figure 2.7a) (GAMM, R-sq. = 0.973, n: preterm = 20, vehicle = 19, pups). 

When weight is compared based on post-conception day the growth curve of preterm 

animals is not significantly different to control animals. Significant random factors included 

in the model where individual animal ID and litter ID. These are variables that were found to 

improve the fit of the model, but were not factors of interest in the study, and so were 

included as random rather than fixed effects. This means that there was both individual 

animal and whole litter differences that resulted in some variability in weight. Growth 

curves of male and female animals were not significantly different.  

As well as weight there are phenotypical markers of development that can be used to assess 

pup development (see Methods 2.2.2). The post-conception age that these developmental 

milestones were reached in preterm pups were compared to controls (Figure 2.7b) GAMM, 

R-sq. = 0.979, n: preterm = 20, vehicle = 19, pups). Developmental milestones were reached 

at the same PC day in preterm and control animals, with no data variance being explained 

by individual animal or litter ID suggesting less inter-animal variation than with weights. One 

key marker of neonatal development is eye opening, which occurs in mice at around 2 

weeks after birth. In this cohort the day of eye opening was not different between preterm 

and control animals, happening on average (mean) at PC34d (Figure 2.7c) (p = 0.467 - Mann-

Whitney U test) [n: preterm = 17; vehicle = 20, pups].  

Gestation length in control pregnancies varied by up to 2 days (PC18d + 18hrs and PC20d + 

21 hrs), however developmental milestones were reached based on post-conception age 

not postnatal, with later born pups appearing more developed at birth. This is also seen in 

the regression model where gestation length was not found to significantly improve the 

model fit. This suggests that being born early and therefore undergoing the late fetal 

development outside of the uterus does not affect the gross physiological development of 

mouse pups.  
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Figure 2.7 Pup growth and developmental milestones 
Pup weight (a) increases with age, as does phenotypic development (b) but neither have different 
developmental trajectories in preterm compared to control animals. Data presented as raw data 
points, with GAM model predicted mean and 95% CI error bars.  
Day of eye opening (c) was not different between preterm and control animals. 
 n# (pups) - [n: preterm = 20; vehicle = 19] 
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 Behaviour 

During the first 2 postnatal weeks mice undergo a rapid period of development, where 

behaviours required for survival outside of the nest emerge (Fox, 1965). Many of these 

behaviours require sensorimotor coordination, and they develop at varied rates according 

to their complexity. Other animal models of prematurity have shown differences in early life 

behavioural development (Toso et al., 2005; Chau et al., 2009; Feather-Schussler and 

Ferguson, 2016). In this study these behaviours were assessed daily from PC22d (beginning 

of the first postnatal week) until PC35d (early in the third postnatal week).  

 

 Righting reflex 

Righting reflex is the ability for an animal to turn over from supine position and place all four 

paws on the ground. This is a skill that involves the integration of sensory information and 

motor abilities.  At PC22d many animals cannot achieve this task in the 30 seconds time 

limit, with a large variability in times in those who can. Task performance improved with age 

in a non-linear way, until PC31d where all pups could perform this task successfully every 

time. The development of this behaviour was not significantly different in preterm 

compared with control animals (Figure 2.8a) (GAMM, R-sq. = 0.58). 

 

 Cliff aversion 

When presented with a cliff edge, mice will back away from it to avoid the risk of falling 

from heights. This is a behaviour that integrates both sensory perception, motor abilities 

and anxiety responses. At PC22d pups could not perform this task (Figure 2.8b), with them 

often failing to support themselves on the apparatus and falling from the cliff edge (failures 

marked as 30s). This behaviour emerges during the first postnatal week, and by PC34d all 

pups could complete this task every time. Being born prematurely had no apparent effect 

on the development of cliff avoidance behaviour (Figure 2.8b) (GAMM, R.sq. = 0.772).  
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 Geotaxis 

Another situation mice will avoid is having their head lower than their body (negative 

geotaxis). Like cliff aversion this behaviour integrates sensory and motor skills, as well as 

levels of anxiety the animal perceived from the situation. At PC22d pups could not complete 

the task, and again often lack the motor skills to even stay on the apparatus (failures marked 

as 30s). The emergence of success with this task is slower and more gradual than cliff 

aversion (Figure 2.8c), but mastery of this behaviour does occur before PC35d. The 

developmental trajectory of this behaviour is not significantly different in preterm 

compared to control animals (GAMM, R.sq. 0.764).  

 

 Grasping behaviour 

Grasping behaviour is seen when a small object is presented at the paw. The performance at 

this task was given a score between 0 (no grasping) and 3 (able to sustain weight from grip). 

This behaviour is rarely seen at PC22d, but increased grasping and supporting of weight 

occurred over the following week (Figure 2.8d). The frequency of this behaviour began to 

fall again around PC30d, which has been previously reported (Arakawa and Erzurumlu, 

2015b). Rather than the ability to perform this task decreasing during this period, it appears 

that the animal’s interest in the task reduces with age. This pattern of behaviour emergence 

and then decreasing interest occurs at the same ages in preterm and control animals 

(GAMM, -sq. = 0.526).  
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Figure 2.8 Sensorimotor behaviour development 

The ability to right from a supine position (a) emerges during the first postnatal week, from PC22d until 
mastery in the second week at around PC31d. The ability to avoid a cliff edge is a behaviour that 
emerges slowly during the first postnatal week (b), as is the ability to correct a negative geotaxic 
position (c). The ability to grasp an object placed at the paw also improves during the first postnatal 
week, then declines as their attention for the task decreases (d).  
The developmental trajectory of these sensorimotor behaviours is not significantly different in preterm 
compared to control animals.  
Data is presented as individual data points (where size indicates number of observations) and the line 
is the GAM model’s predicted fit with 95% confidence interval error bars.   
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 Whisking behaviour 

Rodents primarily use their whiskers to navigate the environment (Sofroniew and Svoboda, 

2015). They use bilateral sweeping movements of the vibrissae to contact objects, which 

inform them of their surroundings. This behaviour is not present at birth, developing over 

the first 2 postnatal weeks. Whisking behaviour was scored, including whisker twitching that 

occurs before full whisking develops. At PC22d no active whisker movements were seen 

(Figure 2.9a), but they begin to emerge the next day increasing until full whisking is seen in 

all observations at PC34d. There is a lot of variability in the data, as only a 30 second 

window of observation was given each day, meaning that if whisker movements are present 

but infrequent they may be missed. The development of whisking behaviour is not 

significantly different in preterm pups when compared to controls (GAMM, R-sq. = 0.665).  

 

 Whisker stimulation 

As well as active whisking to explore, passive deflection of the whiskers supplies mice with 

information about their environment. When presented with a 1hz deflection of the whiskers 

mice move their heads towards the stimulation, and the number of head movements in a 

30s period were counted. The responsiveness to whisker stimulation increases with age 

(Figure 2.9b). There is no significant difference in the responsiveness to whisker stimulation 

between preterm and control animals (GAMM, R.sq. = 0.621). Individual animals show a 

significantly different responsiveness to stimulation, which was incorporated into the model 

and helps explain some of the data variance.  

 

 Tactile stimulation 

Tactile information is also received through the rest of the rodent body. Like with whisker 

deflection, touching the body elicits a motor response, in the form of twitching and 

withdrawal of body parts away from the stimulation point. At the beginning of the first 

postnatal week few responses are seen, and over the next 2 postnatal weeks the pups 

become significantly more responsive to tactile stimulations (Figure 2.9c). Preterm animals 

were more responsive to tactile stimulation across all ages compared to control (R.sq. = 
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0.482; p < 0.001), with individual variability accounting for a significant amount of variance 

in the data. This could indicate increased sensory sensitivity, heightened anxiety behaviours, 

or differing motor reflex responses in preterm animals. 
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Figure 2.9 Sensory behaviour development 
Whisking behaviour (a) (graded, 0 = none, 1 = twitching, 2 = full whisking) develops with age, with full 
whisking being present by the end of the second postnatal week. The developmental trajectory of this 
skill is not different between preterm and control animals.  
When whiskers are stimulated animals move their head in response (b), and the responsiveness 
increases with age, and does not differ between preterm and controls.  
Animals also move in response to tactile stimulation on the body (c), with the likelihood of response 
increasing with age. Preterm animals are significantly more responsive to tactile body touches than 
controls across all ages (p < 0.001). 
Data presented as individual data points (where size indicates number of observations) and the line is 
the model’s predicted fit with 95% confidence interval error bars.   
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 Open field 

Open field exploration experiments are often used in adult rodents to measure locomotion, 

exploratory and anxiety-like behaviour (Seibenhener and Wooten, 2015). At PC40d - which 

is weaning age - this cohort of animals was given five minutes of open-field exploration. The 

animal’s movement was tracked with automated detection software - see Figure 2.10aii for 

an example path of exploration. Both the distance travelled (Figure 2.10b) and the speed of 

travel (Figure 2.10c) did not differ between the preterm and control animals, suggesting 

motor and exploratory behaviour is unaffected by premature birth. The time spent close to 

the walls compared with the inner segment is known as the thigmotaxic ratio and is used as 

a measure of level of anxiety in rodents (Simon, Dupuis and Costentin, 1994). Preterm 

animals were significantly less likely to spend time exploring the inner region of the arena 

than control (Figure 2.10d) (p = 0.0413 – Mann-Whitney U test) [n: preterm = 17; vehicle = 

18], potentially suggesting an elevated level of anxiety in preterm animals. 
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Figure 2.10 Open field exploration 
Pups were given 5 minutes of locomotion in a novel arena at PC40d. 
 (a)(i) Photograph of open field arena with subject in, and (ii) illustration of tracked movement over 5 
min.  
The distance travelled (b) and the speed of movement (c) did not significantly differ between preterm 
and control animals. The tendency to stay near the wall of the arena (thigmotaxis) (d) was different 
between groups, with preterm pups spending significantly more time near the wall (p = 0.0413).  
 
n# (pups) - [n: preterm = 17; vehicle = 18]  
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 Histology of barrel cortex 

The rodent brain grows rapidly during the first postnatal week with new cells being born 

and migrating to their destination. In the cortex, the characteristic layers of the mature 

brain are formed sequentially in the first postnatal week (Semple et al., 2013). This process 

results in an increase in brain weight (Figure 2.11a) (F = 40.21, p < 0.01 – two-way ANOVA) 

[n: preterm – PC22d = 13, PC23d = 8, PC24d = 15; vehicle – PC22d = 12, PC23d = 8, PC24d = 

15] and in thickening of the cortex (Figure 2.11b) (F = 44.238, p < 0.001 – two-way ANOVA) 

[n: preterm – PC22d = 5, PC23d = 6, PC24d = 6; vehicle – PC22d = 6, PC23d = 6, PC24d = 7]. 

However, the rate of growth of the brains of preterm animals, as measured by weight and 

by cortical thickness, was not significantly different to controls.   

The critical period for barrel development is during the first 7 days of postnatal life 

(Erzurumlu and Gaspar, 2012). During this period thalamocortical axons migrate into layer IV 

of the cortex and form synapses onto neurons in the barrels (Carl C H Petersen, 2007). It is 

this distribution of presynaptic terminals that gives rise to the characteristic barrel structure 

seen. To assess barrel development, staining of the mitochondrial enzyme cytochrome 

oxidase was used to visualise the terminal ends of these thalamocortical neurons (Land and 

Simons, 1985). Examples of this staining are shown in Figure 2.11c. The density of staining in 

the barrels compared to the septum was used as a measure of barrel development (Figure 

2.11d). At PC22d and 23d there is little staining in the barrels. By PC24d this has increased 

(Figure 2.11d) (F = 12.592, p<0.01 – two-way ANOVA) [n: preterm – PC22d = 5, PC23d = 6, 

PC24d = 6; vehicle – PC22d = 6, PC23d = 6, PC24d = 7]. This rate of increase in 

thalamocortical terminal in the barrels was not significantly different in preterm animals 

compared to controls.  
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Figure 2.11 Anatomical formation of the barrel cortex 
Brain weight (a) increases with age (p < 0.01), as does cortical thickness (b) (p < 0.001), with no 
significant difference between preterm and control animals.  
(c) Example images of barrel cortex in cytochrome oxidase stained coronal slices. 
BFI-CO is measured from comparing the staining intensity of barrels and septums (d) as a proxy of 
barrel maturation. This increases with age (e) (p <0.01), with no significant difference between preterm 
and control animals.  
n# (pups) - [n: preterm – PC22d = 13, PC23d = 8, PC24d = 15; vehicle – PC22d = 12, PC23d = 8, PC24d = 
15], - Thickness & BFI-CO [n: preterm – PC22d = 5, PC23d = 6, PC24d = 6; vehicle – PC22d = 6, PC23d = 
6, PC24d = 7].  
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 Intrinsic cellular properties of layer IV Stellate neurons 

Most neurons in the barrels within layer IV of the mouse cortex are stellate cells (Simons 

and Woolsey, 1984), and are the primary recipients of thalamocortical synaptic input (Inan 

and Crair, 2007). These cortical neurons and thalamocortical projections migrate during the 

late embryonic and early postnatal period (Kirischuk, Luhmann and Kilb, 2014). Stellate 

neurons are born embryonically but their electrical properties continue to mature during 

the neonatal period (Callaway and Borrell, 2011) - coinciding with preterm birth in this 

mouse model. Alterations in the activity input into neurons during this developmental 

period have been shown to affect the formation of the dendritic arbour (Wong and Ghosh, 

2002; Andreae and Burrone, 2015), and such morphological changes in turn affect the 

electrical activity of the neuron (Callaway and Borrell, 2011). Preterm animals in this cohort 

are in an altered sensory environment during what should be the late fetal stages of 

development and these changes may impact the activity input into the sensory cortical 

neurons. In addition microstructural changes have been found in human preterm infants 

that suggest delayed development of dendritic arborisation and synapse formation   (Ball, 

Srinivasan, et al., 2013). To assess whether premature birth in this mouse model has 

affected sensory cortical neuron development in similar ways, the intrinsic electrical 

properties of stellate neurons were measured. 

In this study whole cell current clamp recordings from Stellate cells in layer IV of the barrel 

cortex, at both resting membrane potential and -79mV holding potential were made to 

investigate both passive membrane and firing properties. Recordings were made on PC22d, 

23d, 24d and 28d, covering the first into the beginning of the second postnatal week. All n 

numbers in this section are presented as individual cells, which came from 4-5 animals per 

group at each time point.  

 

 Passive membrane properties 

At PC22d Stellate cells were relatively depolarised, with the vehicle group at a mean RMP of 

-45.4±6.6mV and preterm group at -50.3±4.4mV. RMP became progressively hyperpolarised 

with age (Figure 2.12b (RMP)) (F = 13.778, p<0.001 – two-way ANONA), towards more adult-

like RMP (Fleidervish, Binshtok and Gutnick, 1998). There was no significant difference in 
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RMP in cells from preterm animals compared to controls. At all ages and in both groups 

holding at around -79mV was achieved (Figure 2.12b (-79)).  

Input resistance of a neuron is a measure of how easily current can pass across its 

membrane. Measured using a hyperpolarisation step (Figure 2.12a), input resistance of the 

developing Stellate cells progressively decreased between PC22d and 28d (Figure 2.12c) at 

both -79mV holding (F = 17.411, p<0.001 – two-way ANOVA) and RMP (F = 13.778, p < 

0.001). This changing input resistance was not significantly different in preterm animals 

compared to controls.  

Other measures taken from the hyperpolarisation step include the membrane time constant 

of decay (tau) and the time-dependent rectification (sag). The membrane time constant, 

which is a measure of the time the membrane takes to change to a potential, does not 

change between PC22d and 28d (Figure 2.12d).  

Sag is the difference in the hyperpolarisation potential compared to what would be 

expected from a single exponential fit from the initial tau. Sag is mediated by 

hyperpolarisation-activated cation currents (Ih) mediated by hyperpolarisation-activated 

cyclic nucleotide-gated (HCN) channels, that rectify the hyperpolarisation of the membrane 

towards resting membrane potential (Kaupp and Seifert, 2001). This current plays a role in 

regulating action potential firing (Pape, 1996), and has been found in mature somatosensory 

neurons (Momin et al., 2008; Breton and Stuart, 2009). In layer IV Stellate cells of 

developing mice little sag is present at either RMP or -79mV holding (Figure 2.12e) and 

there is no significant change between PC22d and 28d. This suggests that there is not much 

Ih in these immature neurons, which agrees with previous data from Dr Ashby’s group 

(Murray, 2016). The contribution of Ih is not significantly different between preterm and 

control groups.   
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Figure 2.12 Passive membrane property development in layer IV Stellate cells. 
(a) Measures of passive membrane properties from the hyperpolarisation step. 
The resting membrane potential (RMP) (b) of Stellate cells decreases with age (F = 13.778, p <0.001) 
and holding potential was not different between groups or ages. The input resistance of cells decreased 
with age at -79mV holding (F = 17.411, p <0.001) and RMP (F = 13.778, p <0.001). The tau(d) and sag 
(e) do not change with age. There is no significant difference in these passive membrane properties in 
preterm compared to control animals.  
 
n# (cells) -79mV holding [n: preterm – PC22d = 10, 23d = 10, 24d = 18, 28d = 9; vehicle – 22d = 11, 23d 
= 9, 24d = 12, 28d = 11]. RMP holding [n: preterm – PC22d = 11, 23d = 8, 24d = 14, 28d = 8; vehicle – 
22d = 8, 23d = 9, 24d = 11, 28d = 13].  
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 Action potential waveforms 

Alongside developmental changes in passive electrical properties the characteristic of action 

potential (AP) firing also matures postnatally. AP waveform shape is important for effective 

synaptic transmission, and is dependent on the ion channels present in the membrane 

(Bean, 2007). As such, any effect of preterm birth on subsequent development of AP 

dynamics was assessed in layer IV stellate neurons between PC22d and 28d. As the neuron 

matures the AP waveform changes, examples from each experimental age are shown in 

Figure 2.13a. The AP waveform appears to become larger and faster with age. To quantify 

these changes the first AP fired during a stepped current injection protocol was used to 

measure AP properties. 

Action potentials occur when a neuron’s membrane potential reaches a threshold that 

triggers a cascade of ion channels opening  (Bender and Trussell, 2012). The threshold 

membrane potential at which APs fire decreases with age at RMP (Figure 2.13b) (F = 6.735, 

p<0.001 – two-way ANOVA), but is constant over ages when the cells is held at -79mV. 

There is no significant difference in threshold in preterm compared to control animals at 

either membrane potential. The height of the AP is measured as the change in membrane 

potential from threshold to peak (Figure 2.13c). The AP height increases with age at both 

RMP (F = 19.48, p <0.001 – two-way ANOVA) and -79mV holding (F = 14.237, p < 0.01), and 

this developmental change is not different in preterm compared to control animals. Post-

hoc test (TukeyHSD) finds that the significant change in AP threshold and height occurs at 

PC28d, with no significant difference between PC22d and 24d. This is indicative of a 

transition in neuron firing properties from the first to second postnatal week, which is 

known to be a transition point out of the critical period in the barrel cortex  (Isaac et al., 

1997). 

To calculate how quickly this full AP height was reached the first derivative of the waveform 

was calculated, and the maximum rate of change measured (Figure 2.13d). There was a 

significant increase in the maximum rate of rise with age at both RMP (F = 124.26, P <0.01 – 

two-way ANOVA) and -79mV holding (F = 25.308, P < 0.01), with post-hoc testing find that 

the significant change occurs again at PC28d. This increasing rate of rise of the AP waveform 

will influence the duration of the event. This can be seen in the width (full-width at half 

maximum height) of the AP, which decreases with age (Figure 2.13e) at both RMP (F = 



85 
 

19.48, p <0.001 – two-way ANOVA) and -79mV holding (F = 9.901, P < 0.01). Again, the 

developmental increase in AP rate of rise was not significantly different in preterm animals 

compared to controls.  
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Figure 2.13 Action potential waveform development in layer IV Stellate cells 
(a) Shows example action potential wave forms from the ages measured. 
The threshold that AP fire (b) decreases with age at RMP (F = 6.735, p <0.001) but not at -79 holding. 
Action potential (AP) height (c) increase with age (at: -79 - F = 14.237, p < 0.01; RMP, F = 19.48, p < 
0.001), as does the maximum rise-time (e) (at: -79 - F = 25.308, p < 0.01; RMP, F = 124.263, p < 0.001), 
and the width (e) decreases (at: -79 - F = 9.901, p < 0.01; RMP, F = 12.644, p < 0.001). There is no 
significant difference in action potential waveform parameters between preterm and control animals.  
 
n# (cells) - -79mV holding [n: preterm – PC22d = 10, 23d = 10, 24d = 18, 28d = 9; vehicle – 22d = 9, 23d 
= 8, 24d = 12, 28d = 11], RMP holding [n: preterm – PC22d = 8, 23d = 6, 24d = 11, 28d = 9; vehicle – 22d 
= 4, 23d = 6, 24d = 8, 28d = 12].  
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 Firing properties 

Rheobase is the minimum current required to drive the neuron’s membrane potential to AP 

threshold. The rheobase of layer IV Stellate cells progressively increases between PC22d and 

28d (Figure 2.14b) at both RMP (F = 4.374, p < 0.01 – two-way ANOVA) and when held at -

79mV (F = 3.9484, P < 0.05), but was not significantly altered in preterm compared to 

control animals at any age or either membrane potential.  

Neurons do not always just fire a single AP. The protocol used for this study was a series of 

18, 500ms current step injections of increasing size (0-0.36V), which often resulted in a train 

of APs being fired (examples in Figure 2.14a). As well as the individual AP waveforms 

changing with developmental age, there were changes to the train of AP events. Once cells 

reach their rheobase and begin to fire APs the number of APs fired during each 

depolarisation step increased with age, at both RMP (Figure 2.14c) (F = 11.286, p < 0.001 – 

two-way ANOVA) and -79mV holding (F = 5.22, p <0.01). This increasing firing rate was not 

significantly different between preterm and control animals. There was little difference in 

firing rate between P22d and 24d (first postnatal week) at either holding potential, but with 

the increase in number occurring at PC28d (second postnatal week). So, although it takes a 

larger current injection for P28d neurons to fire APs once they reach this threshold they are 

more excitable and fire in longer trains. 
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Figure 2.14 Action potential firing property development in layer IV Stellate cells. 
(a) Example of action potential trains following current injection at the developmental ages recorded.  
The current required to drive the cell past threshold (rheobase) (b) increased with age at both -79mV 
holding potential (F = 3.948, p < 0.05; RMP – F = 4.374, p < 0.01). 
The number of action potentials fired per current injection sweep once past rheobase (c) also increased 
with age (at: -79 – F = 5.222, p < 0.01; RMP – F = 11.286, P <0.001). There is no significant difference 
in the likelihood of firing APs in preterm compared to control animals.  
n# (cells)- -79mV holding [n: preterm – PC22d = 10, 23d = 11, 24d = 18, 28d = 9; vehicle – 22d = 11, 23d 
= 9, 24d = 12, 28d = 11], RMP holding [n: preterm – PC22d = 11, 23d = 8, 24d = 14, 28d = 9; vehicle – 
22d = 10, 23d = 10, 24d = 12, 28d = 12].  
  



89 
 

 Miniature excitatory postsynaptic currents 

As well as release of neurotransmitter into the synaptic cleft during AP propagation there is 

spontaneous release that occurs independent of incoming signal (Kavalali, 2015).  

Neurotransmitter is stored in vesicles in the pre-synaptic terminal, each containing a 

standard amount. These are sometimes spontaneously released, and this neurotransmitter 

present in the synaptic cleft results in a small potential change in the postsynaptic neuron 

(Katz and Miledi, 1963), that can be measured in whole cell voltage clamp. When this 

neurotransmitter release is excitatory (e.g. glutamate) these are known as a miniature 

excitatory post-synaptic current (Simkus and Stricker, 2002), and when it is inhibitory (e.g. 

GABA) they are miniature inhibitory post-synaptic current (Takahashi et al., 2006). When 

initially discovered it was thought that these events were random ‘noise’ in the neuronal 

system, however evidence has emerged that support the idea that these events have a 

specialised and vital role in neuronal network connectivity, including in the developing brain 

(Andreae and Burrone, 2018). Spontaneous synaptic activity in the immature brain has been 

found to facilitate the arborisation of dendrites (Andreae and Burrone, 2015) and the 

formation of spines (Bouwman et al., 2004), both of which are important developmental 

stage in the formation of functional neuronal networks. This spontaneous release can 

provide information about the synaptic property of the local neural network, and changes in 

these events’ properties could indicate disruptions in the development of network 

connectivity.  

Layer IV stellate cells are excitatory glutamatergic neurons, that express AMPA and NMDA 

receptors (Fröhlich and Fröhlich, 2016). These receptor types have different likelihoods of 

opening at different membrane potentials (Ascher, Bregestovski and Nowak, 1988). This is a 

result of NMDAr being blocked by a Mg+ ion at negative membrane potentials, which is 

removed during depolarisation (Nowak et al., 1984). Experimentally this means that events 

mediated by each receptor type can be isolated by holding the cell at different potentials. At 

-70mV holding potential it is predominantly AMPA receptors that are activated, and at 

+40mV it is largely NMDA receptor mediated events that are recorded. Examples of AMPAr 

and NMDAr mediate events can be seen in Figure 2.15a. Both the frequency and size of 

these events supply information about the structural and functional composition of the 

synapses.  
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The frequency of both AMPAr (Figure 2.15b) and NMDAr (Figure 2.15c) mediated mEPSCs 

significantly increase between PC22d and 28d (AMPA – F = 31.753, p < 0.001, NMDA – F = 

44.958, p < 0.001 – two-way ANOVA), with post-hoc Tukey testing finding this significant 

increase occurs at PC28d, but not in the first postnatal week. This is a similar developmental 

time-scale to the intrinsic electrical properties of these neurons (Figure 2.13), with a 

dramatic transition from first to second postnatal week. There is no significant difference in 

the frequency of mEPSCs in preterm animals when compared to controls. There is relatively 

small change between PC22d and 24d (first postnatal week), with a large increase in both 

AMPAr and NMDAr mediated events seen at PC28d (second postnatal week). The ratio of 

AMPAr to NMDAr mediated events gives information about the relative number of synapses 

containing each type of receptor. Only data for PC24d and 28d are presented as at PC22d 

and 23d there were too few events recorded to give a reliable estimate of ratios. Between 

PC24d and 28d there is an increase in the AMPA:NMDA event frequency ratio (Figure 2.15d) 

(F = 9.246, p < 0.01 – two-way ANOVA). This agrees with previous work (M. Crair and 

Malenka, 1995) which showed an increase in the relative number of AMPAr containing 

synapses with maturation. Insertion of AMPAr into previously NMDAr only synapses is a 

process known as unsilencing and is known to be occurring during this critical period of 

barrel development (Isaac et al., 1997; Ashby and Isaac, 2011). The AMPAr to NMDAr 

frequency ratio was not different in preterm animals compared to controls, suggesting that 

maturation of synapse number and unsilencing of silent synapses in not influenced by 

prematurity.  
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Figure 2.15 Frequency of miniature excitatory postsynaptic currents in layer IV Stellate cells. 
(a) Example recordings of spontaneous mEPSCs mediated by AMPAr (-70mV holding) and NMDAr 
(+40mV holding) The frequency of mEPSCs increases with age from both (b) AMPA receptor (F = 31.753, 
p < 0.001) and (c) NMDA receptor (F = 44.958, p < 0.001) mediated events. The ratio of AMPAr and 
NMDAr mediated events (d) changes with age (F = 9.246, p < 0.01). The frequency of EPSCs is not 
significantly different in preterm compared to control animals. 
n# (cells) [n: preterm – PC22d = 8, 23d = 8, 24d = 14, 28d = 16; vehicle – 22d = 7, 23d = 7, 24d = 18, 28d 
= 15].  
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The amplitudes of mEPSCs is an indicator of the number of receptors in the post-synaptic 

density (Han and Stevens, 2009). mEPSC amplitudes are only considered for PC24d and 28d 

as there were not enough events at 22d and 23d to get a robust estimate of mean and 

distribution of events. Between PC24d and 28d the amplitude of AMPAr mediated events 

increases (Figure 2.16a) (F = 7.395, p < 0.01 – two-way ANOVA) but there is no change in 

NMDAr mediated events (Figure 2.16b). This is more evidence to support the theory that 

AMPAr are being inserted into the post-synaptic density with maturation. This maturation 

process is not significantly different in preterm animals compared to controls. These are the 

averaged amplitudes of each cell, but there is a range of amplitude seen for each. This is 

because each event is due to the activation of a different synapse, each of which contain 

different numbers of receptors. To measure the distribution of events as well as the 

average, the cumulative frequency of mEPSC amplitudes were compared at each age for 

cells from preterm and control animals. There is no significant difference in the distribution 

of amplitudes between preterm and control animals from either AMPAr (Figure 2.16c) or 

NMDAr (Figure 2.16d) mediated events, again suggesting that early birth does not have a 

profound effect on synaptic receptor maturation.  

  



93 
 

 

Figure 2.16 Size of miniature excitatory postsynaptic currents in layer IV Stellate cells. 
The average amplitude of AMPAr mediated events (a) increases with age (F = 7.395, P <0.01, but the 
average amplitude of NMDAr events remains the same. Neither the average amplitudes or the 
cumulative frequency of amplitudes at both AMPAr (c) and NMDAr (d) events are different between 
preterm and control animals.   
n# (cells) [n: preterm –24d = 14, 28d = 16; vehicle –24d = 18, 28d = 15]. 
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2.4 Discussion 

 Model of prematurity  

Human prematurity is a complex health problem, where being born early is usually 

accompanied by a variety of comorbidities. Previous studies in humans and animals have 

looked at the outcomes of prematurity with these accompanying conditions, but few have 

looked at the effects of being born early in isolation. This study uses an induction method 

that mimics the physiological decrease in progesterone receptor activity responsible for 

triggering labour in mice (Sugimoto et al., 1997). In contrast to premature birth triggered by 

other models (e.g. intra-uterine infection (Hirsch, Saotome and Hirsh, 1995)). this results in 

preterm birth with no apparent accompanying health concerns. Having characterised this 

model, it is used to investigate the influence of being born early on neurological postnatal 

development and further tease apart the individual components of the clinical situation. It 

combines behavioural assays, histological assessment, and electrophysiological investigation 

of cellular and synaptic properties of neurons to investigate the effects of preterm birth on 

the development of the sensorimotor network.  

This model of prematurity successfully induced preterm birth (Figure 2.5b) on PC18d, which 

is 92.5% of term gestation. This was the earliest gestation possible for long-term offspring 

survival, with birth before PC18d resulting in 0% survival beyond 2 days old. Previous studies 

have shown that with spontaneous preterm birth in mice occurring before PC18d resulted in 

no offspring survival (Calmus et al., 2011) and mouse model using caesarean section found 

no survival before PC19 days (Loctin and Delost, 1983). This difference in the day that 

survival is achieved is possibly due to the difference in the average term gestation lengths 

between mouse strains (Murray et al., 2010), which differs up to 42hrs. Because of this 

difference it is important to consider the day of preterm birth relative to term gestation. 

Strain difference in gestation may not be the only factor contributing as Loctin and Delost 

(1983) used CD-1 mice which have a similar gestation length  to the C57BL/6 used in this 

study (Giknis, Charles and Clifford, 2007). The other major difference between these studies 

is the method of birth, caesarean section versus vaginal delivery. In the vaginal delivery in 

this study mothers were observed tending to the pups as soon as they were born which may 

have helped stimulate survival. It is also possible that the changes in progesterone signalling 
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induced with RU486 administration stimulated the normal parturition signalling cascade 

(Ratajczak and Muglia, 2008), resulting in a more usual birth experience that could have 

increased pup survival. Whatever the source of these differences in day of survival it 

emphasises that there is a delicate balance to achieve viable preterm offspring in mice, and 

this study appears to have found the cusp of when it is possible in C57BL/6 mice.  

Previous animal models have looked at offspring development following preterm birth at 

around 90% of gestation (Sangild et al., 2013; Toda et al., 2013; Caminita et al., 2015; 

Andersen et al., 2016; Shaw et al., 2016). In humans, birth at 90% of gestation is classed as 

late prematurity (Gibson and McKeown, 1947), however the differential developmental 

times between humans and rodents need to be considered. Rodents are born in a relatively 

immature state compared to humans (Clancy, Darlington and Finlay, 2001) and the 

neurodevelopmental stage of a term born rodent is comparable to a third trimester human 

fetus (Kostović and Jovanov-Milosević, 2006). As a result, inducing birth a couple of days 

early in mice results in them being in an altered developmental environment around the 

same time as more severally preterm human infants. 

Even with birth at 92.5% of gestation survival rate of offspring born prematurely in this 

model were reduced (Figure 2.5c). This reduced survival in preterm birth is seen in humans 

(Manuck et al., 2016), as well as in other mammals both naturally (Wildman et al., 2011) 

and in experimental models (Loctin and Delost, 1983). As well as lower survival at birth 

there was an increase in neonatal deaths in the first postnatal day in preterm litters. It is not 

only the brain that is underdeveloped in preterm offspring, but also other organ systems 

such as cardiovascular (Seri, 2001; Bennet et al., 2012; Brew, Walker and Wong, 2014; Fyfe 

et al., 2014; Wu, Azhibekov and Seri, 2016) and respiratory (Fraser, Walls and McGuire, 

2004; Moss, 2006; Jones, 2009). Clinical interventions are taken to artificially maintain these 

systems and aid maturation. Without any interventions in this model it is likely that the 

reduced survival of offspring is due to failure of one or more of these other organ systems. 

Lung maturation in mice is occurring during this late fetal period (McCarthy et al., 2018) and 

following preterm birth mice have been found to lack sufficient lung maturation  (Loctin and 

Delost, 1983), and also have trouble feeding during the first few postnatal days. This could 

explain the mortality rate at birth and the subsequent neonatal death seen in this cohort.  
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A measure of fetal maturation is skin barrier function, which develops by late gestation in 

humans (Evans and Rutter, 1986) and also in rodents (Hardman et al., 1998). In C57BL/6 

mice it has been shown that the epidermis is not fully developed at PC18d, but is by 19d, 

which is evidence that the preterm mice in this study are in an immature state. This 

underdeveloped state can also be seen in the reduced birth weights of preterm offspring in 

this model (Figure 2.5c), which is observed both clinically and in other experimental models 

of prematurity (Andersen et al., 2016; Shaw et al., 2016).  

Although they are born smaller, premature offspring gain weight at the same rate as term 

born animals, so their growth curve over the first few postnatal weeks is not different to 

control animals (Figure 2.7a). In a previous progesterone antagonist induced preterm 

model, guinea pigs were found to have reduced  birth weights but by 28 days old there was 

no weight difference compared to controls (Shaw et al., 2016). Another marker of overall 

postnatal development is reaching physical milestones such as fur development and eye 

opening. Preterm offspring in this model reached these gross physical milestones (Figure 

2.7b&c), at the same post-conception age as control animals. This suggests that the 

emergence of these characteristics is genetically determined, and that preterm birth does 

not disrupt their development. In contrast a rodent intrauterine infection found a delay in 

eye opening (Toso et al., 2005).  

 

 Behaviour 

During the first few postnatal weeks mice develop a range of reflexive behaviours, that 

involve integration of several neural systems and are required for their independent survival 

outside the nest (Fox, 1965). Previous animal models of prematurity have investigated the 

development of these sensorimotor behaviour in offspring. Intrauterine infection was found 

to delay development of righting reflex, cliff avoidance and geotaxis  (Toso et al., 2005; Dada 

et al., 2014), whereas neonatal hypoxic-ischemic (HI) injury did not affect the development 

of these behaviours (Brockmann et al., 2013; Feather-Schussler and Ferguson, 2016), but did 

show deficits in ambulation and grasping (Feather-Schussler and Ferguson, 2016). Preterm 

pigs (delivered by caesarean section) were found to have delayed onset of early motor 

behaviours (Andersen et al., 2016). In this study preterm offspring developed behaviours 
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that involved sensorimotor integration at the same rate as control animals (Figure 2.8). 

Some of these behavioural tests were limited to 30 second attempts, to conform with Home 

Office licence requirements. At the youngest time-points animals were not able to complete 

cliff avoidance or negative geotaxis experiments in the time allocated and few were able to 

complete righting reflex tests. It is possible that with a longer test period these young 

animals would have eventually been able to complete the task, resulting in a more gradual 

development of these behaviours being observed, and possible revealing more subtle 

changes to the preterm animals in these early stages.  

Longer term motor behaviour deficits have also been seen in HI injury and infection based 

preterm animal models and in preterm pigs  (Chahboune et al., 2009b; J D L Bergeron et al., 

2013; Andersen et al., 2016; Shaw et al., 2016). A common outcome of prematurity in 

humans is motor deficits, particularly cerebral palsy (Pascal et al., 2018) and so long-term 

motor deficits are an important behaviour to investigate in animal models of prematurity. In 

this study, when given an open field exploratory task at 3 weeks old preterm offspring 

showed no deficits in locomotive behaviour (Figure 2.10b&c). 

Preterm infants are also at higher risk of developing sensory processing deficits (Suellen M 

Walker et al., 2009; Wickremasinghe et al., 2013). In rodents the primary sensory input from 

the environment comes though the whiskers and the development of active whisking 

emerges during the early postnatal period (Landers and Philip Zeigler, 2006). To assess 

whether premature birth affected the emergence of whisking whisker movements were 

observed daily during the first 3 postnatal weeks (Figure 2.9a). This fine resolution measure 

of this behaviour found no deficits in preterm animals. Sensory perception is also 

experience throughout the rest of the body, and when presented with body stimulation 

pups sometimes respond with movement (Figure 2.9c). Preterm pups were more responsive 

to body stimulation throughout the developmental period which is a possible indicator of 

increased sensitivity to stimulation or an increased level of anxiety. In addition, when 

presented with the open field exploration task at weaning preterm animals were less likely 

to enter the central portion of the area (Figure 2.10d), which is a characteristic associated 

with anxiety (Simon, Dupuis and Costentin, 1994). Similar results have been previously 

observed in other preterm animal models, with increased salivary cortisol levels following 

open-field exploration in prematurely born guinea pigs (Shaw et al., 2016), and decreased 
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exploration of the central area of an open-arena found in adult mice following chronic 

neonatal hypoxia (Weiss et al., 2004). Increased anxiety has been reported in humans 

following premature birth (Johnson and Marlow, 2011). Anxiety in humans is a complex 

mood disorder and many factors that occur in the preterm period could influence the 

development of these behaviours, such as exposure to painful procedures as part of 

neonatal care (Barker and Rutter, 1995). Early life pain has been shown to increase anxiety 

behaviour in both humans (Hall and Anand, 2005) and rodents (Victoria et al., 2013). Painful 

experience however is not something that was part of this animal model of prematurity. 

Changes in non-painful tactile experience during the neonatal period has also been found to 

alter anxiety responses in adult mice, with whisker deprivation resulting in hyperactive 

neuronal activation in the amygdala following stressful experience (Soumiya et al., 2016). 

Being born early alters the sensory experience of preterm offspring. Whether this change in 

environment impacts the development of anxiety behaviour in the way chronic sensory 

deprivation does is unknown, but it is a possible mechanism behind the altered anxiety-like 

behaviours in preterm pups in this study. 

 Maternal stress during gestation has been found to induce heightened anxiety-like 

behaviour in offspring (Zagron and Weinstock, 2006; Iturra-Mena et al., 2018). Maternal 

stress from the experimental procedure (handling and injection) were accounted for by 

delivering a vehicle injection to the control group at the same time-point. However, it is 

possible that the induction of preterm labour increased stress levels in the dam which could 

have impacted the offspring in the 18hrs between induction and birth. Another possible 

source of alerted early life experience could have been changes to maternal care. In rodents 

poor maternal care during the postnatal has been found to increase anxiety-like behaviour 

in offspring (Caldji et al., 1998). Maternal care was not quantified in this study, and although 

no major neglect was observed, and pups grew along the same trajectory as controls (Figure 

2.7a) - indicating sufficient care - it is possible that changes in maternal behaviour occurred 

and this impacted the development of anxiety behaviour in preterm offspring. 

Given the cognitive deficits found in preterm infants, even those classified as late-preterm 

(Chyi et al., 2008; Morse et al., 2009; Baron et al., 2011; Chan et al., 2016) it would be 

interesting in future to investigate cognitive development in this mouse model. This would 

require extended investigation into adulthood and the use of rodent behavioural assays 
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such as memory tasks (Brooks et al., 2005; Rodriguiz and Wetsel, 2006; Zeleznikow-Johnston 

et al., 2018). 

 

 Anatomical brain development 

Clinical changes in brain growth are seen in preterm infants, including reduced brain 

volumes and cortical thickness (Inder et al., 1999; Kesler et al., 2004; Inder et al., 2005a; 

Pierson et al., 2007; Srinivasan et al., 2007). Similar changes have also been seen in previous 

animal models of preterm comorbidities, including intrauterine infection (X. Wang et al., 

2007b), and  intrauterine and neonatal HI injury (Fagel et al., 2006; Brockmann et al., 2013). 

However a previous study using a similar protocol to this one found no changes to cortical 

thickness in the early post-natal period (Toda et al., 2013) which is replicated here with no 

change in the  increase in brain weight (Figure 2.11a) and cortical thickening (Figure 2.11b) 

in the early neonatal period following preterm birth. 

In rodents thalamocortical projections go through a coordinated development during the 

first postnatal week (Fox, 1995; Inan and Crair, 2007). Using a similar method of induction of 

preterm birth (Toda et al., 2013) found that the migration of thalamocortical projections 

into the barrel cortex was stimulated by birth and so accelerated in preterm induction. This 

is a transient difference appearing at around PC23d, with the developmental stages at 

PC24d appearing the same as controls. In contrast in this study there was no apparent 

difference in barrel development in preterm and term born animals (Figure 2.11e). This 

difference in outcome could be due to the different strain of mice, owing to the fact that 

natural gestation in different strains has been shown to vary (Murray et al., 2010) and that 

genetics has been shown to be an influencing factor in the effects of prematurity (Bezold et 

al., 2013). In addition to altered gestation lengths, the ICR mouse strain used by Toda et al.  

have litters of an average size of 11.5 offspring (Shin et al., 2017) whereas the C57BL/6 

strain used in this study have an average litter size of 8 (Murray et al., 2010). Another 

difference is that C57BL/6 mice are an inbred strain whereas ICR are outbred, meaning they 

would have more genetic variability between animals (Festing, 1976). It has previously been 

found that differences in body weight affect the development of the barrel cortex during 

this early postnatal period, with larger animals developing them earlier in typical 
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developmental conditions (Hoerder-Suabedissen, Paulsen and Molnár, 2008). Toda et al. 

reported no difference in body weight during the first postnatal week following premature 

birth - which was also found in this study (Figure 2.7a) – but barrel formation was still 

accelerated suggesting a change in developmental mechanisms compared to typical 

developmental conditions. The developmental differences between these strains that may 

impact the outcomes of prematurity are not known, but these findings suggest that subtle 

genetic differences within species need consideration when developing an animal model of 

prematurity.  

 

 Cellular properties 

During early postnatal life cortical neurons undergo a maturation process which results in 

changes to the passive membrane properties and active function of the cells (McCormick 

and Prince, 1987; Zhou and Hablitz, 1996; Maravall, Stern and Svoboda, 2004; Zhang, 2004; 

Etherington and Williams, 2011). These result from changes in cellular morphology and 

composition, such as dendritic arborisation (Callaway and Borrell, 2011), increased number 

of synapses, and changes in the number and  type of ion channels in the membrane (Hamill 

and Huguenard, 1991). 

Previous studies using preterm models, including those caused by HI injury (Dean et al., 

2013; Ranasinghe et al., 2015), intrauterine inflammation (Burd et al., 2010b) and prenatal 

stress (Gutiérrez-Rojas, Pascual and Bustamante, 2013), have shown changes to cortical 

development. Altered microstructure in the cortex have been seen in preterm infants  

(Vinall et al., 2013) which is an indicator of cell morphological changes. However, induction 

with RU486 was previously shown to not change the morphological development of 

neurons (Burd et al., 2010b).  

Changes to cell morphology affects the functional output of neurons (Connors and Regehr, 

1996; Mainen and Sejnowski, 1996), and early cortical activity is known to be important for 

the formation of cortical networks (Colonnese et al., 2010; Yang et al., 2013). Together this 

means that these structural changes could alter neural activity which could disrupt the 

formation of neuronal networks. Activity changes have been seen in animal models of 

prematurity, with impaired maturation of EEG signals following intrauterine infection in 
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sheep (Keogh et al., 2012) and changes in excitatory neural activity across the cortex 

following neonatal HI injury (Failor et al., 2010; Brockmann et al., 2013; Ranasinghe et al., 

2015). 

Early postnatal developmental changes to passive membrane and firing properties of layer 

IV excitatory neurons have previously been reported in rats (Valiullina et al., 2016). These 

results were mirrored in this study in mice, decreasing RMP (Figure 2.12b) and input 

resistance (Figure 2.12c) with developmental age, with APs becoming larger (Figure 2.13c) 

and faster (Figure 2.13d&e), with a lower threshold (Figure 2.13b) and neurons firing more 

AP as they mature (Figure 2.14c). These developmental changes are not effected in the 

premature cohort, suggesting once again that this maturation process is set at conception 

and is not disrupted by the experience of preterm birth. 

 

 Synaptic properties  

The preterm period coincides with an explosion of synaptogenesis (Molliver, Kostović and 

van der Loos, 1973; Huttenlocher and Dabholkar, 1997) and in rodents this process is 

occurring during the early postnatal period (M. C. Crair and Malenka, 1995; Ashby and Isaac, 

2011). Delayed synaptogenesis has been reported in preterm infants (Sarnat and Flores-

Sarnat, 2016), and synaptic changes in animal prematurity (Bourgeois, Jastreboff and Rakic, 

1989), with early life insults associated with clinical prematurity, such as hypoxia and 

inflammation also affecting synaptic formation in the developing brain (Dean et al., 2013; 

Kuypers et al., 2013; McClendon et al., 2014). In contrast following prematurity in primates 

no delays in synaptogenesis in the cortex were seen (Bourgeois, Jastreboff and Rakic, 1989).  

Synapse formation and refinement is an experience-dependent process, and alterations to 

early life sensory experience disrupts this process (M. C. Crair and Malenka, 1995; Ashby 

and Isaac, 2011; Dunn et al., 2013). Being born prematurely alters the environment of the 

developing neonate and this change to early life sensory stimulation could have experience-

dependent effects on the formation of neuronal network connections. To assess whether 

prematurity impacts the development of synaptic inputs to cortical cells, this study 

investigated the spontaneous release of glutamate at single synapses, measured as mEPSCs 

(Katz and Miledi, 1963). During the early neonatal period there is an increase in the 
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frequency of these events (Figure 2.15b&c), which has previously been seen in other cell 

types in the developing cortex (Desai et al., 2002; Simkus and Stricker, 2002; Yuan et al., 

2016). This increase may be from increasing numbers of synapses and/or from an increased 

likelihood of release as the existing synapses mature. As well as an overall increase in both 

AMPAr and NMDAr mediated events there is a change in the ratio of their activation, with a 

higher proportion of AMPAr events occurring at older timepoints (Figure 2.15d). This 

differential change is also seen in the increase in size of AMPAr mediated events but not 

NMDAr (Figure 2.16a&b). These are likely due to a developmental process known as 

synaptic unsilencing (M. Crair and Malenka, 1995; Isaac et al., 1997; Ashby and Isaac, 2011). 

Early in development many synapses do not contain AMPAr making them functionally silent 

(Wu, Malinow and Cline, 1996), as at hyperpolarised resting membrane potentials NMDAr 

are blocked with magnesium and so cannot be activated  (Nowak et al., 1984). This allows 

for large amounts of synaptic plasticity in the form of LTP to occur, and with AMPAr inserted 

into the post-synaptic density, resulting in active synapses.  This is most prominent during 

the critical period of barrel development in the first postnatal week (M. Crair and Malenka, 

1995). This process has been shown to be effected in some developmental disorders (Hanse, 

Seth and Riebe, 2013), and a reductions in AMPAr density has been seen following neonatal 

HI injury (Ranasinghe et al., 2015). In this model there are no deficits in this process in 

preterm animals suggesting that early birth does not disrupt the critical neonatal synaptic 

development of the barrel cortex.  

It is the development of excitatory cortical neurons that have been investigated here, but it 

is important to briefly consider inhibitory network development - as in the mature network 

these opposite activities have highly interconnected function. Even more importantly, in the 

early neonatal brain the inhibitory neurotransmitter GABAAR has an excitatory action on the 

cortical network (Ben-Ari, 2002). As a result the E/I balance that is crucial to efficient 

processing in the mature brain (Zhou and Yu, 2018) is not yet present. Instead recurrent 

depolarisation potentials are prevalent in the immature brain, with GABA playing a vital role 

in their generation (Ben-Ari, 2002). As a result, GABA also plays a role in the synaptogenesis 

explosion seen in the early neonatal brain, with its depolarising action being enough to 

remove the magnesium blocker of NMDAr (Nowak et al., 1984) and stimulate the previously 

described LTP during this critical period (M. Crair and Malenka, 1995).  
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These lack of alteration to the developmental trajectory of excitatory synapses in the barrel 

cortex seen in this investigation suggests that the altered early sensory experience of being 

born prematurely does not impact this maturation process. The first few postnatal days is a 

critical window where sensory deprivation has the most impact on synapse formation in the 

developing barrel cortex, which coincides with a peak in plasticity at P4 (M. C. Crair and 

Malenka, 1995). The unchanged synapse formation in preterm animals may be because the 

altered sensory experience occurs before this window. If the neuronal network is not yet 

primed for experience-dependent developmental processes the intrinsic development may 

continue unaffected (Rubenstein, 2000; Yamamoto and López-Bendito, 2012) and normal 

development continues. Previous studies have investigated the affect that early life 

deprivation of sensory experience has on developing synaptic connectivity, but the effects 

of enhanced sensory experience are unknown. The preterm period in this model may not be 

a deprivation of experience but an addition of stimulation that would not have been present 

in the intra-uterine environment, and this may not influence the development of the 

sensory pathways. Alternatively, the alteration in sensory experience may not have been 

that profound in preterm mouse pups. They were reared under normal conditions by their 

mother following birth and all aberrant sensory experience, such as handling were received 

by the control animals as well. Mice are born relatively immaturely and so in the early 

postnatal days spend their time nested under their mother. This environment may be 

similar enough to the intra-uterine experience to not impact experience-dependent 

neuronal development.  

 

 Conclusion 

Prematurity is a complex clinical situation and teasing apart the factors that contribute to 

neurological damage in humans is difficult. This study provided one of the first 

investigations into the long-term structural and functional development of the mouse brain 

following premature birth. It successfully delivered prematurely born mice and offers insight 

into the effects of being born early in isolation of other pathologies. It finds that in mice 

born early - through induction by a progesterone antagonist - the brain appears to be 

relatively robust and develops along its expected trajectory.  
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It is important to acknowledge that the degree of prematurity in this model compared to 

the human situation is relatively mild, and it may be that the degree of prematurity is too 

small to impact the developing neuronal networks. However, the time point that these 

animals are born does occur at a neurodevelopmental stage that parallels a more severely 

preterm human brain. These findings could suggest that it is not being born early per se that 

is disrupting the neural developmental processes in the immature brain but other factors 

that often accompany the preterm situation. Previous large animal models of premature 

birth have used supportive intervention to aid neonatal survival, such as prenatal  steroid 

administration for lung maturation (Shaw et al., 2016) and postnatal nutritional and 

respiratory support (Andersen et al., 2016). So, although no other pathologies were 

experimentally introduced these procedures and possible side-effects could have been 

enough to explain the neurodevelopmental deficits found. The offspring in this study did 

exhibit behavioural changes that suggest heightened levels of anxiety. The neuronal 

mechanism of this were not investigated and further investigation would be needed to 

confirm the source of these behavioural changes. A possible source of this increased anxiety 

in preterm animals is a deficit in maternal care, which has been previously shown to 

increase anxiety in offspring (Caldji et al., 1998). This would support the idea that alterations 

to early life experience are the factors driving altered neurodevelopment in the preterm 

situation. It also emphasises the difficulty in teasing apart the contributing factors of the 

premature condition, even in controlled animal models.  

Some limitations to this study need to be considered. The control group received a vehicle 

injection at the same time point as preterm RU486 injections to control for the stress of the 

procedure. However, this did not control for the effects of RU486 itself on the fetus. It is 

known that in humans RU486 crosses the placenta and enters the fetal circulation, although 

changes in circulating steroid concentrations were not found (Hill et al., 1990). The placental 

transfer of this drug in mice is unknown. An additional control group could be used to 

account for the potential effects of RU486 directly on offspring development. This group 

would receive the same dose of the drug as the preterm group but timed to induce birth at 

normal term gestation. This was considered in the original study design, but the variability 

of natural gestation length in C57/BL6 mice posed a problem. The expected gestation of any 

pregnancy was not known and so induction at the exact time was not possible. With a 
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variability of 2 days (Figure 2.5) the degree of prematurity received by an induced term 

control group would be uncertain and could impact the development of the offspring. A 

possible solution going forward would be to investigate other mouse strains to find one that 

has less variability in natural gestation length.  

Another limitation is the lack of blinding. This was not possible as all the experimental 

procedures, including induction of preterm birth were carried out by a single researcher 

(Christine Cross). To reduce the impact of this on the results all data was blinded post 

collection and automated data analysis was carried out using custom written software. 

However, it was not possible to add control measures for some of the behavioural assays, as 

subjective measurements had to be recorded in real-time. This included the assessment of 

developmental day (Figure 2.7b) and twitch responses to tactile stimulation (Figure 2.9). In 

future experiments improvements would be made by having separate researchers induce 

birth and carry out further investigations on the offspring.  

The development of a mouse model of preterm birth also opens up the opportunities to 

combine it with transgenic mouse lines, which offer physiologically relevant genetic 

manipulations and novel experimental tools (Kumar et al., 2009). The experiments 

presented in Chapter 3 would be an example of the use of transgenic mice for new 

investigations in this preterm model. It would allow an investigation into the functional 

changes to cortical network activity following premature birth, such as shifts in 

developmental trajectories or longer-term deficits. This would complement functional 

neuroimaging studies in human preterm infants (see Table 1 in Chapter 4 for details).   
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This model of preterm birth is a good foundation for investigating the complex clinical 

situation of prematurity, in a small animal widely used across the research community. 

Further expansion on this study, as described above could further explore the effects that 

being born early has on the neurodevelopment of mice and help uncover more subtle 

alterations not measured in this current study. 
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3 Pan-cortical Calcium Imaging of 

Postnatal Development  
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3.1 Introduction   

In the healthy developing brain endogenously and exogenously generated neural activity is 

present, and both play an important role in the formation of neuronal networks, with 

disruptions to activity during the development of these networks have long term 

consequences (Zhang et al., 2011). Because of this vital and vulnerable activity period 

investigation into the developmental trajectories of activity in the developing networks is of 

great interest. When investigating the activity dynamics of neuronal networks, the optimum 

method is to record from the intact system, in a naturalistic environment. To try to achieve 

this optimum situation this study develops a technique to investigate the development of 

spontaneous and stimulated activity across the entire cortex of awake neonatal mice.  

Activity in the developing networks in vivo has previously been investigated using a number 

of different techniques. Electrical activity of neurons has been directly recorded, in both 

humans and rodents. Non-invasive recordings using scalp electrodes are routinely used in 

human infants, which capture cortical activity with high temporal resolution (Vanhatalo and 

Kaila, 2006a). However, the spatial resolution of this technique is not as well defined, with a 

summation of activity from multiple locations being captured by each electrode. Electrical 

activity in the rodent cortex can be collected in a more invasive manner. Electrodes can be 

implanted into the brain and more localised electrical signals can be collected, giving a more 

refined spatial resolution to the data (Yang et al., 2009). However, the spatial resolution of 

these recordings is still restricted due to the limited number of electrodes it is possible to 

implant simultaneously in the rodent brain. The developing rodent brain is small and the 

insertion of electrode into the cortical tissue causes damage, both limiting the number of 

electrodes that can be implanted in the young animal (Zayachkivsky et al., 2013) 

To overcome this spatial information issue another option for recording activity in the 

cortex is to visualise neuronal activity by imaging. Direct visualisation of neuronal electrical 

activity is not possible in the naïve brain with current technologies, but proxies of activity 

can be. Active neurons have an increased metabolic demand that results in an increased 

consumption of metabolites, changing the composition of the blood flowing in active 

regions (Cipolla, 2009). These changes in the blood content can be visualised in a number of 

ways. This still doesn’t provide high spatial resolution but does increase the information 
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regarding where the activity is occurring. A commonly used technique in both animals and 

humans is functional magnetic resonance imaging (fMRI). This technique measures changes 

in blood oxygenation, taking advantage of the different magnetic properties of oxygenated 

and deoxygenated blood (Ogawa et al., 1990). fMRI can be captured either during rest (Lee, 

Smyser and Shimony, 2013; Gorges et al., 2017) or in response to stimulation (DeYoe and 

Raut, 2014; Boussida, Traoré and Durif, 2017). These measurements can be taken 

throughout the brain and 3D data can be resolved (Glover, 2011). This signal is collected at 

the spatial resolution of voxels, in the order of millimetres in size, providing information 

about areas of blood flow changes that cover regions of the brain. From fMRI data spatial 

localisation of responses to single digit stimulation have been identified  (Kim et al., 2014a; 

Choi et al., 2016) but is far from cellular resolution.  

The temporal resolution of fMRI technique is much slower than the previously described 

electrical measurements. The rate of image acquisition is relatively slow (Boubela et al., 

2014) – typically 1-3 seconds - and even with technological improvements that could 

improve acquisition times the actual changes in blood oxygen levels are much slower than 

neuronal activity (Buxton, Wong and Frank, 1998). Another issue with this technique in the 

developing brain is that the link between blood oxygen changes and neuronal activity is not 

well understood. It is not only neurons that are developing in the brain but also the cerebral 

vasculature (Wang et al., 1992). It has been found that the link between neuronal activity 

and blood oxygen in the immature brain are not the same as adults and change over the 

neonatal period in mice (Kozberg et al., 2016). Another restriction of this technique is that 

to collect good quality data the subject must stay very still. In animals this is done thorough 

anaesthesia, which in young rodents has been found to suppress the blood oxygen changes 

(Colonnese et al 2008). 

Changes in blood oxygenation in animals can also be measured by intrinsic optical imaging 

(IOI) (Frostig et al., 1995; Zepeda, Arias and Sengpiel, 2004). Rather than measuring the 

magnetic properties of oxygenated and deoxygenated blood, IOI utilises the difference in 

their reflectance of visible light (Frostig et al., 2009). IOI provides similar spatial information 

to fMRI, with changes in blood flow supplying regions of the brain identifiable, such as 

cortical activity in response individual whisker stimulation (Tsytsarev et al., 2010). This 

technique is more invasive, requiring the exposure of the cortical surface, and can only be 
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taken at the surface rather than throughout the brain volume (Zepeda, Arias and Sengpiel, 

2004). It can however be captured in awake animals, including neonatal rodents (Sintsov et 

al., 2017), overcoming the issue of anaesthesia activity suppression. However, the signal to 

noise is low with this technique, with averaging of many trials being required to give 

confident result meaning it is not an optimal technique for recording resting-state activity. 

Also, as with fMRI this method captures changes in the blood rather than direct neuronal 

changes, and so does not overcome the issue of neuron to vascular coupling in the 

immature brain being unclear.  

Techniques for visualising neuronal activity more directly have been developed. These 

techniques require the addition of a biosensor into the neurons that can be imaged using 

microscope technologies. One of these types of markers are calcium indicators. These are 

engineered molecules that are capable of binding to calcium ions which results in a change 

in their fluorescent properties (Adams, 2010). When neurons are active there is an increase 

in free intracellular calcium ions (Baker, Hodgkin and Ridgway, 1971; Verkhratsky and 

Shmigol, 1996), meaning that the change in fluorescence of calcium indicators when bound 

to these calcium ions is directly related to neuronal activity. Importantly this rise in 

intracellular calcium in active neurons is present in the immature brain (Rosenberg and 

Spitzer, 2011). These molecules are available as chemical (Paredes et al., 2008) and 

genetically encoded calcium indicators (GECIs) (Tian, Hires and Looger, 2012). Chemical 

indicators are exogenously added to the brain and taken up by cells in a non-specific 

manner (Paredes et al., 2008), whereas GECIs can be specifically expressed in certain cell 

lines using transgenic breeding strategies or recombinant gene delivery (e.g. viral infection 

or electroporation) (Palmer and Tsien, 2006). An advantage of transgenic expression of 

GECIs is that they do not have to be invasively introduced into the brain of each animal. The 

use of transgenic mice means that GECIs can be expressed in a specific cell type through 

endogenous protein production from the beginning of development. The most commonly 

used GECIs are the GCaMP family of molecules (Akerboom et al., 2012; Chen et al., 2013). 

The more recent versions of these molecules are bright enough to visualise through the 

adult mouse skull (Silasi et al., 2016). Being able to image through the intact skull makes 

using these indicators relative less invasive compared to the removal of the skull and 

replacement with cranial windows (Holtmaat et al., 2012).   
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Because of this direct relationship to neuronal activity rather than blood oxygen changes 

data can be collected at a higher temporal resolution than fMRI or IOI. However the kinetics 

of GECIs are slower than the electrical activity of neurons, with the fastest available at the 

time of this study, GCaMP6f having a rise time of approximately 50ms (Chen et al., 2013). 

This indicator is also sensitive enough to detect the calcium rise associated with individual 

action potentials (Chen et al., 2013).  

In vivo calcium imaging is a powerful tool for investigating the functional circuitry of the 

brain (Russell, 2011). It can be implemented at a variety of spatial scales, from single cell 

resolution (T. H. Kim et al., 2016) to simultaneous whole cortex activity (Mohajerani et al., 

2010). Macroscopic widefield imaging is becoming an increasingly popular technique, that 

allows the recording of the combined activity of thousands of neurons across the neuronal 

network simultaneously, and in combination with modern GECIs which are bright enough to 

visualise over large scales with single photon microscopy it is becoming a valuable method 

for investigating in vivo neuronal activity across large areas of the. Wide field imaging can be 

used to capture activity from across the cortex in awake animals, which has been 

demonstrated in both adult cortex (Ackman, Zeng and Crair, 2014; Vanni and Murphy, 2014; 

Xiao et al., 2017) and neonatal mice (Ackman, Zeng and Crair, 2014; Kozberg et al., 2016). 

The signal being captured during widefield single photon calcium imaging is the summation 

of activity from of many neurons, from different layers of the cortex (Ratzlaff and Grinvald, 

1991). Because of this large spatial scale temporal limitations of the GECIs are not as much 

of an issue as data offers valuable insight into the population activity but discrete kinetics of 

single neuron activity cannot be resolved spatially.  

The functional development of individual regions of the cortex have been extensively 

investigated (Khazipov and Luhmann, 2006; Froemke and Jones, 2011; Kilb, Kirischuk and 

Luhmann, 2011; Erzurumlu and Gaspar, 2012; J. Shen and Colonnese, 2016), but the 

development of global cortical activity is relatively unexplored. No single region of the 

neuronal network is developing in isolation, and a synchronisation between different areas 

is required for the successful formation of a functional mature brain. The use of wide-field 

calcium imaging in the neonatal mouse offers an opportunity to explore the activity across 

the cortex in the resting state and during external sensory stimulation, and to track the 

changes over development.  
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 Aims 

This study develops a pan-cortical calcium imaging technique, using wide-field single-photon 

microscopy and the genetically encoded calcium indicator GCaMP6f expressed in cortical 

excitatory neurons. This technique is used to explore the cortical network development in 

awake neonatal mice with high spatial and temporal resolution. Both sensory stimulated 

and resting-state recording were captured and analysed to investigate the dynamics of 

cortical activity across early neonatal development. 
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3.2 Methods 

 All procedures were carried out in accordance with UK Home Office guidelines set out in 

the Animals (Scientific Procedures) Act 1986. 

 Breeding  

Mice expressing GCaMP6f in excitatory cortical neurons were generated by crossing two 

transgenic lines: Emx1-IRES-cre, expressing cre, which expresses recombinase under the 

Emx1 promotor, and the reporter line Ai95D, which carry a floxed copy of the GCaMP6f 

gene under the CAG promotor in the ROSA26 locus (The Jackson Laboratory, USA). Animals 

were housed in breeding groups of 1-2 females to 1 male, in 12 hr light/dark cycles, with ad 

libitum access to food and water. These two transgenic lines were crossed to produce Emx1-

IRES-cre:loxP-GCaMP6f-loxP (Ai95D) offspring, who would express GCaMP6f in excitatory 

cortical  neurons (Gorski et al., 2002; Kummer et al., 2012). Pregnant dams were checked 

every morning before 10am and postnatal day 0 (P0) was assigned on the day a new litter 

was found. Expression of GCaMP6f was confirmed by using a flashlight and goggles set 

(Nightsea, USA) to visualise GCaMP6f fluorescence in the brain during the first 2 postnatal 

days without any skin removal. 

In a subset of animals PCR was used to verify genotype and check it matched the expression 

seen through fluorescent visualisation. 1mm tail tip samples were collected in accordance 

with Home Office regulations before P10. PCR-based detection of the two transgenes was 

completed by the departmental technical support team. The primers used were (The 

Jackson Laboratory, USA): 

Emx1-IRES-cre: 
Mutant 
oIMR1084: 5’-GCGGTCTGGCAGTAAAAACTATC-3’  
oIMR1085: 5’-GTGAAACAGCATTGCTGTCACTT-3’  
Wild-type 
oIMR4170: 5’-AAGGTGTGGTTCCAGAATCG-3’  
oIMR4171: 5’-CTCTCCACCAGAAGGCTGAG-3’  
Ai95D: 
Mutant 
19908: 5’ -ACGAGTCG ATCTCCCTTTG- 3’ 
Wild-type 
olMR9020: 5’ - AAGGGAGCTGCAGTGGAGTA- 3’  
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 Head-fixation surgical procedure 

Mice aged P1-9 were prepared for mesoscale optical imaging by surgical procedure to 

expose the skull and implant a head-fixation device. Pups were placed on a heat-mat 

(Harvard Apparatus, UK), covered in a surgical drape, set at 38oC to maintain body 

temperature throughout the experiment. They were briefly (~7 min) anaesthetised using 

inhalation of isoflurane (ISO) in medical oxygen. First placed in an induction box for 1 minute 

at 5% ISO to suppress movement, and then placed on a facemask at 3% ISO for the rest of 

the procedure. Neonatal rodents are more complicated to anesthetise than adult animals 

(Research, 2003) but successful induction with inhalation of ISO in neonatal rodents has 

been reported (Gotoh, Matsumoto and Imamura, 2004; Loepke et al., 2006; Huss et al., 

2016). Anaesthesia depth was monitored, aiming for a loss of pinch reflex and a steady 

respiratory rate (Research, 2003). Local analgesia was given by subcutaneous injection of 

xylocaine (0.02ml 2% with adrenaline – Astrazeneca, UK) under the scalp. The scalp was 

removed to expose the skull surface using curved micro dissection scissors (World Precision 

Instruments, USA), and the periosteum cleared using cotton swabs. The skull was covered in 

a thin layer of clear dental cement (C&B super bond kit - Prestige Dental UK, Bradford, UK) 

and 4-40 ¼” stainless steel set screw (Thorlabs Inc. USA) was affixed over the cerebellum 

(Figure 3.1a). Anaesthesia was then turned off, and pups were given a 30-minute recovery 

period, where they were nested in cotton swabs and covered in bubble wrap on the 

heatmap, breathing air.  

 

 Wide field calcium imaging protocol 

Following recovery pups were attached to head fixation device, similar to the setup in (Silasi 

et al., 2016), which gave head stability in adult mice. All components were purchased from 

Thorlabs (USA). An articulated ball and socket mount (TRB1/M) was attached to an 

aluminium optical breadboard using two optical posts attached through  900 with an 

adjustable bracket (SWC). The set screw fixed to the pup’s skull was attached to the ball 

mount and secured in place with a ¼” plastic hex nut (RS Components Ltd, UK) (Figure 3.1a). 

The articulated head-mount and the adjustable post design means the pup’s head could be 

adjusted into a comfortable position. A piezoelectric wafer (Piezo Systems INC, USA) was 

https://www.thorlabs.com/thorproduct.cfm?partnumber=TRB1/M
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placed under the pup’s torso (Figure 3.1a) to record body movements. The piezoelectric 

wafer was connected to a Micro1401 data acquisition box (Cambridge Electronic Design Ltd, 

UK), and the analogue output from the device was recorded in Signal (version 5 - Cambridge 

Electronic Design Ltd, UK). A small piece of plastic bubble wrap was secured over the pups 

back to keep their dorsal side warm. This setup was all attached to the breadboard and so 

could be moved into position for imaging without disrupting the animal.  

Images were captured using a tandem lens fluorescence macroscope, composed of 2 SLR 

camera lenses (50mm, 1.4f - Sigma Imaging, UK) positioned front to front, and a Q Imaging 

(Canada) optiMOS sCMOS camera, with a blue light emitting diode (LED) (ThorLabs, USA) 

attached to the side of the macroscope column, directed at a filter cube (bandpass filter for 

illumination light 473nm and emitted light long pass 500nm) (Figure 3.1b). The brain was 

positioned in the centre of the LED beam and the z-plane focus was set manually to be just 

below the skull surface (Figure 3.1c). Images were captured using Micromanager 

(https://micro-manager.org) at 12-bit 960x540 pixels TIFF images, at 50Hz (20ms frame rate) 

frame rate. The camera was controlled by a TTL pulse that triggered each frame, which was 

sent from Signal via the Micro1401 data acquisition box.  

 

 Sensory stimulation  

Whiskers were stimulated with a custom paddle that was designed to deflect multiple 

whiskers at a time. It was a 15x8mm plastic paddle secured to a 9V micro servo motor 

(SG92R – Tower Pro) (Figure 3.2a). The device was powered and controlled through an 

Arduino Uno board, which was connected to the Micro1401 data acquisition box and was 

commanded through Signal. Having the stimulation device commanded through the same 

software as the camera meant that exact timings of stimulation in relation to acquired 

images was known. The stimulation paddle was positioned caudal to the right whisker field, 

so it was not touching the face or the whiskers, and at an angle that could contact the 

whiskers as it arched (Figure 3.2b). It moved in a caudal to rostral direction for 30ms per 

stimulation – which is enough time for the paddle to move across the entire whisker field to 

the snout - and then returned to the rest position. There was a 500ms rest period before the 
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stimulation and a 10s inter-stimulus interval (ISI) between stimulations, with 20 stimulations 

per recording block.  

Single whisker stimulation was delivered using a piezoelectric bending actuator (Piezo 

Systems INC, USA) with a small clear pipette tip attached (Figure 3.2c). This device was 

powered by an isolated voltage simulator (DS2A – Digitimer Ltd, UK) and controlled again 

from Signal software via the Micro1401 data acquisition box to once again be time locked to 

the camera TTL pulse. Whiskers D1, E1 and delta on the right side were visualised under a 

binocular microscope (S6E, Leica Microsystems, UK) and trimmed to ~10mm using micro 

dissection scissors (World Precision Instruments, USA). A whisker was then threaded into 

the pipette tip, to ~2mm from snout. A 100ms 75V pulse was delivered to the piezoelectric 

bending actuator which resulted in a 150µm deflection at the end of the device. There was a 

500ms rest period before the simulation and a 10s ISI between stimulations and 20 repeats 

per block.  

Auditory stimulation was delivered using an Arduino passive buzzer module (HESAI, China), 

powered by the Arduino Uno board, and controlled from Signal software via the Micro1401 

data acquisition box. The device was positioned 10mm from the pup’s right ear and a 30ms 

auditory stimulation at 10kHz was delivered with a 500ms rest period before the 

stimulation, a 10s ISI, and 20 repeats. This auditory stimulation was then immediately 

repeated at 20kHz. 
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Figure 3.1 Macroscope wide-field calcium imaging setup  

a) Head-fixation setup. Animal is placed on top of a heat-mat set to 380C, with a piezoelectric 
device under its torso for capturing movement. The animal’s head is attached to the ball and 
socket mount head-fix using a set screw attached with dental cement (posterior to lambda – 
see zoom in).  

b) Illustration of the macroscope setup. 473nm blue LED illumination focused through a back-
back tandem macroscope lens onto cortical surface (of GCaMP6f expressing animal), with 
emitted light filtered through a 500nm long-pass filter and captured by a cMOS camera at 
50Hz. Movement is captured by the piezoelectric device under the animal’s torso, and external 
sensory stimulation is delivered (both tactile and auditory).  

c) Example field of view captured by macroscope (example P9 animals) 
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Figure 3.2 Whisker stimulation setup  
a) Whisker array stimulator, consisting of a plastic paddle that displaces the whiskers and a servo 

motor to drive movement.  
b) Position of whisker array paddle for stimulation is represented by the blue line, with the rostral 

to caudal direction of travel indicated by the blue arrow.  
c) Single whisker stimulator, consisting of a piezoelectric bender with a plastic tip for threading 

the whisker into.  
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 Whisker trimming 

For whisker trimming experiments, unilateral trimming of the left whiskers was carried out 

daily from the day of birth. Animals were restrained by their neck scruff and held up to a 

light to visualise the whiskers clearly and trimmed down to the surface of the whisker pad 

with curved micro dissection scissors (World Precision Instruments, USA). Control animals 

were restrained in the same way and had the left whiskers gently ruffled with the dissection 

scissors as a sham stimulation experience. All pups in the litters were weighed at the same 

time as the trimming protocol. Trimmed and control pups were mixed within litters. Animals 

in this protocol were imaged at P3 and P7 using the same imaging protocol as above.  

 

 Order and timing of imaging protocols  

10,000 frames (200s) of continuous images were captured for each block of both resting-

state and stimulated recordings. The order and timing of the blocks was kept consistent 

across subjects (Figure 3.3). In the initial cohort (P1-9 ontogenetic recordings) a resting-state 

recording, followed by whisker field stimulation and then auditory stimulation were 

repeated 3 times at 30-minute intervals. In the whisker trimmed cohort a resting-state 

recording, followed by two whisker field stimulation, followed by single whisker stimulation 

of D1, E1 and delta repeated twice for each and then finally a second resting-state recording 

1hr after the first.  
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Figure 3.3 Order and timing of imaging protocol  
a) Ontogenetic cohort experimental timings. 30 minutes post-surgery recovery followed by 3 blocks of 
spontaneous recording, followed by whisker and auditory stimulation protocols. 
b) Whisker trimmed cohort experimental timings. 30 minutes post-surgery recovery followed a 
spontaneous recording, followed by whisker field and single whisker stimulation.  
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 Peripheral silencing 

To silence the whisker pad 30µl of 2% xylocaine (with adrenaline – AstraZeneca, UK) was 

injected subcutaneously into the right whisker pad. Immediately a 7 min resting-state 

recording was captured, followed by a block of whisker stimulation to the right whiskers.  

 

 Histology 

To verify the GCaMP expression pattern, brains were removed from a subset of P7 animals 

and drop-fixed in 4% paraformaldehyde made in Dulbecco’s PBS (Sigma-Aldrich Ltd, UK) for 

48hrs at 40C and then stored at 40C in Dulbecco’s PBS. Whole brains were encased in low 

melting point agarose (2-3% in distilled water) block to provide stability while sectioning. 

Coronal sections were cut through the whole brain at 50µm thickness (Leica VT1200 

vibratome, Leica Microsystems, UK), and mounted directly onto slides (Leica Microsystems, 

UK). Once dry they were cover slips were added using Vectashield with DAPI mounting 

medium (Vector Laboratories LTD, UK). Slices were visualised using a fluorescence 

microscope (DM IRB Leica Microsystems, UK) and captured on a Leica DFC 450C camera at 

5x magnification as tile scanned 696x520 8-bit .lif files. 
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 Analysis 

Imaging data were imported and analysed using custom designed software in MATLAB 

(Mathworks, MA, USA). All code used for analysis can be found at 

https://github.com/cx749/calcium-imaging. 

Image timeseries (TIFF stacks) were imported and underwent a bilinear transformation to 

reduce the spatial resolution of the image by half (from 960x540 to 480x270). This was done 

to improve computational efficiency during the first pass of analysis over the whole cortex.  

 

 Movement data 

Voltage generated by the piezo wafer placed under the animal’s torso was collected at a 

frequency of 1khz (20 times faster than the imaging). Changes in piezo output voltage 

occurs whenever it undergoes deflection caused by movement of the body on top of it. 

Electrical interference from the heat mat introduced high frequency noise to the movement 

trace, which was suppressed using a 20x averaging temporal filter centred on each image 

frame. This downsampled the movement data to 50hx, matching the image acquisition 

while preserving the movement related amplitude changes but reducing the electric noise. 

Matlab’s ‘Envelope’ function was used to assign a signal envelope over the positive values of 

the averaged trace to account for the bidirectionality of the signal. A threshold at which the 

movement trace amplitude changed from the baseline was assigned, and whether the signal 

at each point exceeded this threshold was calculated, resulting in a binary table of 

movement or no movement for each imaging frame. 

 

 Spontaneous activity analysis 

3.2.9.2.1 Pre-processing 

Regions of interest (ROIs) were manually delineated for each animal. These regions included 

the boundary of the exposed cortex, the left and right hemisphere individually and 

individual regions of the sensory (B - barrel cortex, FL - front limb, HL - hind limb, V - primary 

visual and A – auditory), motor (M1 - primary motor, M2 - secondary motor) and sensory 



123 
 

association cortices ( RS - retrosplenial, PPC - posterior parietal). For individual regions the 

coordinates of a pixel in the centre of each region was assigned to represent that area’s 

activity. The position of these regions was determined using a variety of resources - the atlas 

of the developing cortex defined by Ackman, Zeng and Crair, 2014, the Allen Institute’s adult 

mouse atlas, the location of the barrel cortex identified by whisker stimulation experiments 

in this study and characteristic spontaneously occurring activity such as retinal waves 

identified in resting-state recordings.  

For the multipixel ROIs the average pixel intensity, and for the individual regions the 

intensity of the assigned pixel was calculated for each frame. This raw timeseries of regional 

fluorescence activity was then baseline corrected to account for any variability in baseline 

fluorescence across cortical regions and different animals. The baseline value (f) was 

calculated by averaging the lowest 5% of pixel values in the timeseries. This is one of several 

methods previously used in calcium imaging analysis (Keemink et al., 2018). The raw 

timeseries values were corrected by subtracting the baseline (df) and then dividing by it 

(df/f) and multiplying by 100 to give a percentage change (df/f%). Baseline corrected images 

were temporally filtered at <1Hz using a Butterworth filter (Del Giorno et al., 2012). The 

variance in the filtered baseline was calculated for a 2s rest period in all traces and the 

average for all traces across all ages was calculated as 0.42 ±0.09%.  

 

3.2.9.2.2 Frequency of spontaneous activity  

Periods of activity were identified using an automated function that selected peaks with an 

amplitude exceeding twice the baseline variance (i.e. 1%). The locations of these peaks were 

compared to the binary log of movement, and if movement had occurred 500ms before or 

after the peak of activity it was assigned as activity related to animal movement. For each 

trace the frames related to animal movement were excluded, the peaks per minute were 

then calculated for the remainder of the trace.  
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3.2.9.2.3 Correlation of spontaneous activity  

To calculate the correlation of activity in different regions the pre-processed traces were 

compared by Pearson’s correlation and a coefficient value was calculated. To calculate 

activity peaks that occurred in regions simultaneously the location of peaks in one 

timeseries were identified and if a peak in the other region’s timeseries occurred within 

200ms before or after it was assigned as a match, and the percentage of matching peaks out 

of the total activity peaks in the timeseries was calculated as a percentage of coordinated 

activity. 

 

 Stimulated activity analysis 

For stimulated recordings a region of activation was calculated. Each stimulation had a 

500ms period preceding them and the average fluorescence value of this was used as the 

baseline for each individual stimulation. First the binary movement log for the recording was 

consulted and if movement occurred in the 1s following stimulation this sweep was 

removed from further analysis. If the animal was still during the stimulation period the 

baseline value was calculated for all pixels, and then a df/f% for each pixel in the 1s 

following a stimulation was calculated and mean averaged. This was repeated for all still 

stimulation sweeps and each pixel location was averaged producing a single activation map. 

From this averaged map the maximum change in fluorescence was identified and then the 

continuous area surrounding this pixel that exceeded 50% of its value was delineated and 

assigned as the activation ROI. This average df/f% for the 1s following stimulation was 

visualised using a heatmap and the activation ROI border was marked on it, allowing the 

location of the ROI to be manually assessed. For whisker stimulation this ROI was 

consistently in the contralateral cortex in an area that aligns with the barrel cortex. In 

auditory stimulation there was no consistent ROI location identified and so no further 

quantification of response was carried out.  
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3.2.9.3.1 Amplitude of whisker stimulation response 

The amplitude of fluorescence change following simulation was calculated from the 

maximal response pixel in the heatmap. The pixel intensity at this location was extracted for 

each 10s stimulation period. The first 500ms were used as the baseline (f) and the 9.5s 

following the stimulation was baseline corrected (df/f%). The peak amplitude was calculated 

as the maximum value in the 1s period following stimulation. The average amplitude peak 

was calculated for each animal by averaging all 10s stimulation periods and calculating the 

peak amplitude following stimulation. 

 

3.2.9.3.2 Area of whisker stimulation response 

The spatial extent of the whisker stimulation response was calculated from the activation 

ROI. The pixel intensity of this was calculated as a percentage of the entire expose cortical 

surface. This was to account for the growth of the cortex during the postnatal period 

investigated.  

 

 Statistics 

Statistical analysis was performed using R version 3.5.0 (The R Project).  

Data were checked for normality of distribution using both a Shapiro-Wilk’s test and visual 

assessment using a histogram and a quartile-quartile plot. If either group failed normality 

testing non-parametric tests were used. Most data are presented as boxplots, where mean, 

25th and 75th quartiles are shown in the main box, and whiskers representing the largest 

values, with observations more than 1.5 time the IQR shown as outlier points.  
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3.3 Results  

 Validation of transgenic breeding strategy  

In order to measure neural activity across the developing cortex, a transgenic strategy was 

implemented in which the calcium indicator GCaMP6f was specifically expressed in 

excitatory cortical neurons. GCamp6f was used because at the time of experimentation it 

was the fast GECI available, giving the closest temporal resolution to neural activity possible 

with genetically expressed indicators. It had also been previously been shown that this fast 

version of GCAMP6 was still bright enough to visualises through the intact skull in mice 

(Kozberg et al., 2016; Xiao et al., 2017). To achieve this, Emx1-IRES-cre mice, in which the 

IRES-cre gene is inserted into the locus of the Emx1 homeobox gene (Gorski et al., 2002), 

was crossed with the Ai95D mouse line that has a floxed-STOP cassette ahead of the 

GCaMP6f gene driven by the CAG promoter knocked in to the ROSA26 locus (Ding et al., 

2014). The Emx1-IRES-cre mouse is a commonly used and well characterised transgenic line, 

that drives expression of cre recombinase in ~88% of neurons in the neocortex (Gorski et al., 

2002; Kummer et al., 2012). In animals carrying both transgenes (Emx1-Ai95D), the cre 

activity should recombine the floxed STOP cassette, permitting expression of GCaMP6f in 

cortical neurons. Expression of GCaMP6f was initially verified using goggles to visualise 

fluorescence in the newborn offspring of the transgenic parents. Unexpectedly, some 

offspring appeared to be expressing GCaMP6f across their bodies (including brain, skin and 

muscle), suggesting off-target expression. To assess expression patterns the brains of these 

animals and those that appeared to express only in the brain (as would be expected of the 

Emx1-Ai95D cross) were fixed and coronally sectioned. Clear differences in expression 

patterns were observed. Animals that had shown fluorescence in only the brain in vivo 

(Cortical expressing - Figure 3.4a) had expression of GCaMP6f in the cortex and 

hippocampus but not in the deep grey matter, which agrees with previous publications 

documenting expression of cre in the Emx1-IRES-cre line (Gorski et al., 2002; Kummer et al., 

2012). However, animals that had shown fluorescence across the body (Body expressing –

Figure 3.4b) had expression also in the deep grey matter. In addition, bodies of these 

animals were dissected after termination and visualised with the goggles. GCaMP6f 

expression was seen in other organ systems as well (including the liver and hearts).  
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Germline recombination has been previously reported in cre transgenic lines (Steinmetz et 

al., 2017), which lead to the theory that males carrying both transgenes may have the 

recombined Ai95D allele in some sperm. Therefore, breeding strategy was modified so 

singly transgenic males (with either Emx1-IRES-cre or Ai95D) were crossed with females 

carrying any combination of the genes. Following this modification, no more offspring with 

aberrant expression were born. To validate the transgene expression from this new 

breeding strategy a subset of litters had their DNA from tail-tips tested with PCR. This 

confirmed that animals expressing GCaMP6f in their cortex carried both Emx1-IRES-cre and 

Ai95D. This confirmed that visualisation of fluorescence using goggles in the newborn 

animals accurately identified transgene expression and was used throughout the rest of the 

study.  
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Figure 3.4 Expression of GCaMP6f in the brain of both on and off target transgene expression  
Coronal sections of the brain showing the expression of GCaMP6f from a P7 animal that appear to 
have on target cortical expression in vivo (a) and one that had off target expression across the rest of 
the body (b). Clear differences in expression can be seen, with a) showing cortical and hippocampal 
expression as expected from Emx1-Ai95D cross and b) showing additional deep grey matter expression 
which would not be expected from this cross.  
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 Validation of movement detection 

In this study, pan-cortical neuronal activity was imaged using awake neonatal Emx1-Ai95D 

mice using a tandem lens fluorescence macroscope. Animals were head-fixed for imaging 

but with free movement of the body allowed. Periods of body movement during image 

acquisition were recorded with a piezoelectric device placed under the animal (Figure 3.1a). 

When bent, such as when the animal moved, the piezoelectric device outputs a voltage, the 

amplitude of which reflected the size of the deflection. To identify periods of movement for 

use in the automated analysis protocol a threshold voltage was assigned for each recording 

and when the piezo recording exceeded this threshold, this point was classified as periods of 

movement (Figure 3.5a). 

To validate whether this method captured all periods of movement reliably some sessions of 

simultaneous piezo and video recording of the animal’s body were acquired. From this 

recording a timeseries of the average change in pixel intensity was extracted to give a 

profile of body movement visually recorded. Movement observed in the video recordings 

was compared with the piezo recording and were found to be well correlated (Figure 3.5b). 

In addition, the video was manually assessed for movement types, and this revealed that 

the piezoelectric recording was able to capture individual limb movements as well as gross 

body movements (Figure 3.5b). These results are strong evidence that the recording of 

movement with a piezoelectric device under the animal’s body is a reliable method and 

hence it was used throughout this study.  
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Figure 3.5 Validation of movement monitoring   
a) Example of a piezoelectric movement recording, with an automated envelope delineated over 

positive values (black), and the assigned threshold of movement values (grey).  
b) Example of piezoelectric movement recording and simultaneous video recording of pup’s body 

(blue). Marked are visually detected periods of individual limb movement and coordinated 
body movement.  
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Animals in these experiments showed typical neonatal rodent behaviour, with cycles of 

movement and rest periods (Daszuta and Gambarelli, 1985). In neonatal mice it has been 

reported that these behavioural changes correlate with awake/sleep cycles, where neonatal 

mice are asleep when they are at rest (Durand et al., 2005; Balbir et al., 2008). Traditionally 

sleep-wake cycles in experimental mammals have been measured using electromyogram 

(EMG) of the nucleal muscle as it was found to be well correlated to behavioural states 

(Pivik, Sircar and Braun, 1981; Schwartz and Kilduff, 2015). However due to the invasive 

nature of these recordings alternative methods of assessment in neonatal rodents were 

investigated. They revealed that in young animals, body movements were well correlated to 

the sleep-wake cycle. This study has recorded the body movements of mice during image 

acquisition (Figure 3.5) and so by identifying periods of movement and quiescence it is 

possible to have a proxy for these animals’ sleep/wake cycles to compare to cortical activity.  

In the developing brain movement has been shown to lead to tactile stimulation resulting in 

neural activity in the somatosensory cortex being generated (Khazipov et al., 2004; Tiriac et 

al., 2012; Akhmetshina et al., 2016), but not in the motor cortex (Dooley and Blumberg, 

2018). Activity during periods of movement were preliminarily investigated and a 

characteristic spatial pattern of activation was observed at all ages recorded (Figure 3.6a). 

From P1 to P9 activation of the body and limb somatosensory cortex was found while no 

activation was detected in the motor cortex.  

Body movement also resulted in instability in the image capture due to movement of the 

brain, under the head-fixed skull. Due to the multidimensional nature of the movement, 

with the images coming in and out of focus in the z plane, image alignment was not 

possible. Because of the characteristic cortical activation patterns during movement and the 

contamination of the imaging plane periods of movement were separated from periods of 

quiescence. Movement periods were not further investigated, and periods of rest were used 

for the rest of the remainder of the presented data. It has previously been seen that 

spontaneous calcium wave activity in the developing mouse brain mostly occurs during this 

restful sleep-like behavioural state (Adelsberger, Garaschuk and Konnerth, 2005). 

Neonatal rodents are born with limited motor skills, which develop during the first few 

postnatal weeks (Brust, Schindler and Lewejohann, 2015). The neonatal period investigated 

in this study is during this rapid acquisition of motor skills and so it is possible the movement 



132 
 

behaviour could be changing. Because the periods of movement are eliminated from the 

analysis any changes to the amount of movement could affect what is being assessed. The 

proportion of time spent moving during both resting-state (Figure 3.6b) and sensory 

stimulation recordings (Figure 3.6c) was calculated. There was no change in the amount of 

time spent moving with age in either condition. This ratio of movement to rest is similar to a 

previous report of neonatal mouse awake, head-fixed in vivo recordings (Adelsberger, Garaschuk 

and Konnerth, 2005).  

  



133 
 

 

 

Figure 3.6 Characterisation of movement  
a) Example of cortical activity in the 1s following a bout of active movement at all postnatal ages 
investigated. A characteristic activation of somatosensory cortex is seen at all ages.  
The percentage of time spent moving during resting-state recordings (b) or during whisker stimulations 
(c) does not change with postnatal age (one-way ANOVA).   
 
n# (pups) - [n: P1 = 7, P3 = 6, P5 = 6, P7 = 6, P9 = 7]  
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 Resting-state pan-cortical calcium imaging 

The occurrence of spontaneous activity – no external stimulation required – in the 

developing neonatal cortex is well documented and is an important developmental stage 

occurring in the pre-sensory brain (Colonnese and Khazipov, 2012). This developmental 

stage has been extensively investigated in individual regions of the cortex, particularly the 

sensory areas but there is little research into how this activity is interacting across these 

cortical areas. In this study several minutes of pan-cortical calcium imaging were captured in 

unanaesthetised, resting neonatal mice, from P1 to P9.  

Spontaneous activity was present from P1 and had complex spatiotemporal dynamics, 

occurring as both propagating waves and discrete regions of activity. Figure 3.8a is a time 

projection map of 10s of activity, showing that within this relatively small period, activity is 

present across the entire cortex. Initial exploration of activity identified discreet bursts 

confined to sensory regions, including retinal waves (Ackman, Burbridge and Crair, 2012) 

and activity in individual barrels of the primary somatosensory cortex (Mizuno et al., 2018) 

(Figure 3.7a). These discrete activity bursts occurred both bi- and uni-laterally, sometimes in 

isolation (Figure 3.7b) and with other active regions simultaneously (Figure 3.7c), and  

sometimes activations of areas that are members of established networks in the mature 

brain were seen (Figure 3.7d). 
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Figure 3.7 Examples of spontaneous pan-cortical activity  
Spontaneous activity occurring in the developing cortex during periods of rest are varied. Here are 
examples of 1s of cortical activity. Regional events such as retinal waves and barrel bursts are seen (a). 
Activity sometimes occurs in a single region (b) and others a large proportion of the cortex is active 
simultaneously (c). Sometimes this large spread of cortical activity is coordinated amongst associated 
regions, such as the somatomotor network (d).  
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 Pre-processing resting-state recordings  

Due to this complex spatiotemporal nature of activity, the cortex was parcellated into 

distinct anatomical regions that allowed for the temporal properties of each to be analysed 

and compared. The brain is rapidly growing during the early postnatal period (Figure 3.9a) 

and it is likely that the boundaries of regions are changing with it. Unlike the adult mouse, 

there is no established atlas of the developing neonatal brain. For this study, regions of 

interest were defined manually for each animal using a selection of resources to identify 

their location. The locations of the primary sensory regions, sensory association areas and 

motor cortex were defined based on anatomical and functional criteria (see methods  

3.2.9.2.1)(Figure 3.8b). A single pixel in the centre of each ROI was chosen and the activity of 

this was used as a measure of that region (Figure 3.8b).  

To investigate the temporal properties of activity in these regions timeseries of fluorescence 

changes in these regions were calculated. These traces reveal periods of quiescence and 

bursts of activity can be seen, similar to the discontinuous electrical activity seen in both 

rodents (Colonnese and Khazipov, 2012) and humans (Lamblin et al., 1999; Vanhatalo et al., 

2002; Kaminska et al., 2017). These timeseries data were baseline corrected by normalising 

to the lowest5% of fluorescence intensities across the timeseries (df/f%) (Figure 3.8c) and 

then lowpass filtered at 1Hz (Figure 3.8d). Baseline correction aims to eliminate the effect of 

variability in different baseline fluorescence between animals due to variation in expression 

levels and brain/skull anatomy. Another common method used to calculate the baseline is 

the mean of the entire timeseries (Vanni et al., 2017). This was not used initially due to the 

possibility that the amount of activity occurring would be changing with developmental age, 

and therefore the resulting in differing baseline values. To test the influence the chosen 

baseline method had on the results a post hoc Pearson’s correlation coefficient was used. 

The comparison was made between timeseries baseline corrected using mean values versus 

the lowest 5% baseline traces. The average correlation coefficient across all ages was 

0.996±0.003, meaning that there was little difference between these two methods of pre-

processing. Temporal filtering at low frequencies has been previously used in calcium 

imaging studies, and calcium waves in both mature (Vanni and Murphy, 2014; Vanni et al., 

2017) and developing (Adelsberger, Garaschuk and Konnerth, 2005) brains have been 

shown to occur at low frequencies. In these data this temporal filtering process preserves 
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the overall shape of the trace, with periods of quiescence and bursts of activity being 

identifiable. In the raw trace a high frequency oscillation of around 8-10Hz was present 

(Figure 3.8c). This frequency is similar to the heart rate of neonatal mice (Zehendner et al., 

2013), and heartbeat frequency oscillations in GCaMP signals acquired at higher frequencies 

has previously been reported (Vanni and Murphy, 2014). The presence of this heart beat 

correlated oscillation in the GCaMP6f fluorescence signal is likely due to the 

autofluorescence of a mitochondrial flavoproteins (Masters and Chance, 1999), which are 

known to be a potential contaminant when imaging fluorescence in the 500–600 nm 

emission range. However, it has been shown to be a relatively small contributor in GCaMP 

imaging (Díez-García, Akemann and Knöpfel, 2007) particularly in young animals (Kozberg et 

al., 2016), which can be seen in this data set where the high frequency oscillations have a 

small amplitude compared to GCaMP6f activity (Figure 3.8c). 
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Figure 3.8 Pre-processing of resting-state activity  
a) Time projection map of 10s of spontaneous cortical activity.  
b) example of location of cortical regions of interest in left and the regional pixel locations on the right 
hemisphere (B - barrel, FL - front limb, HL - hind limb, M1 - primary motor, M2 - secondary motor, V - 
primary visual, RS - retrosplenial, PPC - posterior parietal, A – auditory).  
c) Example of a raw timeseries of spontaneous cortical activity, with the period of (a) marked. d) Is the 
same example temporally filtered at <1Hz. 
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 Stability of GCaMP6f expression across postnatal age 

The neonatal ages investigated in this study (P1 and P9) are a period of rapid brain growth, 

which can be seen clearly from the size of the cortical surface imaged (Figure 3.9a). It is not 

only the size of the brain, but also the population of cells present in the cortex and their 

stage maturation that are changing. Emx1 is present in cortical excitatory neurons when 

they are born embryonically (Chan et al., 2001), which means that the expression of 

GCaMP6f should be stably expressed in all postnatal age used in this study. Another 

developmental change that is occurring is the thickening of the skull. The more recent 

generations of GCaMP molecules are bright enough to visualise through the adult mouse 

skulls (Silasi et al., 2016) however, changing bone thickness could affect the amount of 

fluorescence signal that reached the camera. Measures of both baseline and peak activity 

were calculated to confirm that the fluorescence signal being captured was consistent 

across postnatal age.  

Periods of baseline quiescence were identified in resting-state recordings as the lowest 5% 

of pixel values in the timeseries. These were averaged across the whole cortical surface and 

compared between postnatal ages. This raw baseline fluorescence did not significantly 

change between P1 and P9 (Figure 3.9b). In these same resting-state recordings the 

maximum change in fluorescence from baseline was calculated and compared, and there 

was no significant difference across postnatal age (Figure 3.9c). These measures suggest 

that the signal being recorded in this study is consistent across ages.  
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Figure 3.9 Stability of GCaMP6f expression across postnatal age  
The cortex increases in size during the postnatal period investigated in this study (a) (examples from 
each age). 
 The average lowest 5% of fluorescence values in resting-state recordings does not change with 
postnatal age (b). The maximum fluorescence change from baseline during spontaneous activity also 
does not change with postnatal age (c).  
 
n# (pups) - [n: P1 = 7, P3 = 6, P5 = 6, P7 = 6, P9 = 7]  
  



141 
 

 Impact of anaesthesia on cortical activity  

It has been shown that spontaneous activity across the cortex is suppressed with the 

administration of isoflurane anaesthesia in neonatal mice, with recovery after cessation 

(Adelsberger, Garaschuk and Konnerth, 2005; Hanganu, Ben-Ari and Khazipov, 2006; 

Ackman, Burbridge and Crair, 2012; Siegel et al., 2012). As a result, a period of recovery time 

following anaesthesia is required before imaging to capture an accurate representation of 

neural activity in the developing brain. The length of time required for the full recovery of 

activity after anaesthesia is not known, but this is likely dependent on anaesthesia used, 

dose and duration. In these experiments, animals underwent approximately 7 minutes of 

isoflurane anaesthesia to allow skull exposure and preparation of the head-fix. To test the 

effect of the specific dose and duration of anaesthesia used during this head-fixation 

surgery, pan-cortical recordings were captured immediately following the cessation of 

anaesthetic in a subset of animals. The averaged timeseries of activity across the cortex was 

calculated (Figure 3.10a). Immediately following the cessation of anaesthesia there is no 

spontaneously occurring activity present in the cortex (Figure 3.10b). After approximately 2 

minutes activity begins to return, with activity present across the cortex before 6 minutes 

post-anaesthesia (Figure 3.10b).  

This quick recovery of activity informed the design of these experiments, with a 30-minute 

post-surgery recovery period left before the imaging protocol. To further validate this 

design, spontaneous imaging sessions were repeated 3 times at 30-minute intervals, and the 

frequency of global cortical activity in each session compared (Figure 3.10c). At P1, P3 and 

P5 there was a significant increase in frequency across these sessions (F = 5.25, p < 0.05 – 

two-way repeated measures ANOVA), and with post-hoc pair-wise comparisons this 

difference was found to be between the first (30-minitues post-anaesthesia) and second 

(60-minutes post-anaesthesia) recording session. This change in activity over session was 

not evident at P7 or P9. Because of this difference in the younger ages, the first recording 

session from all ages was excluded from the spontaneous activity analysis.  
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Figure 3.10  Impact of anaesthesia on cortical activity  
Isoflurane anaesthesia supresses spontaneous activity in the neonatal cortex. a) is an example trace of 
cortex activity following 7 min of anaesthesia. Cortical activity immediately following the cessation is 
suppressed (b1). By 5 min post anaesthesia activity across the cortex has returned (b2).  
Resting-state recordings were acquired at 30 min intervals (session 1-3). The frequency of the activity 
in these recordings significantly increases across the experimental sessions in P1-5 animals (c), but not 
at P7-9. 
 
n# (pups) - [n: P1 = 7, P3 = 6, P5 = 6, P7 = 6, P9 = 7]  
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 Epileptiform events in GCaMP6 expressing mice 

In 2017 Steinmetz et al identified the presence of epileptiform events in the adult cortex of 

multiple GCaMP6-expressing transgenic mouse lines. No epileptiform events were found in 

the Emx1-Ai95D cross, but to confirm this was the case in the cohort used in this study a 

subset of spontaneous recordings across developmental ages were analysed using the same 

methods as Steinmetz et al. Small ROIs in the frontal, somatosensory and visual cortices 

were defined (Figure 3.11a) and a df/f% timeseries was calculated (Figure 3.11b). From 

these raw traces the peaks of activity were identified using Matlab’s (Mathworks, USA) 

‘findpeaks’ function, and their height and full-width at half height were calculated and the 

relationship between them analysed. The original report categorises epileptiform events as 

large amplitudes, brief duration calcium elevations that form a distinct population. No 

events of this description were identified in any of the traces analysed, with a single 

continuous population of events found in all (Figure 3.11c). 
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Figure 3.11 Identification of epileptiform events in GCaMP6 expressing mice  
The presence of epileptiform events in the developing cortex was investigated. a) Is an example of a 
selected ROI. b) Averaged timeseries of the ROI in (a) baseline corrected. The peaks of activity were 
identified and the peak prominence and the width at half-max was calculated (c). No examples of large 
prominence and small width which are characteristic of epileptiform events were identified in any of 
the recordings analysed. 
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 Frequency of spontaneous activity  

From pre-processed timeseries of resting-state recordings periods of activity were identified 

using an automated function, as follows (Figure 3.12a). The variance in signal during a 1s 

period of quiescence was calculated for all rest-state recordings and averaged across the 

population to give a value of change that was considered noise. To be defined as an event, 

its prominence had to exceed twice this noise level, which was 1% change in fluorescence 

from baseline. Events occurring during periods of movement were discarded and the 

frequency of activity during rest was calculated. The frequency of activity bursts across the 

cortex increases with postnatal age (Figure 3.12c)  (F = 17.41, p < 0.001 – one-way ANOVA), 

and the frequency of activity in the right and left hemispheres were similar at all ages 

(Figure 3.12d). This activity was also investigated in individual regions, and an increase in 

frequency of spontaneous events was found in all cortical regions (Figure 3.13a)a. When the 

activity in each region is normalised to the global activity there is not a significant change 

with age (Figure 3.13b), suggesting that even though external sensory perception comes 

online at different ages in different modalities the spontaneous activity is developing in a 

more uniform, pan-cortical way.  

 

 

 

 

 

 

 

a (LB – F = 7.302, p < 0.001, RB – F = 5.728, p < 0.01, LFL – F = 7.682, p < 0.001, RFL – F = 5.75, p < 

0.01, LHL – F = 9.081, p < 0.001, RHL – F = 10.09, p < 0.001, LM1 – F = 7.233, p < 0.001, RM1 – F = 

7.05, p < 0.001, LM2 – F = 10.71, p < 0.001, RM2 – F = 16.2, p < 0.001, LV – F = 16.78, p < 0.001, RV – 

F = 20.38, p < 0.001, LRS – F = 13.2, p < 0.001, RRS – F = 12.97, p < 0.001, LPPC – F = 24.8, p < 0.001, 

RPPC – F = 19.49, p < 0.001, LA – F = 16.88, p < 0.001, RA – F = 12.54, p < 0.001 - one-way ANOVA).  



146 
 

 

 

Figure 3.12 Global frequency of spontaneous cortical activity  
a) An example pre-processed resting-state timeseries with peaks of activity above 1% prominence 
identified. The frequency of these activity bursts in the cortex significantly increases with postnatal age 
(b) (p <0.01) and this increase occurs at the same rate in both right and left hemisphere (c).  
 
n# (pups) - [n: P1 = 7, P3 = 6, P5 = 6, P7 = 6, P9 = 7]  
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Figure 3.13 Regional frequency of spontaneous cortical activity  
The frequency of spontaneous activity increases with postnatal age in all cortical regions (a) (p < 
0.001). When normalised to global event frequency there is no change with age (b). 
 
n# (pups) - [n; P1 = 7, P3 = 6, P5 = 6, P7 = 6, P9 = 7]  
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 Coordination of spontaneous activity  

The frequency of spontaneous events across cortical regions gives us some indication of the 

spatial properties of this endogenously generated activity. To further explore the 

coordination of this activity across regions, coinciding activity in different regions are often 

used as a measure of functional connection (van den Heuvel and Hulshoff Pol, 2010). This 

functional connection between regions could arise from common thalamocortical inputs or 

from corticocortical connections between cortical regions. Both of these pathways are 

maturing during the postnatal period investigated in this study and so the coordination of 

activity between cortical regions is possibly changing (Erzurumlu and Gaspar, 2012). It is 

known that the local coordination of activity is changing during this developmental period 

(Golshani et al., 2009; Mizuno et al., 2018), little is known about the global cortical 

functional activity. 

A commonly used method of comparing the activity patterns between regions in multiple 

modalities (including, fMRI, EEG and calcium imaging) is Pearson’s pairwise correlation 

(Zhang, Tian and Zhen, 2007; Mohajerani et al., 2013; Rojas et al., 2018), which generates a 

coefficient value indicating how similar the two timeseries are (Figure 3.14a). When global 

activity in the right and left hemispheres were compared, a decreased correlation 

coefficient was seen between P1 and P9 (Figure 3.14a) (F = 23.12, p < 0.001 – one-way 

ANOVA). The interhemispheric correlations of individual cortical regions also decreased with 

postnatal age (Figure 3.14b)b. 

Correlation coefficient calculations compare all the activity from a region, including the 

periods of quiescence. As the timeseries trace is relatively flat during this period they are 

counted as periods of correlated activity. Since event frequency changes dramatically over 

development (Figure 3.13), correlation coefficients may reflect coordination of varying 

amounts of quiet and active periods at different ages. Therefore, to specifically measure 

periods of coordinated activity, a second method of inter-region comparison was used. 

Specifically, the percentage of spontaneous events in the right and left hemisphere 

occurring within 200ms of each other were calculated. As with correlation coefficient, the 

percentage of coordinated activity between the hemispheres also decreased with postnatal 

age (Figure 3.14c) (F = 18.07, p < 0.001 – one-way ANOVA). When explored at a regional 
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level, most cortical areas had decreased interhemispheric coordinated activity, except for 

secondary motor (M2),  auditory (A) and retrosplenial (RS) cortex (Figure 3.14d)c. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b(B – F = 12.72, p < 0.001, FL – F = 8.6, p < 0.001, HL – F = 12.32, p < 0.001, M1 – F = 7.896, p 

< 0.001 , M2 – F = 7.42, p < 0.001, V – F = 9.515, p < 0.001, RS – F = 8.285, p < 0.001, PPC – F 

= 3.298, p < 0.05, A – F = 2.818, p < 0.05 – one-way ANOVA) 

c (B – F = 4.465, p < 0.01, FL – F = 814.52, p < 0.001, HL – F = 14.52, p < 0.001, M1 – F = 7.798, 

p < 0.001 , M2 – ns, V – F = 16.78, p < 0.001, RS - ns, PPC – F = 8.707, p < 0.001, A - ns – one-

way ANOVA).  
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Figure 3.14 Hemispheric coordination of spontaneous activity  
a) Examples of right (blue) and left (orange) hemisphere timeseries at P1 and P9, and their Pearson’s 
correlation coefficient r values. The correlation of hemispheric activity decreases with postnatal age 
(b) (p<0.001). This decrease in hemispheric correlation is seen across all regions (c). There is also a 
decrease in the percentage of activity peaks within 200ms of each other In the right and left 
hemisphere (d) across cortical regions investigated (e). 
n# (pups) - [n; P1 = 7, P3 = 6, P5 = 6, P7 = 6, P9 = 7]  
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Within this complex dynamic pan-cortical activity, functional networks could be emerging. 

These networks are not just intercortical connections, but also connections between regions 

within the hemisphere. In the mature cortex networks are found between somatosensory 

and motor regions, as well as areas of the medial-parietal cortex (Zingg et al., 2014) with 

coordinated resting-state activity found between them (Mohajerani et al., 2013; Vanni et 

al., 2017). The emergence of these networks has been found early in postnatal development 

(Ackman, Zeng and Crair, 2014).  

To investigate the functional connections of the data in this study Pearson’s pairwise 

correlations were calculated between all cortical areas within and across hemispheres. 

These data were organised into correlation matrices with associated regions were adjacent 

(somatosensory, motor, and auditory cortices and medial-parietal region). This revealed 

organisation in spontaneous activity as early as P1 (Figure 3.15) with higher correlation 

coefficients within areas of the sensorimotor and the medial-parietal cortices meaning their 

activity is more coordinated than with other regions. These functional networks are present 

through until P9, with a decrease across all regions expect RS seen, but with more 

correlated networks remaining the most correlated at P9. In contrast in the adult mouse 

cortex slow-wave activity during sleep is correlated across the hemispheres with a 

coefficient of around 0.5, with RS cortex still being the most highly correlation region 

(Mohajerani et al., 2010). These neonatal findings agree with previous findings of pan-

cortical functional networks in the developing brain (Ackman, Zeng and Crair, 2014) The 

study presented here has a finer break down of postnatal age and shows that these network 

developments are gradually occurring. 
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Figure 3.15 Cortical network coordination of spontaneous activity  
Matrices of average correlation between cortical region resting-state activity from P1 to P9.  (B - barrel 
cortex, FL - front limb, HL - hind limb, M1 - primary motor, M2 - secondary motor, V - primary visual, 
RS - retrosplenial, PPC - posterior parietal, A – auditory).  
n# (pups) - [n; P1 = 7, P3 = 6, P5 = 6, P7 = 6, P9 = 7]  
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 Sensory stimulation 

The endogenously generated activity so far described is known to be vital for the successful 

development of neural networks (Colonnese and Khazipov, 2012). This activity facilitates the 

organisation of the sensory cortices that allows accurate representations of incoming 

sensory stimulation to reach the cortex (Blankenship and Feller, 2010). Mice are born in a 

relatively immature state and not all sensory pathways are mature enough to communicate 

external stimulation at birth, but as was seen in the previous section endogenously 

generated activity is present in the cortex from P1. Responses to visual or auditory stimuli 

don’t occur until the second postnatal week (Froemke and Jones, 2011; Jing Shen and 

Colonnese, 2016) whereas the somatosensory network matures earlier and cortical 

responses to tactile stimulation are present from birth (Mitrukhina et al., 2015b). Once the 

sensory pathways do become active the incoming information facilitates further refinement 

of the organisation of the network to ensure a faithful representation of the external world 

can be processed by the animal. As with spontaneously occurring activity this is a 

progressive developmental process that is changing during the early postnatal weeks 

(Jamann, Jordan and Engelhardt, 2018). 

In this study tactile stimulation was delivered during imaging with a single 30ms deflection 

to a portion of the right whiskers in caudal to rostral motion. This stimulation resulted in a 

neural response in the contralateral barrel cortex, but no other cortical areas at any 

postnatal ages investigated (Figure 3.16a). The average fluorescence from these regions of 

activation was measured for each stimulation and an average response trace for each 

animal calculated (Figure 3.16b). The peak amplitude of cortical response to whisker 

stimulation did not significantly change between P1 and P9 (Figure 3.16c). The area of 

activation was calculated as a proportion of the whole exposed cortical surface, and this 

significantly increased with age (Figure 3.16d) (F = 10.49, p < 0.001 – one-way ANOVA).  

  



154 
 

 

Figure 3.16 Cortical responses to whisker field stimulation  
a) Examples of individual animals averaged cortical response to right whisker field stimulation from 
P1-9, and an individual animal example of the averaged timeseries response in the area of activation. 
The amplitude of the response to whisker field stimulation does not change with age (c), but the area 
of activation increased with postnatal age (d) (p<0.001). 
n# (pups) - [n: P1 = 7, P3 = 6, P5 = 6, P7 = 6, P9 = 7] 
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These data are averaged from 3 blocks of 20 stimulations for each animal. The amplitude of 

individual responses to repeated stimulation varied within individual animals (Figure 3.17a). 

Repeated stimulation can lead to receptor adaption and reduced signal (O'Mahony, 1986). 

The potential for this occurring was minimised by delivery only a single deflection at a time 

and leaving a 10s inter stimulus interval to allow recovery time. However, to confirm that 

desensitisation to stimulation was not occurring the amplitude variability was checked for a 

systematic decrease across the blocks. Between P3 and P9 there was not a significant 

decrease in response amplitude across stimulation trials (Figure 3.17b), however there was 

a decrease in cortical response with repeats at P1 (F = 42.32, p < 0.001 – one-way ANOVA).  

A large variability in results can influence the averaged waveform and potential mask 

changes that are occurring. To investigate whether there was a change in variability that 

wasn’t a run-down across repeated stimulations the overall variability of responses was 

calculated as a coefficient of variation (cv = (standard deviation/mean)*100). The variability 

of the amplitude of response to whisker stimulation did not change with postnatal age 

(Figure 3.17c). 
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Figure 3.17 Variability in whisker stimulation responses  
a) Example of all 20 responses from a stimulation block, showing variability in individual trials  
When compared with the first stimulation repeats did not significantly change across trials at P3 to P9 
(b) but they significantly decreased at P1 (p < 0.001). The coefficient of variation of responses did not 
change with postnatal age (c).  
n# (pups) - [n: P1 = 7, P3 = 6, P5 = 6, P7 = 6, P9 = 7] 
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Although it has been shown that the primary auditory cortex does not respond to external 

sensory stimulation until P11 (Froemke and Jones, 2011) it is not known if there are any 

other areas of the cortex active earlier than this. There are cross-modal thalamocortical 

connections between primary sensory cortical areas and there is the possibility that 

activation of other areas of the cortex could occur before the primary pathway is 

established (Henschke et al., 2015, 2017). To test this, animals were also presented with a 

30ms auditory stimulation (separately at both 10kHz and 20kHz), again with a 10s ISI. These 

frequencies were chosen because it has previously been shown that when hearing onset 

emerges it is initially at high frequencies that the cortex is responsive (de Villers-Sidani et al., 

2007; Froemke and Jones, 2011). Unlike whisker stimulation, neither 10kHz or 20kHz 

auditory stimulation elicited a stereotypical response anywhere in the cortex (Figure 3.18). 
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Figure 3.18 Comparison of somatosensory and auditory stimulation  
Examples at P3 and P9 of cortical responses to whisker and auditory stimulation. Whisker field 
stimulation results in a distinct activation area in the contralateral barrel cortex, whereas auditory 
stimulation does not stimulate activity in any cortical region.  
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 Generation of spontaneous cortical activity  

Early in development spontaneously occurring activity in the primary sensory cortices has 

been found to be driven by activity in sensory organ receptor neurons (Khazipov, Sirota, 

Leinekugel, Gregory L Holmes, et al., 2004; Torborg and Feller, 2005; Wang et al., 2015). 

Silencing of these peripheral regions has been found previously to alter the frequency of 

spontaneous activity in the somatosensory cortex. Yang et al., 2009 injected lidocaine into 

the whisker pad whilst recorded electrical activity across the cortical layers of the barrel 

cortex, and found that this functional deafferentation supressed but did not eliminate 

(mean ~50% reduction) spindle burst and gamma oscillation activity. Mizuno et al., 2018 

also used lidocaine for acute peripheral silencing and found that the spontaneous calcium 

transients in layer IV excitatory neurons was almost eliminated. Both studies found no 

change to spontaneous activity frequency in the ipsilateral barrel cortex. This peripheral 

silencing has not been done in combination with pan-cortical activity acquisition before. The 

macroscopic wide-field imaging technique used in this study records the combined activity 

of many neurons from across the cortical layers and across regions simultaneously. In a 

subset of P7 animals in this study lidocaine was injected subcutaneously into the right 

whisker pad to silence the sensory neurons. To confirm the success of these injections 

whisker stimulation was delivered to the right whisker field. Before the lidocaine injection 

whisker stimulation resulted in activity in the contralateral barrel region of the cortex and 

following silencing of the periphery this response was abolished (Figure 3.19a&b). The 

frequency of spontaneous activity in the cortex was calculated before and after lidocaine 

injection. Activity in the corresponding barrel cortex was reduced, but not eliminated 

following lidocaine injection (p <0.05 – paired t-test) (Figure 3.19c).  It should be noted that 

with only 3 samples this is a low powered statistical comparison which may be improved by 

addition of further data. In the barrel cortex ipsilateral to the injection there was no 

reduction in spontaneous activity (Figure 3.19d). There was also no reduction in the visual 

(Figure 3.19e) or retrosplenial (Figure 3.19f) cortex.  
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Figure 3.19 Generation of spontaneous cortical activity  
Lidocaine was injected into the right whisker pad. This supressed the cortical response to whisker 
stimulation. a) Example of cortical activity following right whisker and b) timeseries of barrel cortex 
activity stimulation before and after lidocaine.  
The frequency of spontaneous activity in the contralateral barrel cortex decreased following lidocaine 
injection (c), but not in the ipsilateral barrel cortex (d), or in the visual (e) or retrosplenial (f) cortex in 
either hemisphere.  
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3.4 Introduction to neonatal sensory deprivation 

Cortical activity during neonatal development is vitally important for the successful 

formation of mature neuronal networks (Luhmann et al., 2016a). It has long been known 

that disruptions to this early activity affects the maturation of developing sensory networks 

resulting in dysfunction in the adult brain (Wiesel and Hubel, 1963; Fox, 1992). A lot of the 

early work on sensory deprivation was in the visual system, across a variety of mammalian 

species (Hubel and Wiesel, 1970; Le Vay, Wiesel and Hubel, 1980; Fagiolini et al., 1994). 

These studies found abnormal development of the visual cortex that persisted into 

adulthood. These alterations include a decrease in the number of synapses (Turlejski and 

Kossut, 1985), reduction in the number of visually responsive cortical neurons (Hyvarinen, 

Hyvarinen and Linnankoski, 1981) and aberrant connections resulting in unrefined receptive 

fields (Callaway and Katz, 1991). More recent work has found functional activity changes 

such as alterations to endogenously generated cortical activity in the visual cortex 

(Colonnese and Khazipov, 2010) and to the functional connectivity of the cortical network 

(Kraft et al., 2017). It is evident that the visual network is an interesting area to explore for 

the effects of sensory deprivation. However, in rodents somatosensation is the dominant 

sense and processing of this incoming tactile stimulation is required for the animal to 

navigate the environment. It has been found that like the visual system alterations to 

whisker tactile experience in neonatal life has consequences for the development of the 

somatosensory network and the ability to interpret sensory information (Erzurumlu, 2010).  

It has long been known that whisker damage in the early neonatal period affects the 

structural organisation of the barrel cortex (Weller and Johnson, 1975). Damage or removal 

of the whiskers means that sensory stimulated activity is not entering the developing 

somatosensory network. Deprivation of this whisker related sensory experience during the 

first few postnatal days affects the formation of the barrel cortex, but after P5 this is no 

longer seen  (Weller and Johnson, 1975). This is because the critical period of heightened 

plasticity in the barrel cortex is during the first few postnatal days (M. C. Crair and Malenka, 

1995) and this is the period that the thalamocortical projections are migrating to their 

location in layer IV of the cortex (Erzurumlu and Gaspar, 2012). Removal of the entire 

whisker field in early neonatal life through trimming has been found to have macroscopic 
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effects on the barrel cortex (Sieben et al., 2015; Moreno-Juan et al., 2017), whereas sensory 

deprivation through cauterisation of the whisker follicle have been found to disrupt the 

structural formation of the barrels (Kaas, Merzenich and Killackey, 1983; Suárez et al., 

2014). The difference in these findings is likely due to the degree of damage to the sensory 

neurons in the whisker pad, where trimming of the whiskers leaves them undamaged 

whereas cauterisation is likely causing damage to them. It is not only sensory driven activity 

that is important for the formation of the barrel cortex but also spontaneous generated 

activity (Yamada et al., 2010). A large amount of this spontaneous activity is generated in 

the periphery (Mizuno et al., 2018) and damage to the sensory neurons will disrupt this as 

well. This study is interested in sensory deprivation with the preservation of sensory neuron 

function and so will focus on sensory deprivation through whisker trimming.   

Direct measures of activity in the somatosensory network following whisker deprivation 

have also been investigated. Changes in both spontaneously generated and sensory 

stimulated activity in the somatosensory cortex have been found following neonatal whisker 

deprivation. Increases in cortical neuron responses to whisker stimulation have been found 

to both bilateral (Sieben et al., 2015) and unilateral (Simons and Land, 1987; Shoykhet, Land 

and Simons, 2005) neonatal whisker trimming. This increased responsiveness is thought to 

be a result of an altered excitatory inhibitory (E/I) balance, where inhibitory connectivity is 

decreased and excitatory is increased (Zhang et al., 2013) resulting in an overall more 

excitable network. This increased excitability has also been seen in rest conditions with an 

increase in spontaneous activity in layer IV of the mature barrel cortex (Shoykhet, Land and 

Simons, 2005; Zhang et al., 2013). As well as a disruption to the E/I balance an increased 

number of dendritic projections and synapses on excitatory neurons were found following 

whisker deprivation (Lee et al., 2009; Chen, Bajnath and Brumberg, 2015; Simons, Carvell 

and Kyriazi, 2015). This increase in synapses may result in over-connectivity of the local 

excitatory neuronal circuits resulting in increased activity. Part of the developmental 

formation of cortical networks is an overproduction of dendritic processes that are later 

eliminated (Innocenti and Price, 2005), which is an activity dependent process (Segal and 

Andersen, 2000; Cline and Haas, 2008). As whisker trimming results in a decrease in sensory 

stimulated activity in the developing cortex this increased connectivity may result from a 

failure in this development pruning process. Indeed, it has been found that the rate of spine 
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elimination is reduced following whisker trimming (Zuo et al., 2005). Another possible 

mechanism for an increased connectivity and excitability in the network following sensory 

deprivation is homeostatic plasticity (Turrigiano, 2012). This is a well-documented 

phenomena in both the mature and developing (Turrigiano and Nelson, 2004; Tien and 

Kerschensteiner, 2018) brain. An alteration in firing rates is compensated for - over a time 

scale of days (Li et al., 2014; Glazewski, Greenhill and Fox, 2017) - to return the overall 

network activity back to its previous level. The major mechanisms for this are synaptic 

scaling (Turrigiano, 2008) and alterations in inhibitory tone (Li et al., 2014). In sensory 

deprivation the reduction in input from the periphery could lead to an increase in synaptic 

connectivity and a decrease in inhibition to increase the overall cortical network activity. 

This mechanism could explain the alterations in connectivity and E/I balance previous 

reported following whisker trimming.  As the timescale of these homeostatic mechanisms is 

days after the altered activity it is possible that these changes can be observed in the 

postnatal period during the initial period of sensory deprivation.  

Somatosensory deprivation has also been found to affect the development of 

interhemispheric connections between the right and left barrel cortex. Unilateral whisker 

trimming disrupted the formation of callosal projection migration between the primary 

somatosensory cortices (Suárez et al., 2014). Interestingly bilateral whisker trimming did not 

appear to affect the development of these interhemispheric pathways (Suárez et al., 2014) 

suggesting that the balance of sensory stimulated activity in the developing network is more 

important than the absolute activity. It is not just altered connectivity between barrel 

cortices that is observed following whisker trimming. There is also increased spine density in 

the ipsilateral barrel following unilateral whisker trimming, which may be a result of the 

disrupted callosal projections previously described (Vees et al., 1998). Changes to other 

sensory networks have also been found. Alterations to connections between sensory 

regions, in both intracortical and cross-modal thalamocortical connection have been found 

following early whisker deprivation (Nicolelis, Chapin and Lin, 1991; Sieben et al., 2015; 

Henschke et al., 2017). In addition to altered connectivity other sensory regions have been 

found to adapt, in what appears to be a compensatory way, such as olfactory 

hypersensitivity following whisker deprivation (Ye et al., 2012). This compensatory adaption 

of other sensory modalities is seen in humans with chronic sensory deprivation such as blind 
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and deafness (Finney, Fine and Dobkins, 2001; Lewis, Saenz and Fine, 2010; Voss and 

Zatorre, 2012).  

It is not just the amount of neuronal activity but also the coordination of firing amongst the 

neuronal population that is affected by neonatal sensory deprivation. The synchrony of 

activity between different cortical regions has been shown to be reduced following whisker 

deprivation (Sieben et al., 2015). Detrimental effects on coordinated activity is also 

observed at a local level. Bilateral whisker trimming from birth resulted in degradation of 

the neuronal ensemble function, with a loss of coordinated spontaneous activity between 

pairs of neurons in the mature barrel cortex (Ghoshal et al., 2009). Interestingly unilateral 

whisker trimming from birth did not result in this loss of neuronal ensemble coordination 

(Ghoshal et al., 2014). Cortical populations of neurons in the sensory cortices have been 

previously shown to start highly synchronised and go through a development 

desynchronisation during the first few postnatal weeks as connections are refined (Golshani 

et al., 2009). This process has been investigated following unilateral whisker trimming and it 

was found that this desynchronisation process in layer II/III of the developing cortex was not 

effected (Golshani et al., 2009). Bilateral deprivation appears to disrupt correlated activity in 

the local neuron populations, whereas unilateral trimming has a greater impact on wider 

cortical connectivity (Suárez et al., 2014).  

Another factor that appears to influence the effects of sensory deprivation found in the 

cortex is the age of the animals used in the study. In adolescent mice an increase in 

dendritic arborisation and spine number in layer IV Spiny Stellate neurons  was discovered 

(Lee et al., 2009), but by adulthood there was a deficient in dendritic complexity and 

reduced spine numbers in the same cell types (Chu, Yen and Lee, 2013). It is hypothesised 

that the aberrant connections in adolescence are not functionally refined and eventually are 

lost through plasticity resulting in the decreased connectivity in adults (Chu, Yen and Lee, 

2013). The development of neuronal networks is a complex series of structural and 

functional changes, that are precisely timed. The timing of deprivation is important, but the 

affects this have appear to transition through development. Few studies have investigated 

changes during the developmental period itself, and so little is known about the activity 

changes during this critical period. Investigations into these activity changes during this 

critical period of development could help elucidate the mechanisms behind the sensory 
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network alterations found in the mature brain. This study investigates the effect of 

unilateral whisker trimming from birth on the development of both spontaneous and 

sensory stimulated activity across the cortex during the first postnatal week. Unilateral 

whisker trimming was chosen because previous evidence has shown that asymmetrical 

deprivation disrupts the development of long range cortical connectivity in adulthood 

(Suárez et al., 2014). This study aims to investigate whether there is evidence of these 

changes during early the postnatal period when these cortical networks are forming. 

Additionally, due to the immaturity of interhemispheric connections in the early postnatal 

brain (Wang et al., 2007) unilateral deprivation may affect only the contralateral cortex, 

where the majority of the whisker pathway projections innervate. The ipsilateral 

hemisphere is therefore an interesting internal control for these experiments which would 

not be possible with bilateral trimming. Unilateral trimming also allows whisker stimulation 

of the naïve side to be carried out, allowing some investigation into the impact of sensory 

deprivation on the development of stimulated responses as well as spontaneous activity.  
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3.5 Sensory deprivation results  

Pan-cortical activity was captured during resting state and sensory stimulation, at P3 and P7, 

in animals that had been unilaterally whisker trimmed from birth and sham controls who 

were litter mates that had been handled in the same way, but with their whiskers left intact.   

 

 Morphology and motor behaviour  

 Somatosensory input is important during the early neonatal period in rodents for suckling 

and huddling behaviours. Lesions to the infraorbital nerve, chronically removing all 

somatosensory input from the snout in the first postnatal week results in an inability to 

suckle, that is fatal (Hofer, Fisher and Shair, 1981). Just removing the sensory input of the 

whiskers by bilateral trimming has been found to acutely increase the latency in nipple 

attachment in 4 day old pups (Sullivan et al., 2003). As well as feeding, neonatal rodents 

require huddling in a nest environment to stay warm and conserve energy  (Alberts, 1978). 

Deficits in huddling behaviour have also been found in neonatal rodents following chronic 

whisker deprivation (Arakawa and Erzurumlu, 2015a). Reductions in nutrients intake and 

poor energy conservation from these behavioural deficient could result in a reduction in 

growth. Unilateral whisker trimming for the first postnatal week did not result in a change in 

body weight of pups (Figure 3.20a), suggesting that they were receiving adequate nutrition 

and care to thrive as well as sham control litter mates. In addition, brains were weighted 

after imaging studies at P3 and P7, and no difference was found in whisker trimmed animals 

compared to controls (Figure 3.20b).  

Whisker trimming is known to affect the development of early life reflexive sensorimotor 

behaviours (Arakawa and Erzurumlu, 2015a). The time spent moving during resting-state 

imaging protocols (Figure 3.20c), and the percentage of whisker stimulations pups moved in 

response to were not different in whisker trimmed pups (Figure 3.20d), suggesting that 

there was no deficient in gross movement behaviour or altered sensitivity to the 

experimental setup. As with the previous cohort analysis was only done on imaging periods 

where the animals were resting, and so the same time spent moving in whisker trimmed 
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animals compared to controls also means the amount of data being analyses between 

groups is not significantly different.  
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Figure 3.20 Changes to morphology and behaviour after sensory deprivation  
Sensory deprivation by unilateral whisker trimming did not affect the body weight of pups during the 
first postnatal week (a) or brain weights at P3 and P7 (b). There was also no change in the amount of 
movement during resting-state (c) or whisker stimulation (d) experiments.  
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 Frequency of spontaneous activity  

As with the previous cohort the frequency of spontaneous occurring activity across the 

cortex increases with postnatal age (F = 14.203, p <0.001 – two-way ANOVA (Figure 3.21a). 

This global frequency of spontaneous activity was not affected by whisker trimming at 

either age. The contralateral barrel cortex is the primary area connected to the whisker and 

so is an area of interest following unilateral whisker stimulation. It  has previously been 

shown that whisker trimming results in an increased spontaneous firing in individual 

neurons in this area (Shoykhet, Land and Simons, 2005). However, the average spontaneous 

neuronal activity in the right barrel cortex (contralateral to trimming) was not significantly 

different than control animals (Figure 3.21b), with both groups having an increased 

frequency of events between P3 and P7 (F = 9.848, p <0.01 – two-way ANOVA).  

Cross-modal modulation has been seen from uni-sensory deprivation and so the 

spontaneously occurring activity across the cortical regions was investigated (Sieben et al., 

2015; Henschke et al., 2017). Pixels in the centre of the major cortical regions were selected 

as in the previous cohort (Figure 3.8b) and spontaneous events in these regions identified 

across the timeseries. There is again an increase in frequency of activity between P3 and P7 

in all regions, with no significant difference between trimmed and control animals (Figure 

3.21c). 
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Figure 3.21 Frequency of spontaneous cortical activity after sensory deprivation  
The frequency of cortical spontaneous activity is not significantly different between trimmed and 
control animals, with both groups increasing in frequency between P3 and P7 (a). The frequency of 
activity in the barrel cortex contralateral to trimming is not significantly different between groups and 
again increase with postnatal age (b). This increase in activity with age is seen across cortical regions 
and is not different between trimmed and control animals (c) 
[n: P3-trimmed = 7, P3-not = 5, P7-trimmed = 7, P7-not = 7] 
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 Coordination of spontaneous activity  

Intra-hemispheric connectivity is developing during this period of sensory deprivation 

(Erzurumlu and Gaspar, 2012). The spontaneous activity in the developing cortex is 

coordinated to give patterned activation which plays an important role in the organisation 

of the developing sensory networks (Kirkby et al., 2013). Disruption to early sensory input 

has been shown to affect the coordination of local networks of neurons (Ashby and Isaac, 

2011) as well as the correlation of interhemispheric activity between right and left sensory 

regions (C.-L. Wang et al., 2007). The inter- and intra-hemispheric coordination of resting-

state activity was investigated as in the previous cohort.  

Whisker related sensory deprivation means that the barrel cortex is of particular interest. 

The Pearson’s correlation coefficient between the average activity of the right and left 

barrel cortex was not significantly different in trimmed animals compared to controls at 

either P3 or P7 (Figure 3.22a). As with the previous cohort the correlation of activity 

significantly decreased with postnatal age (F = 28.956, P < 0.001 - two-way ANOVA). 

Coordinated activity bursts were also investigated, as previously described. There was no 

difference in the percentage of peaks in the right and left barrel cortex that occurred within 

200ms of each other in trimmed animal compared to controls (Figure 3.22b), and in both 

groups this coordinated activity decreased with postnatal age (F = 5.281, P < 0.05 – two-way 

ANOVA). Because of the cross-modal connections in the developing brain sensory 

deprivation to one region could have effects in other sensory areas. The interhemispheric 

activity of all cortical regions previously defined were compared by Pearson’s correlation 

and there was no significant different between trimmed and control animals (Figure 3.22c). 

As has previously been discussed cortico-cortical connections are also within hemispheric 

regions as well as across. The functional connectivity between all defined cortical regions 

was calculated by correlation coefficient and collated in a matrix, with associated regions 

adjacent (somatosensory, motor, medial-parietal and auditory cortices) (Figure 3.23). The 

pattern of functional connectivity is similar to the previous cohort (Figure 3.15), and 

between trimmed and control animals. Unilateral whisker trimming does not appear to 

disrupt the spontaneous functional connectivity of the cortex during the first postnatal week 

of development.   
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Figure 3.22 Coordination of spontaneous cortical activity after sensory deprivation  
There is no difference in the correlation of right and left barrel spontaneous activity in trimmed versus 
control animals at either P3 or P7, or in the percentage of coordinated activity bursts (b). The 
correlation of activity decreases across the cortex, with no difference between trimmed and control 
animals (c). 
[n: P3-trimmed = 7, P3-not = 5, P7-trimmed = 7, P7-not = 7] 
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Figure 3.23 Cortical network coordination of spontaneous activity after sensory deprivation  
The matrices of average correlation between cortical region resting-state activity at P3 and P7 appears 
to be the same in trimmed and control animals.   
(B - barrel, FL - front limb, HL - hind limb, M1 - primary motor, M2 - secondary motor, V - primary visual, 
RS - retrosplenial, PPC - posterior parietal, A – auditory).  [n: P3-trimmed = 7, P3-not = 5, P7-trimmed 
= 7, P7-not = 7] 
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 Sensory stimulation 

Whiskers were trimmed on the left side from the day of birth until the day of experiments in 

these animals and so stimulation of the trimmed whisker was not possible as no regrowth 

period occurred. To investigate whether deprivation of tactile sensation in the left whisker 

field affected the sensory process in the opposite side, spared whiskers on the right side 

were stimulated. As with the previous cohort stimulation of the right whisker field with a 

single 30s rostral to caudal deflection results in activation of the contralateral barrel cortex 

(Figure 3.24a). The amplitude of this response does not significantly change between P3 and 

P7, or between trimmed or control animals (Figure 3.24b). The size of the response area 

increased with age in control animals, as was observed in the previous cohort (p < 0.05 - 

Bonferroni corrected pair-wise comparison), whereas there was not a significant increase 

between P3 and P7 in the trimmed cohort. This means that at P7 the area of activation is 

significantly smaller after sensory deprivation when compared to controls (p<0.05 - 

Bonferroni corrected pair-wise comparison) (Figure 3.24c). 

Across the postnatal ages investigated in this study the animals’ whiskers are growing and 

changing orientation to the face. The stimulation of multiple whiskers was done with a small 

plastic paddle and was positioned by eye to catch as many whiskers as possible without 

touching the face, or the whiskers when in rest position. Because of this design and the 

changing whisker anatomy between ages it is possible that the stimulation was not 

consistent. Therefore, this cohort also received stimulation of individual whiskers (D1, E1 

and delta) as a more controlled stimulation. A single 100ms whisker deflection resulted in 

activation of the contralateral barrel cortex at all ages investigated (Figure 3.25a), in distinct 

locations that agreed with the topographical conservation of axon projections from the 

whiskers to barrel cortex (Figure 3.25b). The average amplitude of the response to single 

whisker stimulation significantly increased between P3 and P7 (F = 71.933, p < 0.001 – two-

way repeated measures ANOVA) but there was no difference between trimmed and control 

animals (Figure 3.25c). The area of activation also increases with postnatal age (F = 13.843, p 

< 0.01 – two-way repeated measures ANOVA), again with no significant difference between 

groups (Figure 3.25d).  
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Figure 3.24 Cortical responses to whisker field stimulation after sensory deprivation 
a) An example of an individual animal’s averaged cortical response to right whisker field stimulation, 
and an individual animal example of the averaged timeseries response in the area of activation.  
The amplitude of the response to whisker field stimulation does not change with age or between 
trimmed and control animals (b). However, the area of activation is significantly smaller in trimmed 
animals at P7 (c) (p<0.05). 
[n: P3-trimmed = 7, P3-not = 5, P7-trimmed = 7, P7-not = 7] 
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Figure 3.25 Cortical responses to single whisker stimulation after sensory deprivation 

a) Example of an individual animals averaged cortical response to a single whisker stimulation, and an 
individual animal example of the averaged timeseries response in the area of activation. (b) Example 
outlines of areas of activation to D1, E1 and delta whisker stimulation, at P3 and P7. Areas correspond 
to the know barrel cortex topographical layout.   
The amplitude of the response to single whisker stimulation increases with postnatal age, at the same 
rate in trimmed and control animals (c) (p<0.001). The area of activation also significantly increases 
with age (p<0.01) and is not different in trimmed compared to control animals (d).   
[n: P3-trimmed = 5, P3-not = 4, P7-trimmed = 7, P7-not = 7] 
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3.6 Discussion 

The work in this chapter is one of the first accounts of pan-cortical calcium imaging in 

neonatal mice. This study developed a reliable imaging setup that allows for collection of 

data during the first two postnatal weeks, in healthy and sensory deprived circumstances. 

Using this new technique, cortical activity was recorded with high spatial and temporal 

resolution, in both stimulated and resting-state conditions. From these data the 

developmental trajectory of activity across the cortex was investigated between P1 and P9, 

characterising the spatial and temporal properties, and investigating how sensory 

deprivation altered them. As this was a new technique a series of validation measures were 

carried out to ensure that the data being collected were being interpreted correctly.  

 

 Origin of the calcium signal in macroscopic wide-field imaging 

The fluorescence emission from many neurons is being captured with the macroscopic 

wide-field calcium imaging used for this study. In the adult mouse brain the fluorescent 

signal capture with macroscopic calcium imaging is well correlated with action potentials in 

cortex and sub-cortical regions (Xiao et al., 2017). The transgenic mice, Emx1-Ai95D have 

GCaMP6f expressed in the excitatory neurons across the cortical layers (Chan et al., 2001; 

Kummer et al., 2012). In the mature cortex, layer I has few excitatory cell bodies, however 

during the first 2 postnatal weeks a transient population of a excitatory neurons called Cajal-

Retzius cells are found there (Ma et al., 2014), which have been shown to also express Emx-

1 (Gorski et al., 2002). Calcium signal is not just captured from the neuron soma, but also 

dendritic and axonal projections (Grienberger and Konnerth, 2012; Siegel and Lohmann, 

2013; Broussard et al., 2018). Somas from specific cell types can be found in distinct layers 

but their projections often cross into other cortical areas  (Divac and Edward White, 1989).  

The focal depth of this macroscope setup is ~200µm (Ratzlaff and Grinvald, 1991), and the 

fluorescence signal captured should primarily be from this volume. This original study used 

the macroscope setup to capture intrinsic optical imaging in the monkey striate cortex and 

compare the visualisation of the ocular dominance columns at the surface and 200µm 

below. They found that the characteristic patterning of this cortical region was resolved at 
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both depths providing evidence that emitted light from deeper cortical layers can be 

capture by this imaging setup. In the neonatal ages used in this study the focal depth of 

~200µm covers from cortical layers I-IV (Figure 2.11c) - although the superficial layers will 

dominate this signal due to light scatter. As the emitted fluorescence from lower layers 

passes through the more superficial ones the light is scattered by the inhomogeneities in 

the tissue. This results in less of the signal penetrating the surface and being captured by the 

macroscope (Boustany, Boppart and Backman, 2010). In addition, this scattering also 

impacts the light that does reach the cortical surface - appearing as blurred edges – which is 

an important consideration when analysing this data. However, this technique is not aiming 

to resolve down to cellular level but is a summation of activity from thousands of cells that 

fall within a pixel of the image capture. The calcium signal detected will be a combination of 

activity from cell bodies and projections of excitatory neurons in these layers.  

During the neonatal period cortical neurons are still migrating to their final location and are 

undergoing structural and functional maturation (Isaac and Feldmeyer, 2009). This growth 

and maturation mean that the type and properties of the excitatory neurons present in the 

imaging volume may be changing over the period imaged in this study. This could influence 

the origin of the fluorescence signal being detected with this wide-field calcium imaging 

technique and should be considered when interpreting these data. At the earliest age 

imaged - P1 – layers II/III and IV are not thought to be present (Luhmann et al., 2016a) 

(Figure 1.1), and so in these animals the fluorescence signal recorded is from neurons in the 

cortical plate that will eventually become these superficial layers, and from Cajal-Retzius 

cells in layer I (Ma et al., 2014). Over the first postnatal week the neurons continue to 

mature and separate into their distinct layers, with migration complete by the end of the 

first week (Luhmann et al., 2016a). During the second postnatal week Cajal-Retzius neurons 

begin to die (Chowdhury et al., 2010) and their contribution to the signal will be reduced in 

the P9 imaging experiments from this study. Cortical neurons will also be undergoing 

maturation processes such as dendritic arborisation and so their contribution to the signal 

will be increasing (Catalano, Robertson and Killackey, 1996; Baloch et al., 2009). The exact 

contribution of these different cell types at each age is not known from these experimental 

results. A possible way to test this would be to use a genetic cross with GCaMP and a cell 

specific promotor, such as Thy-1 that localised to layer II/III (Dana et al., 2014).  
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 Movement 

Motor activity is observed in rodents from birth (Clarac, Brocard and Vinay, 2004). There 

have been two types of movement characterised in the developing rodent, myoclonic 

twitches that occur during sleep and coordinated active movement that occurs during 

wakefulness (Karlsson and Blumberg, 2002; Tiriac, Del Rio-Bermudez and Blumberg, 2014). 

Myoclonic twitches are small, precise and fast, occurring predominately in the limbs and 

whiskers (Blumberg et al., 2013). In this study movement was measured using a 

piezoelectric device under the animal’s torso, which captured any movement that could 

displace it. This method of movement detection was chosen as it is non-invasive, unlike 

EMG recordings of limbs (Blumberg et al., 2013), and can capture movement across all limbs 

and the body from one device unlike photo diode measurements. Cross referencing this 

data with video recordings found that single limb movements were collected using this 

method of monitoring. However, as myoclonic twitches are even smaller, sometimes 

occurring at a single joint or whiskers, it is likely that they were not enough to displace the 

piezoelectric device and be recorded.  

The neonatal motor network does not have the same connectivity as the mature brain. The 

motor cortex is not active during bouts of awake movement in the early neonate, with 

responses to awake active movements not emerging until at around P11 (Dooley and 

Blumberg, 2018). Movement is thought to be generated in subcortical regions during this 

immature period (Clarac, Brocard and Vinay, 2004; Tiriac et al., 2012). Movement does 

result in somatosensory stimulation of the body and activation of the primary 

somatosensory cortex is seen in the immature network (McVea, Mohajerani and Murphy, 

2012; Ackman, Zeng and Crair, 2014; An, Kilb and Luhmann, 2014). In agreement with these 

previous discoveries, this study finds that bouts of awake movement results in activation of 

the body and limb somatosensory cortex but not the motor cortex from P1 through to P9 

(Figure 3.6a). Movement related activity in the immature cortex has a complex and 

characteristic profile, and as such should be considered separately to activity occurring 

during rest. Movement related activity was excluded from the analysis of resting-state and 

sensory stimulated so that the focus of this study is on the cortical activity during rest in the 

early neonatal brain.  
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Spontaneous activity in the motor cortex was observed during periods of rest however 

(Figure 3.13a). Activity in the immature motor cortex has previously been reported to occur 

during myoclonic twitches both before and after the movement (An, Kilb and Luhmann, 

2014; Dooley and Blumberg, 2018). It has also been found that ~35% of activity in the motor 

cortex was not correlated with any detectable movement (An, Kilb and Luhmann, 2014). 

This activity uncorrelated with any movement is thought have another source, which may 

be intracortical or from subcortical areas of the pathway such as the thalamus. It is likely 

that the motor cortex activity found in this study is also generated by a combination of 

these sources.  

Spontaneous activity in the immature somatosensory cortex during restful behaviour is 

thought to also be generated by a combination of myoclonic twitching, and endogenously 

generated activity from the peripheral sensory organs, the thalamus and cortex (Yang et al., 

2009; Mizuno et al., 2018). Unlike wakeful movements twitches are thought to have a 

similar role to peripherally generated spontaneous activity bursts in that they give precise 

topographically organised activation of the ascending pathways which is vital for the initial 

formation of cortical organisation (Blumberg et al., 2015). The likely inclusion of these 

twitch movements in this data set, due to not being able to identify them is therefore not a 

problem as it appears that their role is more closely related to spontaneous activity than 

active movement.  

In future experiments, monitoring of finer movements would help to further classify 

behavioural states. A possible method would be to use high-speed image acquisition of the 

limbs and whiskers to capture twitches as well as active movement (Nashaat et al., 2017) 

 

 Anaesthesia recovery 

Because anaesthesia suppresses spontaneous activity in the immature brain (Adelsberger, 

Garaschuk and Konnerth, 2005; Hanganu, Ben-Ari and Khazipov, 2006; Ackman, Burbridge 

and Crair, 2012; Siegel et al., 2012), this study was carried out on awake neonatal mice. 

Anaesthesia (inhaled isoflurane) was required for the implantation of a head-fixation device 

for these experiments and so there was a period of recovery following surgery before 

imaging. Spontaneous activity quickly returned (Figure 3.10a) and active body movement 
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returned during this recovery period. However, even though spontaneous activity was 

present in the first recording the frequency of activity in the younger animals (P1-5) 

continued to increase over the experimental session (Figure 3.10c). This could be a 

continued effect of anaesthesia, and although the total suppression of spontaneous activity 

ended quickly after anaesthesia withdrawal, there may not have been total recovery in the 

recovery period allowed. Another possibility is that the animal’s arousal state is changing 

during the experimental protocol and this is impacting the frequency of activity occurring in 

the cortex. However, the amount of movement does not change across sessions or with age 

(Figure 3.6b&c), and an increase in spontaneous activity frequency was not found at P7 or 

P9. The frequency calculated is also only during periods of rest, which as previously 

discussed are well correlated to sleep. The exact source of this increase in spontaneous 

activity across the experiment are unclear. In future experiments a further investigation of 

this would be required to elucidate the reason and adjust the protocol to account for it. A 

longer recovery period following surgery would help identify if anaesthesia alone was the 

source. The increase in spontaneous activity is over the first 30 min of the experiment and 

so an addition 30 min recovery period could be provided. Initially a short period was given 

as the viability of the pups away from their mothers at such young ages was not known. 

However, all animals appeared healthy and active following the experiments, with milk spot 

still present - suggesting sustained sustenance was not an issue -and so a longer 

experimental protocol would be possible.  

 

 Defining cortical areas 

The complex spatiotemporal patterns of the spontaneous activity observed in the 

developing brain (Figure 3.8a) required parcellation into defined spatial or temporal 

sections for quantification. The temporal properties of this pan-cortical activity are not 

known and so spatial parcellation was first explored. Defining the boundaries of cortical 

regions in the developing brain is challenging. During the postnatal period the brain is 

growing, and the structure is changing daily (Figure 3.9a) and no systematic mapping of 

these changes has been carried out. This means there are no standardised coordinates for 

the developing brain as there are for the adult mouse brain (Allen mouse brain project). 

There are transgenic mouse lines available that target expression of reporters in the 
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terminals of the thalamocortical projections. These have previously been used in the 

developing mouse to locate the position of the primary sensory regions, as there is a high 

density of thalamocortical terminals in these regions  (Ackman, Zeng and Crair, 2014; 

Mizuno et al., 2014). There has however been no publication of this data across the 

neonatal developmental period and so the challenge of defining region boundaries across 

the different ages studies here was not eliminated. Because there is no established data for 

the structural layout of the developing cortex this study used a combination of resources to 

manually define them across the postnatal ages used. This included the location of cortical 

activation during whisker stimulation (Figure 3.16a) which gave an accurate location of the 

barrel cortex for individual animals, acting a reference point for all other ROIs. Rather than 

whole regions of interest a point in the centre of the region, where the location was more 

certain were used to represent these cortical areas (Figure 3.8b). Because of the 

implementation of these limitations there is confidence that the data analysed is from the 

locations stated. A possible future experiment would be to use the thalamocortical targeted 

transgenic mouse lines to create a standardised atlas of the mouse brain during the first few 

postnatal weeks. This could allow full regions of interest in the developing cortex to be 

defined and investigated. The TCA-RFP mouse (Tg5), developed by the Iwasato Laboratory 

(Mizuno et al., 2018) is one such mouse line. Red fluorescent protein (Miyawaki, 

Shcherbakova and Verkhusha, 2012) is expressed in the terminal ends of the 

thalamocortical projections of these mice and these neurons can be visualised through 

fluorescence widefield imaging – similar to setup used in this study. The primary sensory 

cortical regions are innervated by numerous thalamocortical fibres and as a result the 

location of these regions can be identified in this mouse line (Figure 3.26). These mice could 

be imaged across the postnatal period and from these images a map of the major cortical 

regions at each age could be created. With these delineations a more confidence spatial 

parcellation of the data from this study could be made.  

 

Defining the structural boundaries of cortical regions facilitates analysis of pan-cortical 

imaging as it reduces the dimensions for the complex spatiotemporal properties of the data. 

However in the adult it has been found that the functional boundaries seen through wide 
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field imaging techniques do not exactly align to the structural boundaries defined (Vanni et 

al., 2017). It would be interesting to see if this was true for the developing cortex as well.  
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Figure 3.26 Example expression of the TCA-RFP transgenic mouse line  
a) Visualisation of the Right hemisphere of a P6 TCA-RFP mouse, where the barrel map is visible.  
b) A tangential slice of the barrel cortex in the TCA-RFP mouse at P5, imaged by confocal microscopy. 
Showing clearly the thalamocortical terminal ends, creating the characteristic barrel pattern of this 
region.  

Image adapted from (Mizuno et al., 2018) 
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 Spontaneous activity  

Using these defined regions of interest, the temporal properties of cortical activity were 

investigated and compared across developmental ages. Investigation of spontaneously 

occurring neuronal activity is a valuable opportunity in the developing brain as some of the 

sensory pathways are not receptive to external stimulation at birth. It also comes with 

unique challenges as there are no known stimulus-related time-points to synchronise to, 

and this study has found that pan-cortical spontaneous activity in the neonatal brain has 

varied and complex spatiotemporal dynamics resulting in multidimensional data to quantify 

over development stages.  

Spontaneous activity was found across the cortex from P1 (Figure 3.12). Early neonatal 

cortical activity has previously been reported (Khazipov, Sirota, Leinekugel, Gregory L 

Holmes, et al., 2004; Ackman, Zeng and Crair, 2014), and in some areas of the cortex 

spontaneous activity is known to begin in the embryo (Moreno-Juan et al., 2017). The 

presence of spontaneous cortical activity continues throughout the neonatal period 

assessed (until P9), with the frequency of activity bursts increasing with age (Figure 3.12). 

An increase in pan-cortical activity during the first 2 postnatal weeks has previously been 

reported (Ackman, Zeng and Crair, 2014), as well as a continued increase into adulthood 

(Kozberg et al., 2016). An increased firing frequency of neurons at a local population level 

have been reported in the  barrel (Golshani et al., 2009) and visual (Rochefort et al., 2009) 

cortices during neonatal development as well. This increasing frequency of cortical 

spontaneous activity agrees with electrical recordings of cortical activity in rodents and 

humans, where discontinuous bursting activity becomes more frequent over neonatal 

development and eventually become continuous in the mature brain (Colonnese et al., 

2010). 

There are a variety of drivers of spontaneous cortical activity, which have been found to 

differ depending on the sensory modality. Activity in the immature motor and 

somatosensory cortex during rest is generated in both the periphery and centrally (Yang et 

al., 2009; Mizuno et al., 2018). In the visual and auditory systems spontaneous activity in the 

network has been found to predominately come from endogenously generated activity in 
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the peripheral sensory organs (Torborg and Feller, 2005; Wang et al., 2015). It is not just in 

primary sensory regions of the cortex that spontaneous activity was found, but also 

association areas (Figure 3.13a). Less is known about the early neonatal development of 

these areas, but in the mature network they play an important role in integrating and 

processing sensory information (Purves et al., 2001b). These connections between primary 

sensory and association regions may mean that the observed spontaneous activity is 

underpinned by intracortical connections between these regions.  

During the neonatal period investigated in this study thalamocortical fibres are migrating to 

the cortex and forming functional synaptic connections at a rapid rate (Molnár and 

Blakemore, 1995). These connections are part of the ascending sensory pathways 

connecting the peripheral sensory organs with the central network. The bursting nature of 

the immature neuronal networks is thought to be linked to poor connectivity resulting a 

slow accumulation of depolarisation in the circuit before firing occurs. As connectivity 

increases with developmental age these periods of depolarisation would become shorter 

and the frequency of bursting increase. As well as increasing connectivity in the ascending 

sensory pathways during this neonatal period intracortical connections are developing, both 

locally (Ashby and Isaac, 2011) and between hemispheres (Wang et al., 2007). This further 

increases the excitatory inputs into the cortical networks which could result in increased 

firing.  

It is not just excitatory neurons that are maturing and forming connections in the postnatal 

network. Inhibitory neurons are also developing in the cortex during this early neonatal 

period (Kelsom and Lu, 2013; Lim et al., 2018), and their effect on the overall network 

activity should be considered. During the early postnatal period it has been documented 

that they have a depolarising effect, and so rather than being inhibitory they actually 

contribute to the excitation of the network (Ben-Ari, 2002) - with a transition to inhibitory 

actions of GABA occurring during the second postnatal week. If this is the case, then the 

developing inhibitory network could be contributing to the spontaneous activity recorded 

from excitatory neurons in this study. However, more recent in vivo studies have found that 

GABA does have its traditional inhibitory effect even during the first postnatal week (Kirmse 

et al., 2015; Valeeva et al., 2016; Che et al., 2018). As the nature of GABA during the early 

neonatal period is unclear it is difficult to know its contribution to the activity found in this 
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study. The cortical network is a complex system that is rapidly developing during this early 

postnatal period, and further investigation is required to dissect each cell populations 

contribution to this overall state of endogenously generated activity. A possible experiment 

to do this would be to rerun this experimental protocol with mice that have GCaMP crossed 

with an inhibitory neuron specific promotor, such as GAD67 (Rasmussen et al., 2007; 

Dougherty, Sawchuk and Hochman, 2009). This would give a comparison to the activity of 

the excitatory network, and knowing both populations developmental trajectory could shed 

light on how they interact during this early neonatal period.  

As well as an overall increase in connectivity and excitability in the central network another 

possibility could be that more spontaneous activity is being generated in the periphery. 

Across this early neonatal period there is an increase in frequency of the endogenous 

generated activity in the retina (Ackman, Burbridge and Crair, 2012) and the cochlea (Tritsch 

and Bergles, 2010). Some activity in the somatosensory cortex is generated by whisker 

twitches and activity of the whiskers is known to be developing during this early neonatal 

period  (Tiriac et al., 2012). An increase in the frequency of whisker twitching could 

contribute to the increased activity found in the barrel cortex.  

To further investigate the origin of spontaneous activity in the somatosensory network the 

periphery was acutely silenced by injection of local anaesthesia into the whisker pad. Drive 

from the periphery was inhibited by local anaesthesia and spontaneous activity was 

dramatically suppressed, although not abolished in the contralateral barrel cortex (Figure 

3.19c). Similar results have previously been found with local field potential recordings from 

across the cortical layers during the first postnatal week (Yang et al., 2009). In contrast, 

spontaneous activity in layer IV excitatory neurons are almost entirely supressed during 

peripheral silencing (Mizuno et al., 2018). These results suggest that spontaneous activity in 

layer IV in the neonatal brain is driven by peripheral input, but that activity in other cortical 

layers have another origin. 

The advantage of pan-cortical imaging is that activity in the entire cortex can be captured 

simultaneously. This allowed the effect of acute localised peripheral silencing on other 

cortical regions to be investigated. No change in the frequency of activity was observed in 

any other area (Figure 3.19). This suggests that the peripherally generated spontaneous 

activity propagates to the primary sensory cortex but not in other regions, and that a 
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change in activity frequency in one region does not affect the activity in other areas of the 

cortex.  

Region-of-interest-based methods used to detect activity only assess the temporal aspect of 

the calcium signal and identifies activity as a change in fluorescence that exceeds the 

baseline. However, events were not spatially homogenous. Some events have been 

observed to be discrete bursts of activity confined to a local region. These include 

characteristic patterns of retinal wave activity in the primary visual cortex (Figure 3.7a) that 

are known to be generated in the periphery  (Ackman, Burbridge and Crair, 2012). Also 

observed are activations of discrete barrels (Figure 3.7b) which have similar spatial 

characteristics to single whisker stimulation (Figure 3.25a) and to the spontaneous bursts in 

layer IV previously reported (Mizuno et al., 2018). This would suggest that these bursts of 

activity are stimulated by activation of the ascending sensory pathways. Other times, 

activity appears to travel across wider areas of the cortex as propagating waves between 

anatomical regions, which may be a result of intracortical connections. The varied and 

complex nature of these different activity patterns makes classification and separation of 

them difficult. A previous report of pan-cortical activity in the developing brain found that 

the propagation of spontaneous activity changed across neonatal development (Ackman, 

Zeng and Crair, 2014) with propagation going from patterned activity in discrete areas, such 

as retinal waves and bursts in individual barrels, to propagation across the entire cortical 

surface. This change in spatial properties of spontaneous activity across development must 

be considered when considering the change in frequency found in this study. Not only may 

it be an increase in the frequency of the same types of activity but also an introduction of 

new activity types such as intracortical travelling waves.  To explore the spatial relationship 

of spontaneous activity between cortical regions investigation of coordination of activity 

was carried out. 

 

 Coordination of activity  

Correlation of activity in regions during resting-state is widely used as a measure of 

functional connectivity (Shen, 2015; Wright et al., 2017). Coordinated cortical activity could 

come from mutual subcortical connections (Henschke et al., 2017) or from intracortical 
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connections between the regions (Mohajerani et al., 2010). Interhemispheric activity at P1 is 

highly correlated, with an average coefficient of 0.987±0.01 (Figure 3.14b). This correlation 

coefficient gradually drops over development, to an average of 0.758±0.08. In the adult 

mouse cortex slow-wave activity during sleep is correlated across the hemispheres with a 

coefficient of around 0.5 (Mohajerani et al., 2010). In adults this activity is mostly 

coordinated via interhemispheric callosal connections (Mohajerani et al., 2010), although 

lesioning of the callosal fibres reduced but did not eliminate the correlated activity, 

suggesting some subcortical connections are involved, such as  thalamocortical. In the 

mature brain it was found that the retrosplenial cortex had the highest interhemispheric 

correlation (Mohajerani et al., 2010), which was also true for the immature brain (Figure 

3.14c). 

Callosal projections are not present at birth but migrate and innervate the opposite 

hemisphere by the end of the first postnatal week (C.-L. Wang et al., 2007). If these 

interhemispheric projections are not present in the immature brain another mechanism for 

coordination must be present, meaning it is possibly dominated by subcortical coordination 

at very young ages.  In the first few postnatal days even thalamocortical projections have 

not completed innervating the cortex (Erzurumlu and Gaspar, 2012). Transient subplate 

connections are however present from before birth and persist in the first postnatal week 

(López-Bendito and Molnár, 2003; Patrick O. Kanold and Luhmann, 2010). These projections 

have been found to have both contralateral and ipsilateral connections (Hoerder-

Suabedissen and Molnár, 2012). This common subcortical connection at the beginning of 

the first postnatal week could explain the high correlation between spontaneous activity in 

the right and left hemisphere.  

Over the first postnatal week subplate connections are replaced by thalamocortical 

projections. Spontaneous activity in the immature brain is dominated by incoming signal 

form the peripheral, via thalamocortical projections, which switches to intracortical 

generation in the mature brain (Minlebaev et al., 2011). The thalamus principally connected 

to the cortex in a topographically organised manner, with discrete nuclei for each sensory 

modality. However, it is thought that there are also cross-modal projections, with 

connections going to sensory modalities (Tyll, Budinger and Noesselt, 2011; Henschke et al., 

2015). As subcortical connections dominate the transmission of spontaneous activity into 
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the immature cortex these cross-modal subcortical connections could be involved in the 

interhemispheric correlation found in young animals. These changing structural and 

functional aspects of the hemispheric connectivity during this developmental period 

suggests that the communication methods between cortical areas are transitioning, and 

that correlated activity at P1 may not be mediated by the same structures as at P9. This 

interhemispheric decorrelation appears to be a transition towards a more mature activity 

state.  

As well as interhemispheric correlation of activity there is also coordination between intra-

hemispheric regions (Figure 3.15). As with the interhemispheric activity at P1 there is high 

correlation coefficient values between most cortical regions.  This overall high correlation 

gradually disappears with development, with some intracortical correlated activity 

remaining. These patterns of functional connectivity are similar to those previously reported 

during early postnatal development (Ackman, Zeng and Crair, 2014).  

 

 Sensory stimulation  

It is not just spontaneous activity that is present in the developing brain. Responsiveness to 

sensory stimulation is emerging and plays an important role in sensory network 

development. Deflection of the whisker is known to stimulate activity in the primary 

somatosensory cortex of neonatal rodents in a topographically organised pattern (Khazipov, 

Sirota, Leinekugel, Gregory L. Holmes, et al., 2004), from the day of birth (Mitrukhina et al., 

2015b). In this study deflection of the right whiskers results in activation of the contralateral 

barrel cortex from P1 to P9 (Figure 3.16a). Thalamocortical (TC) projects are present in the 

upper cortical layers from P0 (Agmon et al., 1995), with continue development during the early 

postnatal days, with barrels emerging around P4 (Erzurumlu and Gaspar, 2012). As well as TC 

projections subplate neurons transiently project and form functional synapses in the cortical 

plate (López-Bendito and Molnár, 2003; Patrick O. Kanold and Luhmann, 2010) and are 

functionally organised to topographically represent the whiskers from birth  (Yang et al., 

2013). Thalamocortical projections migrate during the first postnatal week and by P4 they 

have innervated layer IV to form visible barrel structures (Erzurumlu and Gaspar, 2012) and 

the subplate connections disappear by the end of the first postnatal week (Higashi et al., 
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2005). This study finds no change in the amplitude of activation suggesting the transition 

between neuron populations does not disrupt the functional input into the cortex.  

It appears that the whisker sensory pathway is primed to process external sensory 

information from as early as P1 and that the strength of cortical response does not change 

over the next week of development.  The fluorescence signal captured with this wide-field 

calcium imaging is the summation of activity of multiple neurons in the cortex. Given the 

nature of the signal being measure the consistence in amplitude of cortical response to 

whisker stimulation could be either that the same population of neurons is activated to the 

same degree or that the balance of individual signal to the total number of neurons active is 

balanced through development. Neuron populations within individual barrels are known to 

be highly coactive during spontaneous activity in the early neonatal period, with this 

correlation decreasing with neonatal development (Golshani et al., 2009; Mizuno et al., 

2018). 

The amplitude of the cortical response to whisker stimulation does not change with age but 

the relative area of activation increases significantly across postnatal age (Figure 3.16d). The 

barrel cortex is in a critical period of development during the neonatal period investigated in 

this study (M. C. Crair and Malenka, 1995). At P1 the layers of the cortex are not full formed 

and the characteristic barrel pattern of later IV is not (Erzurumlu and Gaspar, 2012). As 

thalamocortical projections migrate during the first postnatal week and form synapses in 

layer IV the barrel cortex begins to form. This process of neural migration is happening 

across the cortex and it overall size is increasing (Figure 3.9a). This increase in activation 

area relative to the total surface area may be caused by a disproportionate growth of the 

barrel cortex compared to the rest of the cortex. In the mature brain the barrel cortex 

covers around 13% of the cortical surface and accounts for 69% of the somatosensory 

cortex (Lee and Erzurumlu, 2005), but the growth trajectory of the immature brain is not 

known.  

This increase in area of activation could also relate to variability in the delivery of sensory 

stimulation. The whisker field stimulation was stimulated using a plastic paddle manual 

placed caudal to the whiskers at an angle that would contact as many whiskers as possible 

on movement. The length and position relative to the face of the whiskers is changing 

during this neonatal period and while collecting the data a concern arose that as the 
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whiskers grew, more of them were being deflected by this stimulation method. To address 

this possibility, deflection of individual whiskers was carried out in the second cohort to 

deliver a precise stimulation location. Single whisker deflection also resulted in an increased 

area of activation with postnatal age (Figure 3.25d). This increase in single whisker 

stimulation supports the hypothesis that it is a relative increase in individual barrel size that 

is the reason the for increased area of activation to stimulation with age, as the location of a 

single whisker is conserved through the ascending pathway to a single barrel in the cortex 

(Carl C.H. Petersen, 2007). 

Only the contralateral barrel cortex was activated with either multiple or single whisker 

deflection. In the mature brain whisker stimulation also stimulates activity in the motor 

cortex, at a slight delay to barrel cortex activation (Ferezou et al., 2007; Vanni and Murphy, 

2014). This suggests that in the mature brain there are somatomotor intracortical 

connections that are activated during sensory perception and these are not present in the 

first 9 postnatal days. This means that although cortical processing of tactile whisker 

information is present from P1 there are still developmental changes occurring to the 

network during the early postnatal period.  

Repeated sensory stimulation can result in a desensitisation of response (Kheradpezhouh, 

Adibi and Arabzadeh, 2017). In this study rundown of stimulation response over repeats was 

found at P1 to about 40% of the first over 20 stimulations, but not in older animals (Figure 

3.17b). Adaption to repeated whisker stimulation is seen in the mature sensory network, 

however only at much higher stimulation frequencies than were given in this study (Chung, 

Li and Nelson, 2002; Martin-Cortecero and Nuñez, 2014). A 10s ISI was left between each 

single 30ms deflection was delivered to avoid this kind of adaption. The fact that a rundown 

of response was not seen in older animals also suggests that this is not what is occurring in 

P1 animals. A possible cause is the immaturity of neurons in the sensory pathway meaning 

they are more susceptible to vesicle depletion as their replenishment is slow, which has 

previously been described in immature cortical neurons (Feldmeyer and Radnikow, 2009).  

Unlike the somatosensory network that is responsive to external stimulation from birth, the 

auditory pathway does not reach the maturity required to process sensory information until 

the middle of the second postnatal week (de Villers-Sidani et al., 2007; Froemke and Jones, 
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2011). In agreement with these previous findings this study found no cortical response to 

auditory stimulation between P1 and P9 (Figure 3.18).  

 

 Sensory deprivation  

Using this newly established technique the effects of neonatal sensory deprivation on pan-

cortical neural activity in the developing brain were investigated. Sensory experience is an 

important part of the development of neuronal networks and deprivation results in deficits 

in their formation, in the primary sensory region associated with the deprivation (Wiesel 

and Hubel, 1963; Fox, 1992) and in other cross-modal regions (Sieben et al., 2015; Henschke 

et al., 2017). Recordings of cortical activity at high spatial and temporal resolution gives a 

unique opportunity to investigate the effects of sensory deprivation across the network 

simultaneously.  

The first postnatal week is a critical period of development in the whisker somatosensory 

pathway and early neonatal whisker deprivation has been shown to have life-long effects on 

the development of this network (Fox, 1992). Most studies have investigated the effects of 

early life sensory deprivation on the mature brain, and so recording this pan-cortical activity 

during the critical period of barrel cortex development can give unique insight into the 

developmental effects of early life whisker trimming. Spontaneous and sensory stimulated 

activity are both important for barrel cortex development and so in this study changes to 

both these activity types during the critical period of barrel development were investigated. 

By investigating this critical period, it may be possible to identify the mechanisms of these 

long-term alterations to the network, and even transient changes that are later not 

identifiable but that have implications for long-term network function.  

 

 Spontaneous cortical activity following neonatal whisker trimming 

Resting-state recording of cortical activity found that unilateral whisker deprivation during 

the first postnatal week did not alter the frequency of spontaneous activity in any cortical 

region, including the contralateral barrel cortex (Figure 3.21). Previously it was found that 

neonatal unilateral whisker trimming followed by a period of whisker regrowth resulted in 
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an increase in spontaneous firing in layer IV excitatory neurons in the adult barrel cortex 

(Shoykhet, Land and Simons, 2005). A recent study however, found that at P6 following 

whisker plucking from birth there was no change in spontaneous firing frequency in the 

contralateral barrel cortex (Che et al., 2018). Another recent study found that lesioning the 

infraorbital nerve at P4 did not affect the spontaneous firing in layer IV of the contralateral 

barrel cortex a day later (Mizuno et al., 2018). These results suggest that the effects of 

sensory deprivation change over development. It could be that during the early neonatal 

period the spontaneous activity in the cortex is being entirely endogenously generated and 

not sensitive to external sensory input. A transition in the pattern of spontaneous activity in 

the barrel cortex is found around on the onset of whisking at the end of the second 

postnatal week (Colonnese et al., 2010). This could be the time that external sensory inputs 

begin to impact the spontaneous cortical activity. Whisker trimming from birth has been 

found to reduce the strength of thalamocortical inputs into the barrel cortex at the end of 

the first postnatal week (Crocker-Buque et al., 2015), so external sensory input is required 

for early developmental of thalamocortical connectivity. Interestingly, an abundance of 

thalamocortical connections are found in the mature brain following neonatal whisker 

trimming (Wimmer et al., 2010; Oberlaender, Ramirez and Bruno, 2012), again suggesting a 

developmental transition in effects of sensory deprivation.  

Deprivation of sensory input during the early neonatal period may result in a deficient in 

thalamocortical connectivity during the critical period of development (M. Crair and 

Malenka, 1995) but then later in development increased connections may be made by 

aberrant processes. The increased  excitability found in the mature cortex after sensory 

deprivation is thought to come from alterations to the inhibitory circuits state (Zhang et al., 

2013) and an increased connectivity due to disrupted refinement pruning during 

development (Zuo et al., 2005; Simons, Carvell and Kyriazi, 2015). The inhibitory, like the 

excitatory circuits are immature and developing in the barrel cortex during the first 

postnatal week (Erzurumlu and Gaspar, 2012). It has been found that in the immature 

cortex GABAergic synapses are excitatory during the first postnatal week before shifting to 

their inhibitory role in the second postnatal week (Ben-Ari, 2002). It has also been found 

that inhibitory circuits can also be hyperpolarising even in the first postnatal week, but are 

still undergoing development (Kirmse et al., 2015; Valeeva et al., 2016; Che et al., 2018). If 
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the changes in excitability in the mature cortex after sensory deprivation are a result of 

imbalance between excitatory and inhibitory activity, the immaturity of the inhibitory 

network during the first postnatal weeks could explain why there is no increase in 

spontaneous activity found.  

The first postnatal week is the critical period for layer IV of the barrel cortex but critical 

development processes in other layers occur at different times. The critical period for 

receptive field development in layer II/III is during the second and third postnatal week 

(Maravall, Stern and Svoboda, 2004; Wen and Barth, 2011; Erzurumlu and Gaspar, 2012), 

which include the development of local inhibitory circuits  (Lo, Sng and Augustine, 2017). 

The activity captured with pan-cortical imaging is a summation of fluorescence signal from 

multiple layers of the cortex. The differential timings of the cortical layer development could 

mean that effects in the summed signal captured would not show an effect until all layers 

have also gone through their critical period of maturation. In this study it is likely that 

spontaneous activity in the transient layer I Cajal-Retzius neurons are being detected (Gorski 

et al., 2002), which disappear is the second postnatal week. Differential effects of whisker 

trimming have previously been observed between different layers II/III and IV in the mature 

barrel cortex (Lee, Land and Simons, 2007).  

Whisker trimming does not damage the sensory neurons and so intrinsically generated 

activity, in the sensory organs themselves or from myoclonic twitching) may still be 

occurring in the deprived sensory pathway. Active whisking has not yet emerged in the first 

postnatal week (Landers and Philip Zeigler, 2006) and during resting-state recordings in this 

study no stimulation was supplied to the whiskers, meaning activity observed during these 

recordings is spontaneously driven. It appears that a lack of actual whiskers does not disrupt 

this endogenously generated activity in the immature network. It has previously been found 

that unilateral cauterisation disrupts the formation of interhemispheric callosal projections, 

as did direct disruption of spontaneous activity in the barrel cortex  (Suárez et al., 2014). In 

this study the correlation of activity between inter- and intra-hemispheric regions is not 

affected by whisker trimming (Figure 3.23). Cross cortical connections are immature in the 

first postnatal week (Wise and Jones, 1978; Ivy and Killackey, 1981), and the coordinated 

cortical firing present during this time is likely driven by subcortical connections. Since 

spontaneous activity is still present in the sensory pathway this may be driving the 
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coordination of activity in this early neonatal period. The development of interhemispheric 

connections during the first postnatal week is dependent on activity (C.-L. Wang et al., 2007; 

Suárez et al., 2014) and although the input from whiskers is deprived in this study the 

spontaneously generated activity from the sensory organs (Yang et al., 2009; Mizuno et al., 

2018) has not been disrupted. The activity that is endogenously generated by neurons in the 

pathway may also be enough to guide the migration. 

 

 Whisker stimulation responses  

Neonatal whisker trimming, followed by regrowth of whisker in adulthood increases the 

responsiveness in the deprived barrel cortex to whisker stimulation, in the adult rodent 

(Lee, Land and Simons, 2007; Simons, Carvell and Kyriazi, 2015). The thalamic input was 

found to be unaffected, but the thalamocortical connectivity was increased (Simons, Carvell 

and Kyriazi, 2015). It was also found that excitatory neurons in the deprived barrel cortex 

also had less refined receptive fields, responding more to adjacent whisker stimulation than 

controls due to a weaker inhibition (Shoykhet, Land and Simons, 2005). This increased 

thalamocortical connectivity and altered E/I balance appears to be a similar mechanism for 

the increased spontaneous activity in the mature cortex (Shoykhet, Land and Simons, 2005).  

In this study it was not possible to regrow the whiskers to investigate their responses to 

stimulation as animals were investigated at such a young age. However, the use of unilateral 

whisker trimming meant that the non-deprived side could be stimulated. Stimulation of the 

intact whisker field resulted in activation of the contralateral cortex in control and trimmed 

animals with both single (Figure 3.25) and multiple whisker deflections (Figure 3.25), and 

the amplitude of the cortical response was not affected by sensory deprivation. Stimulation 

of non-deprived whiskers following unilateral whisker stimulation has not been performed 

in adult rodents and so the effect on the preserved barrel cortex is not known. It may be 

that there is no change to the ipsilateral pathway as the sensory inputs from the whiskers 

are bilaterally segregated. It was found that unilateral whisker trimming resulted a 

reduction in thalamocortical connectivity in the deprived hemisphere, but not in the spared 

at the end of the first postnatal week (Crocker-Buque et al., 2015). However, sensory 

experience is a whole organism experience and it would also be possible to find 
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compensation from the preserved pathway to compensate for the loss of incoming sensory 

experience.  

Although the amplitude of the cortical response to whisker stimulation is not affected by 

whisker trimming, the area of activation is decreased at P7 (Figure 3.24c). The area of 

cortical activation with single whisker stimulation was not significantly different at P7 but 

there is a wider spread of smaller values compared to control (Figure 3.25d). As previously 

discussed the increase in size of activation area with postnatal age is likely due to the 

increasing size of the barrels as they mature, so it is possible that the decreased activation 

area following whisker trimming is due to a reduced increase in the structural size to the 

barrels. Previously it was found that the width of the barrels in the deprived hemisphere 

following unilateral whisker trimming were not different to the spared at the end of the first 

postnatal week (Crocker-Buque et al., 2015), but this was not compared to non-deprived 

animal development. The brain weights of the whisker trimmed animals were not different 

that control (Figure 3.20b) so any changes in barrel structure are not accompanied by a 

gross morphological deficit.  

This smaller area of activation could also be a reduced functional receptive field. The 

response of barrels at birth is imprecise but over the first few postnatal days barrel 

receptive fields segregate  (Mitrukhina et al., 2015a). In adults it was found that barrels in 

the deprived cortex had increased receptive fields, resulting in poorer discrimination 

between whisker stimulation (Shoykhet, Land and Simons, 2005). Although the sensory 

input into the spared barrel cortex is not altered, it could be that the receptive field of the 

spared side becomes more refined to compensate for the loss of input from the deprived 

side. It is also possible that behavioural changes occurred to compensate for the lack of 

whisker sensory input on the left side. Somatosensory input is known to be important for 

suckling a huddling behaviour in neonatal rodents (Sullivan et al., 2003; Arakawa and 

Erzurumlu, 2015a) and it could be that the spared whiskers were more predominately used 

by the pups. This could result in an increased sensory input into this side, which may have 

resulted in an altered refinement of the neuronal circuits. Another possible source of 

compensation is subcortical interhemispheric connectivity. Coordinated spontaneous 

activity between barrel cortices before interhemispheric connections have developed early 

in the first postnatal week suggest mutual subcortical connections. Changes to the 
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barreloids in the thalamus have been found on the spared side in adults following unilateral 

whisker trimming (Simons and Land, 1994). Also, unilateral infraorbital nerve lesions in 

neonatal mice did not affect the spontaneous activity in the barrel cortex and it was 

hypothesised that this was due to coordinated subcortical generation of activity (Mizuno et 

al., 2018). 

 

 Conclusion  

This is one of the first accounts of pan-cortical activity during neonatal development. It 

characterises the developmental trajectory of cortex-wide spontaneous activity and sensory 

evoked responses, revealing a dynamically changing functional network during the first 9 

postnatal days. Spontaneous activity in the immature cortex is non-random, with both 

temporal and spatial coordination that is developing during this early neonatal period. This 

activity becomes more frequent over time and the functional connections appear to 

become more refined. This increasing frequency of spontaneous activity parallels findings of 

electrical recordings from animals and humans (Colonnese et al., 2010), and finds that the 

increase occurs simultaneously across the cortex regions. There is a dynamic spatiotemporal 

nature to this activity and the wealth of data produced by this pan-cortical imaging offers an 

opportunity to continue to explore these dynamics and tease apart these complex 

intracortical functional relationships. Tactile stimulation evokes cortical activity from the 

beginning of the first postnatal week, and this study demonstrates reliable single whisker 

stimulation during the first postnatal week when the whiskers are still developing. These 

evoked responses reveal developmental trajectories of cortical activity occurring alongside 

barrel growth  and maturation (Erzurumlu and Gaspar, 2012). With both spontaneous and 

evoked activity present in the cortex during this early developmental period it would be 

interesting to explore the interactions between them in future work. The motor cortex has a 

transient mechanism that modulates the evoked activity in the cortex in early the neonatal 

period, that is believed to allow spontaneous activity to dominate the developmental 

processes occurring (Dooley and Blumberg, 2018), but little is known about cortex wide 

interactions between these two activity types. Again, the wealth of data collected in this 

study allows for further analysis into these questions to be carried out. A possible analysis to 

explore this interaction acutely would be to look at spontaneously occurring activity during 
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the 10 second inter-stimulus interval (3.2.4) and compare it to the resting-state recordings. 

Whether there are modifications to ongoing network activity immediately following 

stimulation could be investigated, and whether this was localised to the area of stimulated 

activation or a global phenomenon.  

Sensory deprivation by whisker trimming from birth does not alter the frequency of 

spontaneous activity in the cortex during the first postnatal week, complimenting a recent 

study that found no change to spontaneous activity in the deprive barrel cortex at P6 (Che 

et al., 2018). This suggests that this early spontaneous cortical activity is not an activity 

depended process but is endogenously driven at these ages (Luhmann et al., 2016b). 

Although spontaneously occurring activity across the cortex was unaffected, the sensory 

evoked activity was changed. Cortical responses to stimulation in the spared barrel cortex 

spread over a smaller area of the cortex, suggest a structural or functional alteration in the 

non-deprived pathway during the first postnatal week. This may be an underdevelopment of 

barrel growth or could be an altered refinement of function receptive fields. It has 

previously been found that the thalamocortical connectivity in the spared barrel cortex at 

P7 is unaffected  (Crocker-Buque et al., 2015), and so a functional change in receptive fields 

is thought the more likely reason for these results.   

This pan-cortical calcium imaging is a newly established, minimally invasive technique that 

can capture the functional activity of the pan-cortical network in the developing mouse. This 

imaging technique has similarities to functional magnetic resonance imaging, that is 

routinely used in humans, offering a valuable tool for use in investigating the alterations to 

function development in animal models of early life insults, such as prematurity.  
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4 Functional MRI in Preterm Infants 
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4.1 Introduction  

 Sensory network development in the preterm period  

The third trimester of fetal development in humans is a vulnerable time in neuronal 

development (Kostović and Jovanov-Milosević, 2006) and with more than 10% of infants 

globally are born prematurely (Goldenberg et al., 2008) the investigation into neuronal 

network development in these infants is of great interest. White mater injury is a common 

and well-studied pathology associated with premature birth (Khwaja and Volpe, 2008; 

Volpe, 2009), that has been found to be associated with neuron loss and grey matter deficits 

(Pierson et al., 2007; Ligam et al., 2009). These neuronal deficits can result in abnormal 

cortical development in prematurely born infants (Inder et al., 2005b; Kapellou et al., 2006). 

Even in the absence of severe white matter injury microstructural alterations in cortical 

(Ball, Srinivasan, et al., 2013; Bouyssi-Kobar et al., 2018) and subcortical (Boardman et al., 

2006; Srinivasan et al., 2007) grey matter – including the thalamus - have been found in 

preterm infants. Diffusion tensor MRI (DTI) is a non-invasive neuroimaging technique for 

measuring water diffusion in tissue (Alexander et al., 2007). Measurements from this 

technique have been used to estimate the development of the cytoarchitecture in 

developing brain (Dobbing and Sands, 1973; McKinstry et al., 2002; Jespersen et al., 2012). It 

has been found using these methods that preterm infants have significantly higher 

fractional anisotropic and mean diffusivity across the cortex (including sensorimotor areas) 

compared to term infants, suggesting that they have reduced dendritic arborisation and 

synaptic density at term equivalent age (Ball, Srinivasan, et al., 2013; Bouyssi-Kobar et al., 

2018). Thalamocortical connectivity develops during a critical window of vulnerability during 

the preterm period (Molliver, Kostović and van der Loos, 1973; Allendoerfer and Shatz, 

1994). Impaired thalamocortical connectivity has been found in preterm infants (Ball, 

Boardman, et al., 2013; Toulmin et al., 2015) and these changes were found to help predict 

cognitive outcomes at 2 years of age (Ball et al., 2015). Thalamocortical connections are an 

important component of the sensory pathways and alterations in their connectivity has 

implications for sensory processing. Indeed, alterations to sensory processing are observed 

in children born prematurely (Slater et al., 2010; Bart et al., 2011; Wickremasinghe et al., 

2013; Chorna et al., 2014; Cabral et al., 2016).  
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The sensorimotor network emerges early in fetal development. Structural connections in 

the sensorimotor pathways have been revealed through post-mortem studies from the 

second trimester (Molliver, Kostović and van der Loos, 1973; Kostovic and Rakic, 1990), with 

continue development of cortical connectivity seen in preterm infants during the equivalent 

of the third trimester (Ball, Srinivasan, et al., 2013). Functionally, fetal movement in 

response to vibration stimulation have been recorded from 21 weeks gestation (Marx and 

Nagy, 2015) and cortical activation to somatosensory stimuli can be reliably recorded in the 

preterm infant cortex by 25 weeks gestational age (Hrbek, Karlberg and Olsson, 1973). 

These somatosensory evoked potentials (SEPs) then continue to develop during the preterm 

into neonatal period (Pihko and Lauronen, 2004; Tolonen et al., 2007; Fabrizi et al., 2011). 

The latencies of SEPs induced by median nerve stimulation decreased rapidly between 27 

and 40 weeks gestational age in preterm neonates with normal neurological examinations, 

which is believed to reflect the development of the normal fetus (Karniski et al., 1992; 

Taylor, Boor and Ekert, 1996b). This continued maturation has also been observed using 

functional MRI, where activation of the cortex to sensorimotor stimulation is present from 

31 weeks gestation (not investigated earlier in this study). The patterns of activation 

continue developing until term equivalent age, when activation is more similar to the 

mature network (Allievi et al., 2016). This continued development makes these pathways 

vulnerable to the altered and potentially pathological environment of the preterm period. 

The preterm period is not just a vulnerable time for neurobiological development but also 

an altered sensory environment. Preterm infants are often hospitalised, which is an 

environment that is very different to the intrauterine environment they would normally be 

in. This environment often comes with altered exposure to sensory experience, such as 

bright lights and loud noise levels (White-Traut et al., 1994) and painful stimulation 

(Machado et al., 2017). These changes in sensory experience are thought to play a role in 

the sensory processing issues found in preterm infants as they mature (White-Traut et al., 

1994; Lickliter, 2011; Cabral et al., 2016). Research in animals has found that the 

development of the sensory pathways is an experience-dependent process and that changes 

to early life experience have long-term impacts on sensory network connectivity (Fox, 1992). 

Changes in neuronal network function in preterm infants could give insight into the effects 

that altered environmental conditions during early life have on the developing connections 

in the human brain.  
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 Functional magnetic resonance scanning  

Techniques for measuring neuronal activity in human infants are more limited than in 

animals, due to the requirement of non-invasive procedures. fMRI is a neuroimaging 

technique that can provide visualisation of neuronal activity (Glover, 2011), and is widely 

used in both adults and infants (Raschle et al., 2012; Smyser and Neil, 2015). Human 

neuroimaging is non-invasive, using measurements of endogenous molecules through the 

skull. fMRI detects metabolic changes in tissue, utilising the varied magnetic properties of 

oxygenated and deoxygenated haemoglobin, producing a blood oxygenation level 

dependent (BOLD) contrast (Ogawa et al., 1990). It has been found that when neuron 

populations in the brain are active there is an increased supply of oxygen to the local area 

(Buxton, Wong and Frank, 1998), meaning BOLD changes are a proxy for neuronal activity. 

The most common form of fMRI used is echo planar imaging (EPI), which rapidly collects 

two-dimensional slice images of the brain sequentially that can then be constructed into 

three-dimensional whole brain volumes  (Mansfield, 1977). These changes can be detected 

during both resting-state spontaneous activity (Lee, Smyser and Shimony, 2013) and in 

response to external stimulation (Golland et al., 2007).  

fMRI is a valuable technique in human neurological research, with advancements being 

made all the time. However, it does come with some limitations. First the changes in blood 

oxygen are slow compared to neuronal activity meaning the temporal resolution is slower 

than measurements of electrical activity such as EEG (Buxton, Wong and Frank, 1998). Also, 

by using changes in blood oxygenation as a measure of neuronal activity there is an 

assumption made about the relationship between neuronal activity and  vascular changes, 

known as neurovascular coupling (Phillips et al., 2016). Mechanisms of neurovascular 

coupling  in the healthy adult brain have been identified (Girouard and Iadecola, 2006), and 

although not fully understood the relationship between neuronal activity and adjustments 

to oxygen supply are believed to be spatially and temporally localised  enough to be a 

reliable measure (Kim et al., 2004; Lecrux and Hamel, 2011). However, this relationship 

between neuronal activity and vascular changes can differ in disease (D’Esposito, Deouell 

and Gazzaley, 2003; Girouard and Iadecola, 2006) and during brain development (Harris, 

Reynell and Attwell, 2011; Kozberg and Hillman, 2016). This means that using this technique 
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to investigate the role of prematurity in development has an added confounding factor. 

However, a recent study using simultaneous fMRI and EEG recordings demonstrated a clear 

association between neuronal activity and BOLD signal during resting-state recordings in 

preterm infants (Arichi et al., 2017). Further to this, fMRI has been used to successfully 

record BOLD responses to sensory stimulation in preterm infants in a number of studies 

(Erberich et al., 2006; Heep et al., 2009; T. Arichi et al., 2010; Dall’Orso et al., 2018). Another 

issue that can arise with fMRI is that to capture a clear image the participant must remain 

still. To achieve this in infants many studies have used sedation (Fransson et al., 2007a; 

Heep et al., 2009; Arichi, Fagiolo, Varela, Melendez-Calderon, Allievi, Merchant, Tusor, 

Serena J Counsell, et al., 2012). However, there is some evidence that sedation may reduce 

the BOLD response in infants (Williams et al., 2015), and in light of these studies using 

natural sleep during fMRI in infants have been carried out.(Smith-Collins et al., 2015).  

Despite these caveats, fMRI is an excellent technique for the visualisation of activity across 

the entire brain in a non-invasive way and provides higher spatial information than EEG. 

Further to this, it has successfully been used in preterm infants during both sensory 

stimulation (Heep et al., 2009; Allievi et al., 2016) and resting-state recordings (Fransson et 

al., 2007a; Smith-Collins et al., 2015). Previous investigation into sensory stimulation based 

fMRI in preterm infants have combined motor and somatosensory stimulation together 

(Erberich et al., 2003; Heep et al., 2009; T. Arichi et al., 2010; Allievi et al., 2016). Motor 

dysfunction is a common outcome of prematurity, with many preterm infants developing 

cerebral palsy (Han et al., 2002; Larroque et al., 2008) making it a keen area of research. 

However, with somatosensory processing also being affected in prematurity the 

development of this network alone is also of interest. Somatosensory evoked potentials 

using EEG are widely used in preterm infants (Taylor, Boor and Ekert, 1996a; Smit et al., 

2000b; Tombini et al., 2009), but this technique does not provide accurate spatial 

information of where neuronal activity is being generated. The higher spatial information 

across the whole brain provided by fMRI offers an opportunity to explore the location of 

neuronal activation in response to somatosensory stimulation and investigate the 

development of these pathways in preterm infants.  
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Stimulation type Subjects Sedation? BOLD activation References 

Passive 
unilateral 

sensorimotor – 
wrist movement 

8 
-Born 24-30  
-Scanned 38-39 

Chloralhydrate 5/8 – bilateral 
primary SMC  

(Heep et al., 
2009) 

Passive 
unilateral 

sensorimotor – 
hand movement 

19 
-Born 24+4-36  
-Scanned 39-44 

Chloralhydrate 10/18 - 
Contralateral 

SSC &  
8/18 bilateral 

SSC 

(T Arichi et al., 
2010) 

Passive 
unilateral 

sensorimotor – 
hand movement 

15 
-Born 26+3-41 
-Scanned 38+1-

44 

Chloralhydrate 15/15 - 
Contralateral 

SSC  

(Arichi, Fagiolo, 
Varela, 

Melendez-
Calderon, Allievi, 

Merchant, 
Tusor, Serena J. 
Counsell, et al., 

2012) 

Passive bilateral 
sensorimotor – 

hand movement 

42 
-Born preterm 
-Scanned 38-49  

Chloralhydrate 18/42 
contralateral SSC 
14/42 ipsilateral 
SSC and 14/42 
bilateral SSC 

(Erberich et al., 
2006) 

Passive 
unilateral 

sensorimotor – 
wrist movement 

15 
-Born 29+6-39+5 
-Scanned 37+6 – 
43+2 

Chloralhydrate 15/15 - Bilateral 
SMC 

(Allievi et al., 
2016) 

Passive 
unilateral 

sensorimotor – 
elbow 

movement 

13 
-Born 22+6 – 28 
-Scanned 37+6-
42+6) 

Chloralhydrate 8/13- 
contralateral 

SMC 

(Scheef et al., 
2017) 
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Resting-state 
(6 min 34s 
recording) 

24 
-Born preterm 
-Scanned 39+4-
43+3 

Chloralhydrate Adult like 
networks – 

default mode, 
frontoparietal, 

executive 
control, sensory 

and SMC 

(Doria et al., 
2010) 

Resting-state 
(10 min 

recording) 

12 
-Born 24+4-27+5  
-Scanned 39+1-
44+2 

Chloralhydrate 5 functional 
networks - 

occipital cortex, 
SMC, temporal- 

auditory, 
prefrontal, and 

partial-cerebella 

(Fransson et al., 
2007b) 

Resting-state 
(6 min 24s 
recording) 

105 
-Born 23+6-34+5 
-Scanned 39-48 

Chloralhydrate Ex-preterm 
infants show 
alteration in 

adult-like 
functional 
networks 

compared to 
healthy-term 

infants 

(Ball et al., 2016) 

 

Table 1  Summary of key stimulated and resting-state fMRI findings in ex-preterm infants  
Including type of stimulation, Subjects used (number, Gestation range and birth and scanning), 
sedation used during fMRI scanning, and significant BOLD activation found (SMC – sensorimotor 
cortex, SSC – somatosensory cortex 
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 Study rationale 

This study expands on the previous literature in sensorimotor stimulated fMRI in preterm 

infants. It uses a pure somatosensory stimulation in infants born before 32 weeks gestation 

at term equivalent age, during natural sleep fMRI acquisition. A type of pure somatosensory 

stimulation is vibration, also known as vibrotactile stimulation when perceived through 

touch. Vibrotactile stimulation has been used previously for fMRI in healthy adults in a 

number of studies, evoking a BOLD response in the central somatosensory network 

(Harrington, Wright and Downs, 2000; Golaszewski et al., 2002; Chakravarty, Rosa-Neto, et 

al., 2009; Kim et al., 2014a; Choi et al., 2016). Vibration responses have been found in third 

trimester foetuses in utero (Leader et al., 1984), and vibrotactile stimulation is used to 

prevent apnea in preterm infants, as it is detected and produces a startle response (Cramer 

et al., 2018). The detection of vibrotactile stimulation already in the preterm period and its 

stimulation of the somatosensory network makes it a good candidate for somatosensory 

stimulation in this study.   

When investigating a patient population during fMRI it is important to know if changes in 

BOLD response are due to clinical factors or a problem with the methodology (Beisteiner, 

2017). A control comparison is required to validate the paradigm design and represent a 

typical BOLD response. For a study with preterm infants an ideal control comparison would 

be a population of healthy term infant. However, this was not possible for this study, due to 

financial and ethical restrictions. Instead, a healthy adult population was used to validate 

whether the paradigm design produced a reliable BOLD activation of the somatosensory 

network. This mature, healthy activation pattern can then be used as a benchmark of 

network activity that the preterm infant data can be compared to for interpretation. Further 

to this a comparison within the preterm infant population can be made and fMRI findings 

can be statistically compared to individual clinical outcomes. In addition, previous studies 

have found cortical activation to sensorimotor stimulation in preterm infants (Table 1) and a 

maturation of this activation across the preterm period until term equivalent has been 

shown (Allievi et al., 2016). A combination of a known healthy, mature activation pattern to 

this specific paradigm established through the adult validation study proposed, knowledge 

of the pattern of activity in similar stimulation types in preterm infants across a variety of 
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ages, and individual infant participants known clinical outcomes will be used to build a 

picture of somatosensory network development in preterm infants at term equivalent age.  

The paradigm used is vibrotactile stimulation delivered the wrist in a block design, with 5 

repeats. Two different lengths of stimulation and rest, and two different strengths of 

stimulation are used. This paradigm was selected to meet the requirements of the ex-

preterm infant population and to investigate parameters that had unclear optimisation from 

previous literature. It was designed based on fMRI design theory (Amaro and Barker, 2006) 

and previous studies that successfully used vibrotactile stimulation to evoke BOLD 

responses in healthy adults (Harrington and Hunter Downs III, 2001; Golaszewski et al., 

2002; Siedentopf et al., 2008; Chakravarty, Broadbent, et al., 2009; Choi et al., 2016). These 

resources presented a variety of potential design options that would be suitable, and the 

final designs were chosen based on their suitability for use in preterm infants.  

A block design was chosen over single event stimulation, as the sensitivity to stimulation in 

the infants was not known. This increases the period of stimulation received, increasing the 

chance of activity in the somatosensory network being activated. Block designs with a total 

on/off cycle of 20-30s in duration have been found to be optimal in neonates (Cusack et al., 

2015), which is the lower end of recommended duration in adult studies (Carter et al., 

2008). Prolonged exposure to vibrotactile stimulation can result in desensitisation to the 

stimuli (Bensmaïa et al., 2005). Different lengths of stimulation were trialled in the adult 

study (15TR and 5TR) to assess the balance between having a long enough stimulation to 

elicit a BOLD activation but not so long as to desensitise the receptors. Another measure 

taken to minimise the chances of desensitisation was that each block of stimulation had a 

rapid on/off (200-800ms intervals) within it, which is an approach previously used in 

vibrotactile fMRI studies in adults (Sanchez-Panchuelo et al., 2012).  

The number of repeated blocks used was limited by the length of time the infant could be in 

the MRI scanner and how long they would remain asleep. This project was added onto an 

MRI research scanning protocol that was already approximately hour long. The 

radiofrequency power delivered during MRI acquisition is transformed into heat within the 

participant’s tissue (Bottomley and Andrew, 1978; Shellock, 2000). The energy absorbed per 

kg of body weight, the specific absorption rate, has a safety limit which may not be 

exceeded when scanning (Z. Wang et al., 2007). This is not normally a problem in adult 
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participants as these effects are small, however, the small size of the infants means that this 

heating effect is significant and limits the scanning period they can undergo.  

The wrist was chosen as the site of stimulation based on the small size of the infant and the 

swaddling technique used for scanning. It was determined to be the location that would give 

the secure attachment without irritating the infant and disrupting their sleep. The foot was 

considered as a stimulation site, however it was not chosen as the primary somatosensory 

cortex the foot representation is close to the midline of the brain (Akselrod et al., 2017), and 

there were concerns that could make assessment of lateralisation of BOLD response in the 

infant brain difficult.  

The frequency of 50Hz was chosen because it is mediated by both Pacinian and Meissner’s 

corpuscles (Golaszewski et al., 2002), and by covering both receptor types the chance of 

activation in the infants was hoped to be increased. The strength of the stimulation was 

trialled at two different levels in the adults. The strength of the stimulation was custom 

tested on each infant (see section 4.3.2) and the adult paradigm values were assigned 

within the ranges tolerated by the infants.  

This study is the first report of delivery of vibrotactile stimulation to the wrist during fMRI 

acquisition. Although the paradigms used in this study have similarities to other adult 

vibrotactile stimulation fMRI studies – using 50Hz stimulation, delivered in a block design - 

the exact combination has not been previously used. Previous studies have reported a 

variety of different activation patterns in response to subtly different stimulation paradigms 

and so the changes used in this study need to be tested to reveal what sort of 

somatosensory network activation is produced in the healthy, mature brain. As previously 

stated, this will give a benchmark for expected somatosensory network activity in response 

to this stimulation and can be used to compare with fMRI findings in the ex-preterm infant 

population.  

This chapter presents a feasibility study of the use of a vibrotactile stimulation fMRI protocol 

in preterm infants -born before 32 weeks gestation - at term equivalent age, during natural 

sleep, as well as a study validating the reliability of this paradigm in a population of healthy 

adult volunteers. The aim is to develop a protocol that can be used to investigate the 

functional development of the somatosensory network in the preterm infant, expanding on 
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previous work into sensorimotor function (Table 1), proving new evidence of the lesser 

explored area of somatosensory processing development in this patient population.    
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4.2 Methods 

 Adult validation of somatosensory stimulation fMRI paradigm 

 Participants 

Eleven healthy adult volunteers (6 female, age range 24-42, mean age 30) were recruited. 

They were all tested as right handed based on Edinburgh handedness inventory (Oldfield, 

1971). All participants gave written consent, and the experimental procedures were 

approved by the University of Bristol ethics committee. MRI acquisition was carried out with 

the guidance of the Clinical Research and Imaging Centre’s (CRIC) lead radiographer, Aileen 

Wilson.  

 

 Stimulation and paradigms 

Vibrotactile stimulation was delivered to the wrists using a custom non-magnetic 

vibrotactile stimulation device (Dancer Design, UK). The device is a piezoelectric bender, 

encased in a plastic housing, with a non-ferrous metal disk protruding (Figure 4.1ai). The 

stimulation disk was positioned on the distal wrist (Figure 4.1aii) of both hands, secured 

firmly but so was not uncomfortable, using surgical micropore tape (3M PLC, UK). 

The stimulation device was controlled with custom Matlab (Maths works Inc., USA) code, 

which commanded a data acquisition board (National Instruments Corporation Ltd, UK) to 

deliver a 50hz sinusoidal wave voltage output to the device, resulting in two-way movement 

of the piezoelectric bender.  

Three experimental paradigms were investigated. All were delivered in a block design, with 

a randomised order of unilateral right, left and bilateral stimulation repeated 5 times. 

During each stimulation period the device switched on and off at 200-800ms intervals, to 

give a ‘chirping’ pattern. This was done to try and minimise attenuation. Each block of 

stimulation was time locked to the incoming TTL pulse of the MRI scanner, which was 

relayed to the control room PC via a Lumina LP-400 response pad (Cendrus, USA).  

For protocol A stimulation was delivered for 10 whole brain volume acquisitions (TR) with 

15TR of rest between – with a 908ms TR time - with an amplitude of 5 (Figure 4.1bi). 
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Protocol B was 5TR of stimulation with 20TR between at an amplitude of 5 (Figure 4.1bii). 

Protocol C was a 10TR of stimulation with 15TR of rest, this time at an amplitude of 3 (Figure 

4.1biii). Increasing the amplitude (from 3 to 5) results in a larger displacement of the piezo 

electric bender, delivering a stronger stimulation to the participant. Both these amplitudes 

(3 and 5) were suprathreshold for perception but not painful. Successful detection of 

stimulation was confirmed with each participant.  

Protocol A was delivered to all participants, and half also received protocol B (5 subjects) 

and the other half C (5 subjects). The order of protocols was randomly assigned and 

between each protocol participants left the scanner and had a 15-minute break.  
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Figure 4.1 Vibrotactile stimulation device and paradigm  
a) i. Custom design vibrotactile stimulation device. ii. Location the stimulation disk was positioned on 
the adult wrist (both right and left)  
b) The three paradigm designs used in the adult validation study.  
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 Functional MRI data acquisition 

All scans were performed on a 3T Siemens Magnetom Skyra MRI scanner with a 32 channel 

adult head coil (Siemens, Germany), at the University of Bristol CRIC imaging centre. Ear 

protection was worn by all participants. Participants were instructed to lie relaxed in the 

scanner, with their eyes closed and arms by their side with the vibrotactile device facing up. 

To minimise head movement participants heads were stabilised using foam pads.  

Functional MRI data were collected using the sequence reported in Smith-Collins et al. 2015 

(Smith-Collins et al., 2015), with an increased field of view (FOV) to accommodate the full 

adult brains (multiband fast echo-planar imaging (EPI) sequence, repetition time (TR) 

906ms, echo time (TE) 30ms, Flip angle 600, FOV 192 x 192, 30 slices 3 x 3 x 3 mm3 voxel size, 

acceleration factor 3, interleaved, phase encoding direction A >> P, 400 volumes acquired 

for each experimental protocol). A high-resolution T1-weighted structural image of the 

whole brain was acquired for all participants (3D MPRAGE, TR 2300ms, TE 4.2ms, Flip angle 

90, 192 slice, 1 x 1 x 1 mm3 voxel size).  

 

 Pre-processing 

fMRI images were pre-processed using Matlab (Mathworks Inc., USA) and the statistical 

parametric mapping package SPM8 (Wellcome Trust Centre for neuroimaging UCL, London; 

http://www.fil.ion.ucl.ac.uk/spm/). The first 10 functional images were discarded to ensure 

signal stability in analysed data. The remaining 390 images were realigned to the first scan 

to correct for any head movement during the session, and movement parameters detailing 

how much movement had occurred were produced. The adjusted images were then co-

registered to the T1-weighted structural image. They were then normalised to standard 

space using SPM’s standard EPI adult template. Then finally smoothed with a Gaussian 

kernel of 6mm full-width half-maximum (FWHM) to account for any small-scale variation in 

individual subjects. Successful spatial alignment of fMRI images to the template was visually 

checked in all data sets. 
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 Analysis 

Statistical analysis of the fMRI data was performed using two methods, both of which have 

previously been used with somatosensory stimulated fMRI paradigms. First is a general 

linear model (Friston et al., 1994) and then using multivariant pattern analysis (Haxby, 

2012). 

 

4.2.1.5.1 General linear model 

Pre-processed functional data were analysed using a general linear model (with SPM8) - 

which is an established method of fMRI analysis (Friston et al., 1995) – to estimate regions 

that showed changes in BOLD during stimulation. The experimental block design was used 

as an exploratory variable in the model, and the onset and duration of each block entered to 

millisecond precision. The response measured during fMRI is not a precise on/off as blood 

oxygenation changes are slow (Buxton, Wong and Frank, 1998). To account for this the 

exploratory variables were convolved with a canonical haemodynamic response function 

(HRF). The movement parameters obtained during realignment were included in the model 

as random variables, to be accounted for in model estimation but were not of interest. An 

additional regressor was added to temporally high-pass filter the data at 1/128hz, removing 

low frequency noise associated with fMRI signals Contrasts were made between rest and 

both right and left stimulation, using univariant t-tests on a voxel by voxel basis. Data was 

explored on a single subject level and two different statistical thresholds were considered, 

both when regional activation surpassed p < 0.001 uncorrected and when p < 0.05 family-

wise corrected error (FWE). Correcting for multiple comparisons with FWE is more 

conservative and ensures robust results, whereas the uncorrected approach is more likely to 

reveal small activations. This study was to validate that the stimulation paradigm could 

robustly activate the somatosensory network, and although robust FWE corrected activation 

would be the optimum, smaller activations would also be of interest when taking the 

paradigm forward into infant studies. Areas of activation were labelled using the Talairach 

Atlas (talairach.org).  

 



216 
 

4.2.1.5.2 Multivariant pattern analysis  

Another method that has been used with vibrotactile stimulation fMRI paradigms in healthy 

adults is MVPA (Sanchez-Panchuelo et al., 2012; Kim et al., 2014a). Instead of using a 

statistical model to estimate voxels of activation during a stimulation machine learning is 

used to classify the activity patterns of the brain during a stimulation condition, and then 

predict the condition of novel data. Unlike GLM where each voxel is considered individually, 

MVPA considers all voxels together and builds a classification model of the whole brain 

activity during a stimulation type.  

For these data the toolbox PRoNTo (Schrouff et al., 2013), which is compatible with SPM 8 

was used. A binary support vector machine was used (Burges, 1998), and classifications run 

on right versus left side stimulation on individual subject data. Pre-processed fMRI data and 

the block design timings are input, so which scans correspond to which stimulation 

condition are labelled. A leave one block out cross validation method was used, where the 

classification is trained on the 4 stimulation blocks and then tested on the 5th. The 

classifications of the test blocks are compared to the true stimulation label. This process is 

repeated on all blocks and the percentage of accuracy can be calculated and compared 

against change (50% in a binary comparison).  

 

 Feasibility study for somatosensory stimulated fMRI in preterm infants 

 Participants 

Participants were recruited from the Neonatal Intensive Care Unit at St Michaels Hill 

hospital, Bristol. Four preterm infants (two male) born at <32 weeks gestation underwent 

MRI acquisition at term corrected ages (38-41 weeks gestation). The exclusion criteria for 

the study included congenital abnormalities, known genetic conditions or required surgical 

interventions during the preterm period. No infants were receiving additional support at the 

time of scanning. All parents gave informed written consent, and the experimental 

procedures were approved by the NHS research authority ethics committee. Neonatal 

scanning was carried out with the assistance of a neonatologist, Dr Adam Smith-Collins and 

the CRIC’s lead radiographer, Aileen Wilson.  
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 Stimulation and paradigms 

Infants received the same vibrotactile stimulation as the adult volunteers. The stimulation 

device (Figure 4.1ai) was placed on the wrist and was secured using a neonatal arm splint. 

Their arms where placed in a comfortable position and the infants were swaddled in a 

blanket to keep them secure, minimise movement and facilitate sleep.  

The same 50hz sinusoidal wave vibration was delivered to the device, in a 10TR of 

stimulation with 15TR of rest block design, with the same intermittent ‘chirping’ during 

stimulation. The block design was unilateral stimulation to right and left in a random 

presentation repeated 5 times. The amplitudes used were assessed for each infant 

individually before the experimental procedure. A test stimulation was delivered to both 

wrists and the amplitude gradually increased from 0 until an increase in heart rate was seen, 

without waking. This was used as an indication the infant had experienced the sensation 

and amplitude was set at this point for the experimental protocol. 

 

 Functional MRI data acquisition 

Scanning was performed during natural sleep, with no sedation.  Infants were fed prior to 

scanning and settled in the preparation room. Continual ECG and blood saturation were 

acquired using MRI compatible monitoring equipment (Invivio Expression, USA) with the 

Biopac MP150 system and AcqKnowledge software (Biopac Systems, USA). Using this data 

infants were continuously monitored by a neonatologist, for periods of oxygen desaturation 

or distress. Ear protection was used in all infants, with mouldable putty in the external ear 

canal (Affinis, Switzerland) and external ear covers place over (‘minimuffs’, Naurus, USA). 

Movement was reduced by placing participants in a custom made vacuum moulding 

cushion, secured around their body and head.  

As with the adult study all scans were performed on a 3T Siemens Magnetom Skyra MRI 

scanner with a 32 channel adult head coil (Siemens, Germany) at the CRIC, and  fMRI data 

was collected using the sequence reported in Smith-Collins et al. 2015 (TR 906ms, TE 30ms, 

Flip angle 600, FOV 160 x 160, 30 slices 2.5 x 2.5 x 2.5 mm3, Acceleration factor 3, 
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interleaved, phase encoding direction A >> P, 400 volumes acquired). All infants had high 

resolution T2-weighted structural images acquired according to the institution’s clinical 

neonatal MRI protocol. 

 

 Pre-processing 

Functional MRI images were pre-processed using SPM8 (Wellcome Trust Centre for 

neuroimaging UCL, London; http://www.fil.ion.ucl.ac.uk/spm/). The first 10 functional 

images were discarded to ensure signal stability in analysed data. The infant’s head is not 

always in a central position and to standardise for any rotation the remaining functional 

images were coregistered to an infant brain template  (Shi et al., 2011). Then the open 

source Matlab toolbox ArtRepair (Centre for Interdisciplinary Brain Science Research, 

Stanford University) was used to remove any non-brain tissue from the images. To correct 

for any small head movements that occurred during the image series functional images 

were realigned and unwarped so the positions matched throughout the whole series. The 

structural T-2 weighted image was then also coregistered to the infant template, so that its 

orientation matched the adjusted functional scans. Functional images were then co-

registered to the T2-weighted structural image for further alignment.  Functional scans were 

then smoothed with a Gaussian kernel of 4mm FWHM. Successful spatial alignment of fMRI 

images to the template was manually checked in all data sets. 

 

 Analysis  

Infant fMRI data was analysed using GLMs as described for the adult study.  

  

http://www.fil.ion.ucl.ac.uk/spm/
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4.3 Results  

The aim of this study was to assess whether peripheral vibrotactile stimulation during fMRI 

acquisition was feasible in non-sedated preterm neonates at term equivalent age, and to 

validate the paradigm by assessing whether it produced a robust activation of the 

somatosensory network in healthy adult volunteers.  

 

 Healthy adult paradigm validation  

11 healthy adult volunteers were presented with a vibrotactile stimulation to their left and 

right wrist in a block design paradigm during fMRI acquisition. This study was designed to 

assess whether this paradigm reliably activated the somatosensory network. This is an 

important step in designing a protocol for preterm infants as there needs to be a known 

response in the healthy mature brain that differences in the infant population can be 

compared to. Activation of the somatosensory network in response to vibrotactile 

stimulation was investigated on an individual subject level. 

 

 Univariant GLM analysis  

The presence of significant clusters of activity in the key anatomical areas of the 

somatosensory network (Jones and Powell, 1970; Venkatesan et al., 2014) were identified 

on a single subject level for all 3 protocols, for both right and left wrist stimulation. The area 

of most interest is the contralateral post-central gyrus (S1), which is the primary sensory 

area of tactile stimulation with projections from the periphery through subcortical relays to 

the cortex. In protocol A, with right wrist stimulation, 7 out of 11 participants had significant 

activity in the contralateral S1, and 5/11 had activation of the ipsilateral S1 region (Figure 

4.2a). Between 1 and 6 participants also show activity in other areas of the somatosensory 

network (Figure 4.2a). Figure 4.2b shows example activity clusters from a participant that 

showed contralateral S1 activity (i) and one that didn’t (ii) - both overlaid onto the 

participants T1-weighted structural scan. With left wrist stimulation 3 out of the 11 

participants had activation of the contralateral S1, and 3 of the ipsilateral S1, with 1-4 

showing activity in other areas of the somatosensory network (Figure 4.2c). Figure 4.2d 
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shows examples of successful activation of the contralateral S1 (i) and a participant with no 

activation (ii). Although the participant in Figure 4.2dii does not have S1 activation, they do 

show bilateral activity in the superior temporal gyrus (S2).  

Protocol B and C show similar results to protocol A, with only some participants having 

activation of contralateral S1 and other areas of the somatosensory network. Protocol B 

resulted in 2/5 participants showing activation of S1 with right side stimulation and 3/5 with 

left. In protocol C it was only 2/5 with right side and 1/5 with left wrist stimulation that 

result in activation of S1 (Figure 4.3). Cortical activation was seen in all participants to some 

stimulation, but no one showed robust somatosensory network activation to all stimulation 

presentation.  
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Figure 4.2 Activation patterns of protocol A  
a) The number of participants that showed significant activation in the areas of the 

somatosensory network when presented with right wrist vibrotactile stimulation.  
b) Example activation clusters from right side stimulation, overlaid on participants T1-weighted 

anatomical scan of i) S1 responder and ii) non-responder.  
c) Number of participants that showed somatosensory network activation in response to left 

side stimulation.  
d) Examples of activation clusters from left side stimulation of i) S1 activity and ii) no S1 activity, 

but bilateral activation of S2.  
Colour scale is T-scores at uncorrected p < 0.001 
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Figure 4.3 Activation patterns of protocol B and C 
The number of participants that showed significant activation in the areas of the somatosensory 
network when presented with protocol B right wrist (a), and left wrist (b), and protocol C right wrist (c) 
and left wrist (d).  
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Significant changes in BOLD signal in the somatosensory network in response to vibrotactile 

stimulation have previously been reported in healthy adult volunteers (Golaszewski et al., 

2002; Siedentopf et al., 2008; Chakravarty, Rosa-Neto, et al., 2009; Sanchez-Panchuelo et 

al., 2012; Kim et al., 2014a). These studies use a variety of paradigm designs and locations of 

stimulation. Varied activation patterns in secondary and association areas were recorded, 

but all found activation of contralateral S1. Some possible differences between this study 

and previous reports, that could be addressed in analysis were adaption to the stimulation 

throughout the stimulation block and a non-canonical HRF.  

With prolonged somatosensory stimulation it is possible that adaption could have occurred 

and a cortical response diminishing or disappearing over the block. If this had occurred 

including the whole stimulation period in the GLM could mask an initial activation that 

occurred immediately after the onset of stimulation. To address possible desensitisation a 

new GLM was run on the fMRI data, with the same parameters as before except that only 

the first 2s of the stimulation block were considered and the rest excluded from the 

analysis. This new analysis resulted in the same mixed results as the GLM on the full 

stimulation blocks. Some participants showed activation of areas of the somatosensory 

network but not all.  

The on/off ‘chirping’ during blocks was implemented to reduce potential adaption. This non-

continuous stimulation would have resulted in a non-continuous activation of the 

somatosensory network. The change is blood oxygenation measured by fMRI is a response 

to neuronal activation. This non-continuous activation may have resulted in a non-standard 

haemodynamic waveform, such as stacking of canonical waveforms on top of one another 

as another activation begins before the previous has returned to baseline. To investigate 

this another GLM was run this time with a Fourier set HRF. This makes less assumptions 

about the shape of the wave form than the canonical HRF (Gitelman et al., 2003; Lindquist 

et al., 2009) initially used and so may be more suitable for this data set. This new analysis 

again resulted in a mixture of somatosensory activation areas in participants, with not all 

individuals showing activation of the contralateral S1.  
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 Multivariant pattern analysis 

GLM is not the only method of fMRI analysis used for sensory stimulation paradigms. Kim et 

al., 2014 found that multivariant pattern analysis gave more robust discrimination between 

individual finger vibrotactile stimulation than a unilateral GLM approach. Rather than look 

for significant changes in BOLD signal on a voxel level it uses supervised machine learning to 

try and classify a pattern of activity across the whole brain that is representative of the type 

of stimulation delivered. These classifications are tested on blind experimental data to see 

how accurate they are. With a two-way comparison (left vs right) chance level is 50% 

meaning a reliable classifier must be significantly above this to be reliable for analysis.  

As with univariant GLM analysis not all subject’s data produced an above chance decoding 

accuracy with MVPA. With protocol A the average decoding accuracy was 45.5±6.4%, with 

4/11 participants having results above chance (Figure 4.4a). With protocol B 3/5 participants 

had decoding over chances, with a group average of 51.5±8.6% (Figure 4.4b) and with 

protocol C 3/5 participants had values over chance, with an average of 50.7±8.4% (Figure 

4.4c).   
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Figure 4.4 Multivariant pattern analysis decoding accuracies  
Decoding accuracies for each participant from protocol A (a), B (b) and C (c). Chance level marked by 
the dashed line (50%) 
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 Infant feasibility study 

Alongside validating the stimulation paradigm in healthy adults, the feasibility of delivering 

vibrotactile stimulation to non-sedated preterm infants during fMRI acquisition was tested. 

A neonatology research team at the University of Bristol have established an fMRI 

acquisition method for use in non-sedated neonates (Smith-Collins et al., 2015) but delivery 

of stimulation during it had not been previously carried out. 4 preterm infants were 

included in this feasibility study, details in Table 2. 

 

 

Table 2 Description of infant study population 
 [CGA = corrected gestational age; PVL = periventricular leukomalacia; WM = white matter; IVH = 
intraventricular haemorrhage] 

 

Initial concerns about waking the infants with stimulation were addressed by customising 

the strength of stimulation for each of them. The heart rate of the infant was monitored as 

a stimulation was presented to an individual wrist staring at zero intensity and increasing in 

strength. The stimulation intensity at which an increase in heart rate was observed was an 

indicator of detection of the stimulation (without waking) and this strength was then used 

for the experiment. The strength of stimulation varied between infants. M209 received a 

strength of 2 (lower than the adult study tested), M212 and M213 received a strength of 4, 

and M219 a strength of 5, which are all in the range tested in adults. All infants slept 

through the scanning paradigm, and the functional image series was suitable for analysis. 

 

Subject 
ID Sex 

Gestation 
length 

(weeks) 

Birth 
Weight 

(g) 

CGA at 
MRI 

(weeks) 

Days 
in 

ITU 
Proven 
Sepsis 

Clinical notes from 
MRI 

M209 F 26.7 784 38 8 - 

Mild prominence of 
trigones. Otherwise 

normal 

M212 F 27.4 955 37.4 13 - 
Mild, non-cystic PVL 
with some WM loss 

M213  M 27.4 1132 37.4 27 - Normal 

M219 M 26.4 943 38.6 38 + Bilateral IVH 
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 Univariant GLM analysis  

Analysis was carried out as with the adult study, using GLM to find significant BOLD changes 

on a voxel by voxel basis. Significant clusters of activation (uncorrected p < 0.001) were 

overlaid on participants T2-weighted anatomical image and areas of activation were visually 

assessed for location. Possible activation of the primary somatosensory region in some 

conditions were found in this preterm infant population. M209 had significant activation of 

both left and right post-central gyrus when stimulated on the right wrist (Figure 4.5a), but 

no somatosensory network activity with left or bilateral stimulation.  M212 had activity in 

the right primary somatosensory region when stimulated on the right wrist and on the left 

when stimulated bilaterally (Figure 4.5a) but showed no activation anywhere when 

stimulated on the left side. M213 had bilateral post-central gyrus activity when stimulated 

on the left wrist, and on the right side with left wrist stimulation, but no somatosensory 

network activity with right side stimulation (Figure 4.6a). M219 had right primary 

somatosensory region activation with all 3 stimulation types (Figure 4.6b). 

This was an initial assessment to validate that the data acquired from these infants was of 

high enough quality to analyse. Further exploration of the data was not carried out once the 

adult validation study found this stimulation paradigm did not produce robust 

somatosensory network activations.  
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Figure 4.5 Activation patterns of M209 and M212  
Significant clusters of activation for each stimulation for infant M209 (a) and M212 (b) overlaid on 
individual T2-weighted anatomical scan. Colour scale is T-scores at uncorrected p < 0.001 
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Figure 4.6 Activation patterns of M213 and M219  
Significant clusters of activation for each stimulation for infant M213 (a) and M219 (b) overlaid on 
individual T2-weighted anatomical scan. Colour scale is T-scores at uncorrected p < 0.001 
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4.4 Discussion 

This study presents for the first time the delivery of an MR compatible automated 

vibrotactile stimulation during fMRI acquisition in preterm infants. The aim of this study was 

to develop a somatosensory stimulation paradigm that could be used in preterm infants 

during natural sleep to explore evoked functional activity in the sensory pathway. To test 

the protocol design two steps were taken, to confirm that stable fMRI images could be 

acquired in preterm infants and that the stimulation paradigm used activated the 

somatosensory network in healthy adults.  

 

 Healthy adult validation study  

The stimulation paradigm designed for use in preterm infants was delivered to 11 healthy 

adult volunteers. The aim of this validation study was to find a stimulation paradigm that 

produced reliable BOLD changes in the somatosensory network in all participants. Without a 

reliable activation in healthy adults, it would not be possible to make conclusions about a 

lack of activity in preterm neonates as changes in BOLD response could be due to 

methodological problems. The parameters that could be optimal for this vibrotactile 

stimulation were not known so 3 different protocols were tested, with adjustments to 

strength and duration of stimulation (see method 4.2.1.2).  

The 3 paradigm designs used on the healthy adult volunteer population did not produce a 

reliable BOLD response in the somatosensory network. Previous studies using vibrotactile 

stimulation have reported robust BOLD activations in the primary somatosensory cortex, as 

well as a variety of other activation patterns with paradigm and subject variations. There are 

several variations in paradigm design that could explain the difference in result in this study 

compared to previous findings.  

 

 Attention  

In the infant study participants were scanned during natural sleep. This meant that no 

attention to the stimulation could be accounted for. To try and create a similar 
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environment, adult participants were asked to lie quietly in the scanner with their eyes 

closed – again with no account for attention to stimulation given. In a debrief after the 

scanning sessions all the participants in this study reported being ‘relaxed’ or ‘sleepy’ during 

the experiments.  

 It has been previously reported that attention during tactile stimulation increases 

somatosensory network activity (Johansen-Berg et al., 2000; Meador et al., 2002; Young et 

al., 2004; Sanchez-Panchuelo et al., 2012). Several  studies using vibrotactile stimulation 

during fMRI in health adults have used tasks to maintain attention (Chakravarty, Rosa-Neto, 

et al., 2009; Nordmark, Pruszynski and Johansson, 2012; Kim et al., 2014b; Choi et al., 2016). 

However, it has also been found the S1 activation evoked by fingertip vibrotactile 

stimulation was not different if the sensation was attended to or not (Burton, Sinclair and 

McLaren, 2008). Other studies have also reported robust S1 activity to vibrotactile 

stimulation when the participant was instructed to just lay quietly in the scanner with no 

further instruction on attending to the stimulation (Golaszewski et al., 2002; Siedentopf et 

al., 2008).  

 

 Block design  

A general rule of fMRI stimulation paradigms is that block designs are optimised for 

detecting activity and event related designs are better for measuring precise amplitude and 

timing of response (Glover, 2011). In previous adult vibrotactile studies both block design 

(Golaszewski et al., 2002; Chakravarty, Rosa-Neto, et al., 2009; Sanchez-Panchuelo et al., 

2012; Choi et al., 2016; J. Kim et al., 2016; Sanchez Panchuelo et al., 2018), and single event 

stimulation paradigms have been used (Golaszewski et al., 2006; Burton, Sinclair and 

McLaren, 2008; Siedentopf et al., 2008),  all finding activation of S1 in response to 

stimulation in participants. Given that single event stimulation could reliably activate the 

central somatosensory network it is unlikely that the block used for this study were too 

short.  

Alternatively, they could have been too long resulting in desensitisation (Bensmaïa et al., 

2005). The time course of desensitisation in Meissner and Pacinian corpuscle receptors have 

been reported as  13.2s and 28.1s, and the recovery of them as 26.6s and 29.6 (Leung et al., 
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2005). All protocols tested in this study have blocks of stimulation shorter than these 

timings (see section 4.2.1.2). Previous studies have also reported BOLD responses following 

blocks of 30s (Choi et al., 2016) and 40s (Golaszewski et al., 2002) of stimulation. To 

investigate within block adaption analysis was carried out on the first 2s of stimulation 

alone, treating the paradigm more as a single event stimulation. This did not result in BOLD 

response patterns in the somatosensory network of all the participants either. 

Desensitisation was a factor considered when designing the protocol and an on/off jitter 

was assigned to the blocks. This approach has previously been taken with vibrotactile 

stimulation, and produced reliable BOLD responses (Sanchez-Panchuelo et al., 2012; 

Sanchez Panchuelo et al., 2018). 

The number of times the blocks of stimulation were repeated in this study was limited by 

the amount of time the infants could spend in the scanner. The number of repeats chosen (5 

for each side) is within the range previously used for adult vibrotactile stimulation, and 

studies using fewer repeats have produced robust activation patterns (Golaszewski et al., 

2002; Kim et al., 2014a). Chakravarty, Rosa-Neto, et al., 2009 specifically aimed to develop a 

paradigm that kept the acquisition time short for use clinically in adults. They delivered a 40-

50hz vibrotactile stimulation to the whole hand in a 15s stimulation followed by 15s rest 

block design, repeated 4 times, and found that BOLD activation of S1 in all participants was 

present from the first block of stimulation, with stronger responses seen over repeated 

blocks. This suggests that it is possible to obtain robust activation with minimal repetition of 

stimulation.  

 

 Location of stimulation 

A popular location for vibrotactile stimulation in adults is the finger-tips (Briggs et al., 2004; 

Burton, Sinclair and McLaren, 2008; Nordmark, Pruszynski and Johansson, 2012; Kim et al., 

2014a; Choi et al., 2016; J. Kim et al., 2016; Sanchez Panchuelo et al., 2018), and the palm of 

the hand (Chakravarty, Rosa-Neto, et al., 2009) and the sole of the foot (Golaszewski et al., 

2002; Siedentopf et al., 2008) have also been used - all produced robust activation of 

somatosensory cortex. The use of the wrist has not previously been reported. The area 

stimulated is in the location of the median nerve, which has been used as an area of 



233 
 

stimulation during fMRI with direct nerve stimulation using electrodes (Manganotti et al., 

2009; Xue et al., 2009; Ai et al., 2013). However, it may be that the stimulation delivered in 

these experiments was not strong enough to reliably activate the median nerve as electrical 

stimulation.  

 

 Frequency and strength of stimulation  

Previous studies have used a variety of stimulation frequencies. in the flutter/Meissner 

corpuscle range (under 50Hz) (Sanchez Panchuelo et al., 2018) , vibration/Pacinian corpuscle 

(over 50Hz) (Siedentopf et al., 2008; Kim et al., 2014a; Choi et al., 2016) and at 50Hz 

(Golaszewski et al., 2002; Chakravarty, Rosa-Neto, et al., 2009). Some have also tested a 

range of frequencies  to investigate differential activations (Briggs et al., 2004; Nordmark, 

Pruszynski and Johansson, 2012; J. Kim et al., 2016). All these previous studies have 

reported robust S1 activation with these ranges of frequencies.  

The strength of stimulation used in different studies is difficult to compare because the 

stimulation devices and methods of attachment to participants are different. In this study 

adult participants were asked to confirm that they could perceive the stimulation. A study 

using Von Frey filament tactile stimulation found that stimulation near perception threshold 

did not produce BOLD responses in the contralateral S1 for healthy adult volunteers, and 

that even at a suprathreshold strength only 5/12 participants had S1 activation, with all 

participant showing activation once the strength of the stimulus was painful (Ramirez 

Garzón, Pasaye and Barrios, 2014). Although this study does not use vibrotactile stimulation 

it suggests that the strength of stimulation plays a role in the central network BOLD 

activation. In addition, increasing strengths of vibrotactile stimulation to the fingertip (at 

20Hz) resulted in increased BOLD activation of contralateral S1 in healthy adults (Nelson et 

al., 2004). In contrast, another study, comparing two different amplitudes of 100Hz 

vibrotactile stimulation to the foot found that a smaller amplitude resulted in a stronger 

activation of contralateral S1 (Siedentopf et al., 2008). This differing result make it unclear 

exactly how strength of vibrotactile stimulation affects the activation of the somatosensory 

network, but importantly all the stimulation strengths in these 2 previous studies resulted in 

contralateral S1 activation in all participants (Nelson et al., 2004; Siedentopf et al., 2008). 
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The strength stimulation in this study was limited because a minimal stimulation strength 

for use in infants was desired. It may be that the strength of the stimulation was too small 

and that a large amplitude would have resulted in more reliable activation of the 

somatosensory network.   

One other previous study using vibrotactile stimulation fMRI in healthy adults did not did 

not find activation of S1 in all participants (Harrington and Hunter Downs III, 2001). This 

study delivered vibrotactile stimulation through a device held between the thumb and index 

finger, a strength perceivable by participants at both 35Hz and 150Hz frequency. 

Participants were asked to lay with their eyes open, and the stimulation was delivered in a 

block design of 19.2s (with 35s rest between) with 5 repeats. Using standard GLM analysis 

7/8 participants were found to have S1 activation with 35Hz stimulation and 4/8 with 

150Hz. This paradigm design is similar to the ones used in this study, and many of the 

components of both studies overlap with protocols that resulted in BOLD activation in S1 in 

all participants.  

The exact reason that the paradigms used in this study did not produce activation of S1 in all 

healthy adult participants tested cannot be known for sure, but there are several factors 

that are candidates. Although the exact paradigm used here has not previously been 

studied, many of the parameters are the same as other studies. There are some possible 

adjustments that could be made to the paradigm design to see if more reliable activation 

patterns could be produced. The location of stimulation was chosen as it was a suitable 

location for attaching the stimulation probes in the preterm infants. Another location that 

could be suitable for attachment of the probes is the sole of the infant’s foot. Robust 

cortical BOLD activation has been found in adults with foot stimulation and so this may be a 

more suitable stimulation site for future experiments  (Golaszewski et al., 2002; Siedentopf 

et al., 2008). Another option would be to increase the stimulation strength to the wrist. If 

the sensitivity of the area is less than that of the hands and feet, which have previously used 

in adult studies, a stronger stimulation may produce more cortical activation. The strength 

was initially kept low as there was concerns of waking the infants, but all 4 infants tested in 

the feasibility study slept well through the protocol and so an increase stimulation strength 

may be possible.  
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The area of the wrist stimulated is over the location of the median nerve, and electrical 

stimulation of this nerve is often used to induce SEPs in infants (Taylor, Boor and Ekert, 

1996b; Pihko and Lauronen, 2004; Nevalainen et al., 2014). This method of stimulation 

could be another alternative to use in this fMRI study in future iterations. As well as being 

known to stimulate a cortical response in preterm infants, electrical stimulation of the 

median nerve has been shown to stimulate reliable BOLD responses in healthy adults (Xue 

et al., 2009) making it a good candidate for an ex-preterm infant fMRI study. However, this 

type of stimulation is moving away from pure somatosensory as the median nerve is the 

major peripheral nerve of the arm and transmits information for pain and motor function as 

well as tactile. I believe the stimulation details are the likely candidate for the failure of 

reliable somatosensory network activation, as the paradigm block design timings and 

lengths have been used previously in healthy adults with different stimulation locations and 

successfully produced robust cortical activation. Going forward testing these different 

stimulation alterations (location, strength and type) would be necessary to produce reliable 

adult validation of the paradigm. Establishing a reliable paradigm would then allow a full 

cohort of ex-preterm infants to be collected and their somatosensory network function to a 

pure somatosensory stimulation could be investigated.  

 

 Infant feasibility study 

This study demonstrates that it is possible to deliver vibrotactile stimulation to non-sedated 

preterm infants during fMRI acquisition. Infants were placed in the MRI scanner during 

natural sleep and stimulation was delivered to their wrists. All 4 infants tested continued to 

sleep throughout the protocol and stable fMRI images were obtained (Figure 4.5 & Figure 

4.6). Positive BOLD activation was found in all infants, including activity in areas of the 

somatosensory network. Although the stimulation paradigm used requires some 

adjustments to produce reliable network activation in a healthy population, this feasibility 

study shows that stimulation fMRI can be successfully acquired in an ex-preterm infant 

population. These results provide useful information that could be used in combination with 

an altered paradigm design to investigate the development of the somatosensory pathways 

in preterm infants. 
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Previous work has been done to investigate sensorimotor activation in sedated ex-preterm 

infants (Table 1) and this study would expand upon this body of work by investigating the 

response to somatosensory stimulation in non-sedated ex-preterm infants. It is thought that 

sedation may impact the BOLD response in infants (Williams et al., 2015) and so now that a 

method to scan non-sedated infants during sleep has been established it will be valuable to 

collect data in this more natural state. Somatosensory and motor processing is highly 

interconnected  and both networks are developing during the preterm period  (Kostović and 

Jovanov-Milosević, 2006). This future experiment would further expand on the existing work 

into the development of the sensorimotor network by looking at the responses to 

somatosensory activity in isolation of motor function. Motor dysfunction is a well-known 

outcome of preterm birth  (Bax et al., 2005; Allin et al., 2006; Goyen, Lui and Hummell, 

2011), and although somatosensory processing changes have been found in children 

following preterm birth  (Bart et al., 2011; Chorna et al., 2014; Cabral et al., 2016) it is a 

relatively understudied area. This future study using somatosensory stimulation during fMRI 

would increase our understanding of the development of somatosensory processing during 

the preterm period. Going forward, further follow-up investigation of somatosensory 

function in infants scanned could be used to correlate cortical functional activity observed 

during fMRI in the neonatal period with long-term developmental outcomes.   
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