95 research outputs found

    Monitoring wetlands and water bodies in semi-arid Sub-Saharan regions

    Get PDF
    Surface water in wetlands is a critical resource in semi-arid West-African regions that are frequently exposed to droughts. Wetlands are of utmost importance for the population as well as the environment, and are subject to rapidly changing seasonal fluctuations. Dynamics of wetlands in the study area are still poorly understood, and the potential of remote sensing-derived information as a large-scale, multi-temporal, comparable and independent measurement source is not exploited. This work shows successful wetland monitoring with remote sensing in savannah and Sahel regions in Burkina Faso, focusing on the main study site Lac Bam (Lake Bam). Long-term optical time series from MODIS with medium spatial resolution (MR), and short-term synthetic aperture radar (SAR) time series from TerraSAR-X and RADARSAT-2 with high spatial resolution (HR) successfully demonstrate the classification and dynamic monitoring of relevant wetland features, e.g. open water, flooded vegetation and irrigated cultivation. Methodological highlights are time series analysis, e.g. spatio-temporal dynamics or multitemporal-classification, as well as polarimetric SAR (polSAR) processing, i.e. the Kennaugh elements, enabling physical interpretation of SAR scattering mechanisms for dual-polarized data. A multi-sensor and multi-frequency SAR data combination provides added value, and reveals that dual-co-pol SAR data is most recommended for monitoring wetlands of this type. The interpretation of environmental or man-made processes such as water areas spreading out further but retreating or evaporating faster, co-occurrence of droughts with surface water and vegetation anomalies, expansion of irrigated agriculture or new dam building, can be detected with MR optical and HR SAR time series. To capture long-term impacts of water extraction, sedimentation and climate change on wetlands, remote sensing solutions are available, and would have great potential to contribute to water management in Africa

    Multi-source eo for dynamic wetland mapping and monitoring in the great lakes basin

    Get PDF
    Wetland managers, citizens and government leaders are observing rapid changes in coastal wetlands and associated habitats around the Great Lakes Basin due to human activity and climate variability. SAR and optical satellite sensors offer cost effective management tools that can be used to monitor wetlands over time, covering large areas like the Great Lakes and providing information to those making management and policy decisions. In this paper we describe ongoing efforts to monitor dynamic changes in wetland vegetation, surface water extent, and water level change. Included are assessments of simulated Radarsat Constellation Mission data to determine feasibility of continued monitoring into the future. Results show that integration of data from multiple sensors is most effective for monitoring coastal wetlands in the Great Lakes region. While products developed using methods described in this article provide valuable management tools, more effort is needed to reach the goal of establishing a dynamic, near-real-time, remote sensing-based monitoring program for the basin

    Polarimetric Synthetic Aperture Radar

    Get PDF
    This open access book focuses on the practical application of electromagnetic polarimetry principles in Earth remote sensing with an educational purpose. In the last decade, the operations from fully polarimetric synthetic aperture radar such as the Japanese ALOS/PalSAR, the Canadian Radarsat-2 and the German TerraSAR-X and their easy data access for scientific use have developed further the research and data applications at L,C and X band. As a consequence, the wider distribution of polarimetric data sets across the remote sensing community boosted activity and development in polarimetric SAR applications, also in view of future missions. Numerous experiments with real data from spaceborne platforms are shown, with the aim of giving an up-to-date and complete treatment of the unique benefits of fully polarimetric synthetic aperture radar data in five different domains: forest, agriculture, cryosphere, urban and oceans

    TerraSAR-X and Wetlands: A Review

    Get PDF
    Since its launch in 2007, TerraSAR-X observations have been widely used in a broad range of scientific applications. Particularly in wetland research, TerraSAR-X\u27s shortwave X-band synthetic aperture radar (SAR) possesses unique capabilities, such as high spatial and temporal resolution, for delineating and characterizing the inherent spatially and temporally complex and heterogeneous structure of wetland ecosystems and their dynamics. As transitional areas, wetlands comprise characteristics of both terrestrial and aquatic features, forming a large diversity of wetland types. This study reviews all published articles incorporating TerraSAR-X information into wetland research to provide a comprehensive study of how this sensor has been used with regard to polarization, and the function of the data, time-series analyses, or the assessment of specific wetland ecosystem types. What is evident throughout this literature review is the synergistic fusion of multi-frequency and multi-polarization SAR sensors, sometimes optical sensors, in almost all investigated studies to attain improved wetland classification results. Due to the short revisiting time of the TerraSAR-X sensor, it is possible to compute dense SAR time-series, allowing for a more precise observation of the seasonality in dynamic wetland areas as demonstrated in many of the reviewed studies

    Monitoring permafrost environments with Synthetic Aperture Radar (SAR) sensors

    Get PDF
    Permafrost occupies approximately 24% of the exposed land area in the Northern Hemisphere. It is an important element of the cryosphere and has strong impacts on hydrology, biological processes, land surface energy budget, and infrastructure. For several decades, surface air temperatures in the high northern latitudes have warmed at approximately twice the global rate. Permafrost temperatures have increased in most regions since the early 1980s, the averaged warming north of 60°N has been 1-2°C. In-situ measurements are essential to understanding physical processes in permafrost terrain, but they have several limitations, ranging from difficulties in drilling to the representativeness of limited single point measurements. Remote sensing is urgently needed to supplement ground-based measurements and extend the point observations to a broader spatial domain. This thesis concentrates on the sub-arctic permafrost environment monitoring with SAR datasets. The study site is selected in a typical discontinuous permafrost region in the eastern Canadian sub-Arctic. Inuit communities in Nunavik and Nunatsiavut in the Canadian eastern sub-arctic are amongst the groups most affected by the impacts of climate change and permafrost degradation. Synthetic Aperture Radar (SAR) datasets have advantages for permafrost monitoring in the Arctic and sub-arctic regions because of its high resolution and independence of cloud cover and solar illumination. To date, permafrost environment monitoring methods and strategies with SAR datasets are still under development. The variability of active layer thickness is a direct indication of permafrost thermal state changes. The Differential SAR Interferometry (D-InSAR) technique is applied in the study site to derive ground deformation, which is introduced by the thawing/freezing depth of active layer and underlying permafrost. The D-InSAR technique has been used for the mapping of ground surface deformation over large areas by interpreting the phase difference between two signals acquired at different times as ground motion information. It shows the ability to detect freeze/thaw-related ground motion over permafrost regions. However, to date, accuracy and value assessments of D-InSAR applications have focused mostly on the continuous permafrost region where the vegetation is less developed and causes fewer complicating factors for the D-InSAR application, less attention is laid on the discontinuous permafrost terrain. In this thesis, the influencing factors and application conditions for D-InSAR in the discontinuous permafrost environment are evaluated by using X- band and L-band data. Then, benefit from by the high-temporal resolution of C-band Sentinel-1 time series, the seasonal displacement is derived from small baseline subsets (SBAS)-InSAR. Landforms are indicative of permafrost presence, with their changes inferring modifications to permafrost conditions. A permafrost landscape mapping method was developed which uses multi-temporal TerraSAR-X backscatter intensity and interferometric coherence information. The land cover map is generated through the combined use of object-based image analysis (OBIA) and classification and regression tree analysis (CART). An overall accuracy of 98% is achieved when classifying rock and water bodies, and an accuracy of 79% is achieved when discriminating between different vegetation types with one year of single-polarized acquisitions. This classification strategy can be transferred to other time-series SAR datasets, e.g., Sentinel-1, and other heterogeneous environments. One predominant change in the landscape tied to the thaw of permafrost is the dynamics of thermokarst lakes. Dynamics of thermokarst lakes are developed through their lateral extent and vertical depth changes. Due to different water depth, ice cover over shallow thermokarst ponds/lakes can freeze completely to the lake bed in winter, resulting in grounded ice; while ice cover over deep thermokarst ponds/lakes cannot, which have liquid water persisting under the ice cover all winter, resulting in floating ice. Winter ice cover regimes are related to water depths and ice thickness. In the lakes having floating ice, the liquid water induces additional heat in the remaining permafrost underneath and surroundings, which contributes to further intensified permafrost thawing. SAR datasets are utilized to detect winter ice cover regimes based on the character that liquid water has a remarkably high dielectric constant, whereas pure ice has a low value. Patterns in the spatial distribution of ice-cover regimes of thermokarst ponds in a typical discontinuous permafrost region are first revealed. Then, the correlations of these ice-cover regimes with the permafrost degradation states and thermokarst pond development in two historical phases (Sheldrake catchment in the year 1957 and 2009, Tasiapik Valley 1994 and 2010) were explored. The results indicate that the ice-cover regimes of thermokarst ponds are affected by soil texture, permafrost degradation stage and permafrost depth. Permafrost degradation is difficult to directly assess from the coverage area of floating-ice ponds and the percentage of all thermokarst ponds consisting of such floating-ice ponds in a single year. Continuous monitoring of ice-cover regimes and surface areas is recommended to elucidate the hydrological trajectory of the thermokarst process. Several operational monitoring methods have been developed in this thesis work. In the meanwhile, the spatial distribution of seasonal ground thaw subsidence, permafrost landscape, thermokarst ponds and their winter ice cover regimes are first revealed in the study area. The outcomes help understand the state and dynamics of permafrost environment.Der Permafrostboden bedeckt etwa 24% der exponierten Landfläche in der nördlichen Hemisphäre. Es ist ein wichtiges Element der Kryosphäre und hat starke Auswirkungen auf die Hydrologie, die biologischen Prozesse, das Energie-Budget der Landoberfläche und die Infrastruktur. Seit mehreren Jahrzehnten erhöhen sich die Oberflächenlufttemperaturen in den nördlichen hohen Breitengraden etwa doppelt so stark wie die globale Rate. Die Temperaturen der Permafrostböden sind in den meisten Regionen seit den frühen 1980er Jahren gestiegen. Die durchschnittliche Erwärmung nördlich von 60° N beträgt 1-2°C. In-situ-Messungen sind essentiell für das Verständnis der physischen Prozesse im Permafrostgelände. Es gibt jedoch mehrere Einschränkungen, die von Schwierigkeiten beim Bohren bis hin zur Repräsentativität begrenzter Einzelpunktmessungen reichen. Fernerkundung ist dringend benötigt, um bodenbasierte Messungen zu ergänzen und punktuelle Beobachtungen auf einen breiteren räumlichen Bereich auszudehnen. Diese Dissertation konzentriert sich auf die Umweltbeobachtung der subarktischen Permafrostböden mit SAR-Datensätzen. Das Untersuchungsgebiet wurde in einer typischen diskontinuierlichen Permafrostzone in der kanadischen östlichen Sub-Arktis ausgewählt. Die Inuit-Gemeinschaften in den Regionen Nunavik und Nunatsiavut in der kanadischen östlichen Sub-Arktis gehören zu den Gruppen, die am stärksten von den Auswirkungen des Klimawandels und Permafrostdegradation betroffen sind. Synthetische Apertur Radar (SAR) Datensätze haben Vorteile für das Permafrostmonitoring in den arktischen und subarktischen Regionen aufgrund der hohen Auflösung und der Unabhängigkeit von Wolkendeckung und Sonnenstrahlung. Bis heute sind die Methoden und Strategien mit SAR-Datensätzen für Umweltbeobachtung der Permafrostböden noch in der Entwicklung. Die Variabilität der Auftautiefe der aktiven Schicht ist eine direkte Indikation der Veränderung des thermischen Zustands der Permafrostböden. Die Differential-SAR-Interferometrie(D-Insar)-Technik wird im Untersuchungsgebiet zur Ableitung der Bodendeformation, die durch Auftau- / und Gefriertiefe der aktiven Schicht und des unterliegenden Permafrostbodens eingeführt wird, eingesetzt. Die D-InSAR-Technik wurde für Kartierung der Landoberflächendeformation über große Flächen verwendet, indem der Phasenunterschied zwischen zwei zu verschiedenen Zeitpunkten als Bodenbewegungsinformation erfassten Signalen interpretiert wurde. Es zeigt die Fähigkeit, tau- und gefrierprozessbedingte Bodenbewegungen über Permafrostregionen zu detektieren. Jedoch fokussiert sich die Genauigkeit und Wertschätzung der D-InSAR-Anwendung bis heute hauptsächlich auf kontinuierliche Permafrostregion, wo die Vegetation wenig entwickelt ist und weniger komplizierte Faktoren für D-InSAR-Anwendung verursacht. Das diskontinuierliche Permafrostgelände wurde nur weniger berücksichtigt. In dieser Dissertation wurden die Einflussfaktoren und Anwendungsbedingungen für D-InSAR im diskontinuierlichen Permafrostgebiet mittels X-Band und L-Band Daten ausgewertet. Dann wurde die saisonale Verschiebung dank der hohen Auflösung der C-Band Sentinel-1 Zeitreihe von „Small Baseline Subsets (SBAS)-InSAR“ abgeleitet. Landformen weisen auf die Präsenz des Permafrosts hin, wobei deren Veränderungen auf die Modifikation der Permafrostbedingungen schließen. Eine Kartierungsmethode der Permafrostlandschaft wurde entwickelt, dabei wurde Multi-temporal TerraSAR-X Rückstreuungsintensität und interferometrische Kohärenzinformationen verwendet. Die Landbedeckungskarte wurde durch kombinierte Anwendung objektbasierter Bildanalyse (OBIA) und Klassifikations- und Regressionsbaum Analyse (CART) generiert. Eine Gesamtgenauigkeit in Höhe von 98% wurde bei Klassifikation der Gesteine und Wasserkörper erreicht. Bei Unterscheidung zwischen verschiedenen Vegetationstypen mit einem Jahr einzelpolarisierte Akquisitionen wurde eine Genauigkeit von 79% erreicht. Diese Klassifikationsstrategie kann auf andere Zeitreihen der SAR-Datensätzen, z.B. Sentinel-1, und auch anderen heterogenen Umwelten übertragen werden. Eine vorherrschende Veränderung in der Landschaft, die mit dem Auftauen des Permafrosts verbunden ist, ist die Dynamik der Thermokarstseen. Die Dynamik der Thermokarstseen ist durch Veränderungen der seitlichen Ausdehnung und der vertikalen Tiefe entwickelt. Aufgrund der unterschiedlichen Wassertiefen kann die Eisdecke über den flachen Thermokarstteichen/-seen im Winter bis auf den Wasserboden vollständig gefroren sein, was zum geerdeten Eis führt, während die Eisdecke über den tiefen Thermokarstteichen/-seen es nicht kann. In den tiefen Thermokarstteichen/-seen bleibt den ganzen Winter flüssiges Wasser unter der Eisdecke bestehen, was zum Treibeis führt. Das Wintereisdeckenregime bezieht sich auf die Wassertiefe und die Eisdicke. In den Seen mit Treibeis leitet das flüssige Wasser zusätzliche Wärme in den restlichen Permafrost darunter oder in der Umgebung, was zur weiteren Verstärkung des Permafrostauftauen beiträgt. Basiert auf den Charakter, dass das flüssige Wasser eine bemerkenswert hohe Dielektrizitätskonstante besitzt, während reines Eis einen niedrigen Wert hat, wurden die SAR Datensätzen zur Erkennung des Wintereisdeckenregimes verwendet. Zunächst wurden Schemen in der räumlichen Verteilung der Eisdeckenregimes der Thermokarstteiche in einer typischen diskontinuierlichen Permafrostregion abgeleitet. Dann wurden die Zusammenhänge dieser Eisdeckenregimes mit dem Degradationszustand des Permafrosts und der Entwicklung der Thermokarstteiche in zwei historischen Phasen (Sheldrake Einzugsgebiet in 1957 und 2009, Tasiapik Tal in 1994 und 2010) erforscht. Die Ergebnisse deuten darauf, dass die Eisdeckenregimes der Thermokarstteiche von der Bodenart, dem Degradationszustand des Permafrosts und der Permafrosttiefe beeinflusst werden. Es ist schwer, die Permafrostdegradation in einem einzelnen Jahr direkt durch den Abdeckungsbereich der Treibeis-Teiche und die Prozentzahl aller aus solchen Treibeis-Teichen bestehenden Thermokarstteiche abzuschätzen. Ein kontinuierliches Monitoring der Eisdeckenregimes und -oberflächen ist empfehlenswert, um den hydrologischen Verlauf des Thermokarstprozesses zu erläutern. In dieser Dissertation wurden mehrere operativen Monitoringsmethoden entwickelt. In der Zwischenzeit wurden die räumliche Verteilung der saisonalen Bodentauabsenkung, die Permafrostlandschaft, die Thermokarstteiche und ihre Wintereisdeckenregimes erstmals in diesem Untersuchungsgebiet aufgedeckt. Die Ergebnisse tragen dazu bei, den Zustand und die Dynamik der Permafrostumwelt zu verstehen

    Monitoring permafrost environments with Synthetic Aperture Radar (SAR) sensors

    Get PDF
    Permafrost occupies approximately 24% of the exposed land area in the Northern Hemisphere. It is an important element of the cryosphere and has strong impacts on hydrology, biological processes, land surface energy budget, and infrastructure. For several decades, surface air temperatures in the high northern latitudes have warmed at approximately twice the global rate. Permafrost temperatures have increased in most regions since the early 1980s, the averaged warming north of 60°N has been 1-2°C. In-situ measurements are essential to understanding physical processes in permafrost terrain, but they have several limitations, ranging from difficulties in drilling to the representativeness of limited single point measurements. Remote sensing is urgently needed to supplement ground-based measurements and extend the point observations to a broader spatial domain. This thesis concentrates on the sub-arctic permafrost environment monitoring with SAR datasets. The study site is selected in a typical discontinuous permafrost region in the eastern Canadian sub-Arctic. Inuit communities in Nunavik and Nunatsiavut in the Canadian eastern sub-arctic are amongst the groups most affected by the impacts of climate change and permafrost degradation. Synthetic Aperture Radar (SAR) datasets have advantages for permafrost monitoring in the Arctic and sub-arctic regions because of its high resolution and independence of cloud cover and solar illumination. To date, permafrost environment monitoring methods and strategies with SAR datasets are still under development. The variability of active layer thickness is a direct indication of permafrost thermal state changes. The Differential SAR Interferometry (D-InSAR) technique is applied in the study site to derive ground deformation, which is introduced by the thawing/freezing depth of active layer and underlying permafrost. The D-InSAR technique has been used for the mapping of ground surface deformation over large areas by interpreting the phase difference between two signals acquired at different times as ground motion information. It shows the ability to detect freeze/thaw-related ground motion over permafrost regions. However, to date, accuracy and value assessments of D-InSAR applications have focused mostly on the continuous permafrost region where the vegetation is less developed and causes fewer complicating factors for the D-InSAR application, less attention is laid on the discontinuous permafrost terrain. In this thesis, the influencing factors and application conditions for D-InSAR in the discontinuous permafrost environment are evaluated by using X- band and L-band data. Then, benefit from by the high-temporal resolution of C-band Sentinel-1 time series, the seasonal displacement is derived from small baseline subsets (SBAS)-InSAR. Landforms are indicative of permafrost presence, with their changes inferring modifications to permafrost conditions. A permafrost landscape mapping method was developed which uses multi-temporal TerraSAR-X backscatter intensity and interferometric coherence information. The land cover map is generated through the combined use of object-based image analysis (OBIA) and classification and regression tree analysis (CART). An overall accuracy of 98% is achieved when classifying rock and water bodies, and an accuracy of 79% is achieved when discriminating between different vegetation types with one year of single-polarized acquisitions. This classification strategy can be transferred to other time-series SAR datasets, e.g., Sentinel-1, and other heterogeneous environments. One predominant change in the landscape tied to the thaw of permafrost is the dynamics of thermokarst lakes. Dynamics of thermokarst lakes are developed through their lateral extent and vertical depth changes. Due to different water depth, ice cover over shallow thermokarst ponds/lakes can freeze completely to the lake bed in winter, resulting in grounded ice; while ice cover over deep thermokarst ponds/lakes cannot, which have liquid water persisting under the ice cover all winter, resulting in floating ice. Winter ice cover regimes are related to water depths and ice thickness. In the lakes having floating ice, the liquid water induces additional heat in the remaining permafrost underneath and surroundings, which contributes to further intensified permafrost thawing. SAR datasets are utilized to detect winter ice cover regimes based on the character that liquid water has a remarkably high dielectric constant, whereas pure ice has a low value. Patterns in the spatial distribution of ice-cover regimes of thermokarst ponds in a typical discontinuous permafrost region are first revealed. Then, the correlations of these ice-cover regimes with the permafrost degradation states and thermokarst pond development in two historical phases (Sheldrake catchment in the year 1957 and 2009, Tasiapik Valley 1994 and 2010) were explored. The results indicate that the ice-cover regimes of thermokarst ponds are affected by soil texture, permafrost degradation stage and permafrost depth. Permafrost degradation is difficult to directly assess from the coverage area of floating-ice ponds and the percentage of all thermokarst ponds consisting of such floating-ice ponds in a single year. Continuous monitoring of ice-cover regimes and surface areas is recommended to elucidate the hydrological trajectory of the thermokarst process. Several operational monitoring methods have been developed in this thesis work. In the meanwhile, the spatial distribution of seasonal ground thaw subsidence, permafrost landscape, thermokarst ponds and their winter ice cover regimes are first revealed in the study area. The outcomes help understand the state and dynamics of permafrost environment.Der Permafrostboden bedeckt etwa 24% der exponierten Landfläche in der nördlichen Hemisphäre. Es ist ein wichtiges Element der Kryosphäre und hat starke Auswirkungen auf die Hydrologie, die biologischen Prozesse, das Energie-Budget der Landoberfläche und die Infrastruktur. Seit mehreren Jahrzehnten erhöhen sich die Oberflächenlufttemperaturen in den nördlichen hohen Breitengraden etwa doppelt so stark wie die globale Rate. Die Temperaturen der Permafrostböden sind in den meisten Regionen seit den frühen 1980er Jahren gestiegen. Die durchschnittliche Erwärmung nördlich von 60° N beträgt 1-2°C. In-situ-Messungen sind essentiell für das Verständnis der physischen Prozesse im Permafrostgelände. Es gibt jedoch mehrere Einschränkungen, die von Schwierigkeiten beim Bohren bis hin zur Repräsentativität begrenzter Einzelpunktmessungen reichen. Fernerkundung ist dringend benötigt, um bodenbasierte Messungen zu ergänzen und punktuelle Beobachtungen auf einen breiteren räumlichen Bereich auszudehnen. Diese Dissertation konzentriert sich auf die Umweltbeobachtung der subarktischen Permafrostböden mit SAR-Datensätzen. Das Untersuchungsgebiet wurde in einer typischen diskontinuierlichen Permafrostzone in der kanadischen östlichen Sub-Arktis ausgewählt. Die Inuit-Gemeinschaften in den Regionen Nunavik und Nunatsiavut in der kanadischen östlichen Sub-Arktis gehören zu den Gruppen, die am stärksten von den Auswirkungen des Klimawandels und Permafrostdegradation betroffen sind. Synthetische Apertur Radar (SAR) Datensätze haben Vorteile für das Permafrostmonitoring in den arktischen und subarktischen Regionen aufgrund der hohen Auflösung und der Unabhängigkeit von Wolkendeckung und Sonnenstrahlung. Bis heute sind die Methoden und Strategien mit SAR-Datensätzen für Umweltbeobachtung der Permafrostböden noch in der Entwicklung. Die Variabilität der Auftautiefe der aktiven Schicht ist eine direkte Indikation der Veränderung des thermischen Zustands der Permafrostböden. Die Differential-SAR-Interferometrie(D-Insar)-Technik wird im Untersuchungsgebiet zur Ableitung der Bodendeformation, die durch Auftau- / und Gefriertiefe der aktiven Schicht und des unterliegenden Permafrostbodens eingeführt wird, eingesetzt. Die D-InSAR-Technik wurde für Kartierung der Landoberflächendeformation über große Flächen verwendet, indem der Phasenunterschied zwischen zwei zu verschiedenen Zeitpunkten als Bodenbewegungsinformation erfassten Signalen interpretiert wurde. Es zeigt die Fähigkeit, tau- und gefrierprozessbedingte Bodenbewegungen über Permafrostregionen zu detektieren. Jedoch fokussiert sich die Genauigkeit und Wertschätzung der D-InSAR-Anwendung bis heute hauptsächlich auf kontinuierliche Permafrostregion, wo die Vegetation wenig entwickelt ist und weniger komplizierte Faktoren für D-InSAR-Anwendung verursacht. Das diskontinuierliche Permafrostgelände wurde nur weniger berücksichtigt. In dieser Dissertation wurden die Einflussfaktoren und Anwendungsbedingungen für D-InSAR im diskontinuierlichen Permafrostgebiet mittels X-Band und L-Band Daten ausgewertet. Dann wurde die saisonale Verschiebung dank der hohen Auflösung der C-Band Sentinel-1 Zeitreihe von „Small Baseline Subsets (SBAS)-InSAR“ abgeleitet. Landformen weisen auf die Präsenz des Permafrosts hin, wobei deren Veränderungen auf die Modifikation der Permafrostbedingungen schließen. Eine Kartierungsmethode der Permafrostlandschaft wurde entwickelt, dabei wurde Multi-temporal TerraSAR-X Rückstreuungsintensität und interferometrische Kohärenzinformationen verwendet. Die Landbedeckungskarte wurde durch kombinierte Anwendung objektbasierter Bildanalyse (OBIA) und Klassifikations- und Regressionsbaum Analyse (CART) generiert. Eine Gesamtgenauigkeit in Höhe von 98% wurde bei Klassifikation der Gesteine und Wasserkörper erreicht. Bei Unterscheidung zwischen verschiedenen Vegetationstypen mit einem Jahr einzelpolarisierte Akquisitionen wurde eine Genauigkeit von 79% erreicht. Diese Klassifikationsstrategie kann auf andere Zeitreihen der SAR-Datensätzen, z.B. Sentinel-1, und auch anderen heterogenen Umwelten übertragen werden. Eine vorherrschende Veränderung in der Landschaft, die mit dem Auftauen des Permafrosts verbunden ist, ist die Dynamik der Thermokarstseen. Die Dynamik der Thermokarstseen ist durch Veränderungen der seitlichen Ausdehnung und der vertikalen Tiefe entwickelt. Aufgrund der unterschiedlichen Wassertiefen kann die Eisdecke über den flachen Thermokarstteichen/-seen im Winter bis auf den Wasserboden vollständig gefroren sein, was zum geerdeten Eis führt, während die Eisdecke über den tiefen Thermokarstteichen/-seen es nicht kann. In den tiefen Thermokarstteichen/-seen bleibt den ganzen Winter flüssiges Wasser unter der Eisdecke bestehen, was zum Treibeis führt. Das Wintereisdeckenregime bezieht sich auf die Wassertiefe und die Eisdicke. In den Seen mit Treibeis leitet das flüssige Wasser zusätzliche Wärme in den restlichen Permafrost darunter oder in der Umgebung, was zur weiteren Verstärkung des Permafrostauftauen beiträgt. Basiert auf den Charakter, dass das flüssige Wasser eine bemerkenswert hohe Dielektrizitätskonstante besitzt, während reines Eis einen niedrigen Wert hat, wurden die SAR Datensätzen zur Erkennung des Wintereisdeckenregimes verwendet. Zunächst wurden Schemen in der räumlichen Verteilung der Eisdeckenregimes der Thermokarstteiche in einer typischen diskontinuierlichen Permafrostregion abgeleitet. Dann wurden die Zusammenhänge dieser Eisdeckenregimes mit dem Degradationszustand des Permafrosts und der Entwicklung der Thermokarstteiche in zwei historischen Phasen (Sheldrake Einzugsgebiet in 1957 und 2009, Tasiapik Tal in 1994 und 2010) erforscht. Die Ergebnisse deuten darauf, dass die Eisdeckenregimes der Thermokarstteiche von der Bodenart, dem Degradationszustand des Permafrosts und der Permafrosttiefe beeinflusst werden. Es ist schwer, die Permafrostdegradation in einem einzelnen Jahr direkt durch den Abdeckungsbereich der Treibeis-Teiche und die Prozentzahl aller aus solchen Treibeis-Teichen bestehenden Thermokarstteiche abzuschätzen. Ein kontinuierliches Monitoring der Eisdeckenregimes und -oberflächen ist empfehlenswert, um den hydrologischen Verlauf des Thermokarstprozesses zu erläutern. In dieser Dissertation wurden mehrere operativen Monitoringsmethoden entwickelt. In der Zwischenzeit wurden die räumliche Verteilung der saisonalen Bodentauabsenkung, die Permafrostlandschaft, die Thermokarstteiche und ihre Wintereisdeckenregimes erstmals in diesem Untersuchungsgebiet aufgedeckt. Die Ergebnisse tragen dazu bei, den Zustand und die Dynamik der Permafrostumwelt zu verstehen

    Temporal data fusion approaches to remote sensing-based wetland classification

    Get PDF
    This thesis investigates the ecology of wetlands and associated classification in prairie and boreal environments of Alberta, Canada, using remote sensing technology to enhance classification of wetlands in the province. Objectives of the thesis are divided into two case studies, 1) examining how satellite borne Synthetic Aperture Radar (SAR), optical (RapidEye & SPOT) can be used to evaluate surface water trends in a prairie pothole environment (Shepard Slough); and 2) investigating a data fusion methodology combining SAR, optical and Lidar data to characterize wetland vegetation and surface water attributes in a boreal environment (Utikuma Regional Study Area (URSA)). Surface water extent and hydroperiod products were derived from SAR data, and validated using optical imagery with high accuracies (76-97% overall) for both case studies. High resolution Lidar Digital Elevation Models (DEM), Digital Surface Models (DSM), and Canopy Height Model (CHM) products provided the means for data fusion to extract riparian vegetation communities and surface water; producing model accuracies of (R2 0.90) for URSA, and RMSE of 0.2m to 0.7m at Shepard Slough when compared to field and optical validation data. Integration of Alberta and Canadian wetland classifications systems used to classify and determine economic value of wetlands into the methodology produced thematic maps relevant for policy and decision makers for potential wetland monitoring and policy development.Funding for this thesis was provided by the NSERC CREATE AMETHYST Program, and the Government of Alberta (Economic Development and Trade, Environment and Parks), Campus Alberta Innovates Program

    Status and trends of wetland studies in Canada using remote sensing technology with a focus on wetland classification: a bibliographic analysis

    Get PDF
    A large portion of Canada is covered by wetlands; mapping and monitoring them is of great importance for various applications. In this regard, Remote Sensing (RS) technology has been widely employed for wetland studies in Canada over the past 45 years. This study evaluates meta-data to investigate the status and trends of wetland studies in Canada using RS technology by reviewing the scientific papers published between 1976 and the end of 2020 (300 papers in total). Initially, a meta-analysis was conducted to analyze the status of RS-based wetland studies in terms of the wetland classification systems, methods, classes, RS data usage, publication details (e.g., authors, keywords, citations, and publications time), geographic information, and level of classification accuracies. The deep systematic review of 128 peer-reviewed articles illustrated the rising trend in using multi-source RS datasets along with advanced machine learning algorithms for wetland mapping in Canada. It was also observed that most of the studies were implemented over the province of Ontario. Pixel-based supervised classifiers were the most popular wetland classification algorithms. This review summarizes different RS systems and methodologies for wetland mapping in Canada to outline how RS has been utilized for the generation of wetland inventories. The results of this review paper provide the current state-of-the-art methods and datasets for wetland studies in Canada and will provide direction for future wetland mapping research.Peer ReviewedPostprint (published version

    Wetland Monitoring and Mapping Using Synthetic Aperture Radar

    Get PDF
    Wetlands are critical for ensuring healthy aquatic systems, preventing soil erosion, and securing groundwater reservoirs. Also, they provide habitat for many animal and plant species. Thus, the continuous monitoring and mapping of wetlands is necessary for observing effects of climate change and ensuring a healthy environment. Synthetic Aperture Radar (SAR) remote sensing satellites are active remote sensing instruments essential for monitoring wetlands, given the possibility to bypass the cloud-sensitive optical instruments and obtain satellite imagery day and night. Therefore, the purpose of this chapter is to provide an overview of the basic concepts of SAR remote sensing technology and its applications for wetland monitoring and mapping. Emphasis is given to SAR systems with full and compact polarimetric SAR capabilities. Brief discussions on the latest state-of-the-art wetland applications using SAR imagery are presented. Also, we summarize the current trends in wetland monitoring and mapping using SAR imagery. This chapter provides a good introduction to interested readers with limited background in SAR technology and its possible wetland applications

    Polarimetric Synthetic Aperture Radar, Principles and Application

    Get PDF
    Demonstrates the benefits of the usage of fully polarimetric synthetic aperture radar data in applications of Earth remote sensing, with educational and development purposes. Includes numerous up-to-date examples with real data from spaceborne platforms and possibility to use a software to support lecture practicals. Reviews theoretical principles in an intuitive way for each application topic. Covers in depth five application domains (forests, agriculture, cryosphere, urban, and oceans), with reference also to hazard monitorin
    • …
    corecore