232 research outputs found

    Multi-Phase Hadamard receivers for classical communication on lossy bosonic channels

    Full text link
    A scheme for transferring classical information over a lossy bosonic channel is proposed by generalizing the proposal presented in Phys. Rev. Lett. 106, 240502 (2011) by Guha. It employs codewords formed by products of coherent states of fixed mean photon number with multiple phases which, through a passive unitary transformation, reduce to a Pulse-Position Modulation code with multiple pulse phases. The maximum information rate achievable with optimal, yet difficult to implement, detection schemes is computed and shown to saturate the classical capacity of the channel in the low energy regime. An easy to implement receiver based on a conditional Dolinar detection scheme is also proposed finding that, while suboptimal, it allows for improvements in an intermediate photon-number regime with respect to previous proposals.Comment: final version: minor changes; 8+3 pages and 5 figure

    Combinatorial Channel Signature Modulation for Wireless ad-hoc Networks

    Full text link
    In this paper we introduce a novel modulation and multiplexing method which facilitates highly efficient and simultaneous communication between multiple terminals in wireless ad-hoc networks. We term this method Combinatorial Channel Signature Modulation (CCSM). The CCSM method is particularly efficient in situations where communicating nodes operate in highly time dispersive environments. This is all achieved with a minimal MAC layer overhead, since all users are allowed to transmit and receive at the same time/frequency (full simultaneous duplex). The CCSM method has its roots in sparse modelling and the receiver is based on compressive sampling techniques. Towards this end, we develop a new low complexity algorithm termed Group Subspace Pursuit. Our analysis suggests that CCSM at least doubles the throughput when compared to the state-of-the art.Comment: 6 pages, 7 figures, to appear in IEEE International Conference on Communications ICC 201

    On Approaching the Ultimate Limits of Photon-Efficient and Bandwidth-Efficient Optical Communication

    Full text link
    It is well known that ideal free-space optical communication at the quantum limit can have unbounded photon information efficiency (PIE), measured in bits per photon. High PIE comes at a price of low dimensional information efficiency (DIE), measured in bits per spatio-temporal-polarization mode. If only temporal modes are used, then DIE translates directly to bandwidth efficiency. In this paper, the DIE vs. PIE tradeoffs for known modulations and receiver structures are compared to the ultimate quantum limit, and analytic approximations are found in the limit of high PIE. This analysis shows that known structures fall short of the maximum attainable DIE by a factor that increases linearly with PIE for high PIE. The capacity of the Dolinar receiver is derived for binary coherent-state modulations and computed for the case of on-off keying (OOK). The DIE vs. PIE tradeoff for this case is improved only slightly compared to OOK with photon counting. An adaptive rule is derived for an additive local oscillator that maximizes the mutual information between a receiver and a transmitter that selects from a set of coherent states. For binary phase-shift keying (BPSK), this is shown to be equivalent to the operation of the Dolinar receiver. The Dolinar receiver is extended to make adaptive measurements on a coded sequence of coherent state symbols. Information from previous measurements is used to adjust the a priori probabilities of the next symbols. The adaptive Dolinar receiver does not improve the DIE vs. PIE tradeoff compared to independent transmission and Dolinar reception of each symbol.Comment: 10 pages, 8 figures; corrected a typo in equation 3

    Design of tch-type sequences for communications

    Get PDF
    This thesis deals with the design of a class of cyclic codes inspired by TCH codewords. Since TCH codes are linked to finite fields the fundamental concepts and facts about abstract algebra, namely group theory and number theory, constitute the first part of the thesis. By exploring group geometric properties and identifying an equivalence between some operations on codes and the symmetries of the dihedral group we were able to simplify the generation of codewords thus saving on the necessary number of computations. Moreover, we also presented an algebraic method to obtain binary generalized TCH codewords of length N = 2k, k = 1,2, . . . , 16. By exploring Zech logarithm’s properties as well as a group theoretic isomorphism we developed a method that is both faster and less complex than what was proposed before. In addition, it is valid for all relevant cases relating the codeword length N and not only those resulting from N = p

    On palimpsests in neural memory: an information theory viewpoint

    Full text link
    The finite capacity of neural memory and the reconsolidation phenomenon suggest it is important to be able to update stored information as in a palimpsest, where new information overwrites old information. Moreover, changing information in memory is metabolically costly. In this paper, we suggest that information-theoretic approaches may inform the fundamental limits in constructing such a memory system. In particular, we define malleable coding, that considers not only representation length but also ease of representation update, thereby encouraging some form of recycling to convert an old codeword into a new one. Malleability cost is the difficulty of synchronizing compressed versions, and malleable codes are of particular interest when representing information and modifying the representation are both expensive. We examine the tradeoff between compression efficiency and malleability cost, under a malleability metric defined with respect to a string edit distance. This introduces a metric topology to the compressed domain. We characterize the exact set of achievable rates and malleability as the solution of a subgraph isomorphism problem. This is all done within the optimization approach to biology framework.Accepted manuscrip

    Challenges in Scientific Data Communication from Low-Mass Interstellar Probes

    Full text link
    A downlink for the return of scientific data from space probes at interstellar distances is studied. The context is probes moving at relativistic speed using a terrestrial directed-energy beam for propulsion, necessitating very-low mass probes. Achieving simultaneous communication from a swarm of probes launched at regular intervals to a target at the distance of Proxima Centauri is addressed. The analysis focuses on fundamental physical and statistical communication limitations on downlink performance rather than a concrete implementation. Transmission time/distance and probe mass are chosen to achieve the best data latency vs volume tradeoff. Challenges in targeting multiple probe trajectories with a single receiver are addressed, including multiplexing, parallax, and target star proper motion. Relevant sources of background radiation, including cosmic, atmospheric, and receiver dark count are identified and estimated. Direct detection enables high photon efficiency and incoherent aperture combining. A novel burst pulse-position modulation (BPPM) beneficially expands the optical bandwidth and ameliorates receiver dark counts. A canonical receive optical collector combines minimum transmit power with constrained swarm-probe coverage. Theoretical limits on reliable data recovery and sensitivity to the various BPPM model parameters are applied, including a wide range of total collector areas. Significant near-term technological obstacles are identified. Enabling innovations include a high peak-to-average power ratio, a large source extinguishing factor, the shortest atmosphere-transparent wavelength to minimize target star interference, adaptive optics for atmospheric turbulence, very selective bandpass filtering (possibly with multiple passbands), very low dark-count single-photon superconducting detectors, and very accurate attitude control and pointing mechanisms
    • …
    corecore