45 research outputs found

    Hybrid Spectral Difference/Embedded Finite Volume Method for Conservation Laws

    Full text link
    A novel hybrid spectral difference/embedded finite volume method is introduced in order to apply a discontinuous high-order method for large scale engineering applications involving discontinuities in the flows with complex geometries. In the proposed hybrid approach, the finite volume (FV) element, consisting of structured FV subcells, is embedded in the base hexahedral element containing discontinuity, and an FV based high-order shock-capturing scheme is employed to overcome the Gibbs phenomena. Thus, a discontinuity is captured at the resolution of FV subcells within an embedded FV element. In the smooth flow region, the SD element is used in the base hexahedral element. Then, the governing equations are solved by the SD method. The SD method is chosen for its low numerical dissipation and computational efficiency preserving high-order accurate solutions. The coupling between the SD element and the FV element is achieved by the globally conserved mortar method. In this paper, the 5th-order WENO scheme with the characteristic decomposition is employed as the shock-capturing scheme in the embedded FV element, and the 5th-order SD method is used in the smooth flow field. The order of accuracy study and various 1D and 2D test cases are carried out, which involve the discontinuities and vortex flows. Overall, it is shown that the proposed hybrid method results in comparable or better simulation results compared with the standalone WENO scheme when the same number of solution DOF is considered in both SD and FV elements.Comment: 27 pages, 17 figures, 2 tables, Accepted for publication in the Journal of Computational Physics, April 201

    Development of a Chemically Reacting Flow Solver on the Graphic Processing Units

    Get PDF
    The focus of the current research is to develop a numerical framework on the Graphic Processing Units (GPU) capable of modeling chemically reacting flow. The framework incorporates a high-order finite volume method coupled with an implicit solver for the chemical kinetics. Both the fluid solver and the kinetics solver are designed to take advantage of the GPU architecture to achieve high performance. The structure of the numerical framework is shown, detailing different aspects of the optimization implemented on the solver. The mathematical formulation of the core algorithms is presented along with a series of standard test cases, including both nonreactive and reactive flows, in order to validate the capability of the numerical solver. The performance results obtained with the current framework show the parallelization efficiency of the solver and emphasize the capability of the GPU in performing scientific calculations. Distribution A: Approved for public release; distribution unlimited. PA #1117

    Evaluation of finite difference based asynchronous partial differential equations solver for reacting flows

    Full text link
    Next-generation exascale machines with extreme levels of parallelism will provide massive computing resources for large scale numerical simulations of complex physical systems at unprecedented parameter ranges. However, novel numerical methods, scalable algorithms and re-design of current state-of-the art numerical solvers are required for scaling to these machines with minimal overheads. One such approach for partial differential equations based solvers involves computation of spatial derivatives with possibly delayed or asynchronous data using high-order asynchrony-tolerant (AT) schemes to facilitate mitigation of communication and synchronization bottlenecks without affecting the numerical accuracy. In the present study, an effective methodology of implementing temporal discretization using a multi-stage Runge-Kutta method with AT schemes is presented. Together these schemes are used to perform asynchronous simulations of canonical reacting flow problems, demonstrated in one-dimension including auto-ignition of a premixture, premixed flame propagation and non-premixed autoignition. Simulation results show that the AT schemes incur very small numerical errors in all key quantities of interest including stiff intermediate species despite delayed data at processing element (PE) boundaries. For simulations of supersonic flows, the degraded numerical accuracy of well-known shock-resolving WENO (weighted essentially non-oscillatory) schemes when used with relaxed synchronization is also discussed. To overcome this loss of accuracy, high-order AT-WENO schemes are derived and tested on linear and non-linear equations. Finally the novel AT-WENO schemes are demonstrated in the propagation of a detonation wave with delays at PE boundaries

    High-order methods for diffuse-interface models in compressible multi-medium flows: a review

    Get PDF
    The diffuse interface models, part of the family of the front capturing methods, provide an efficient and robust framework for the simulation of multi-species flows. They allow the integration of additional physical phenomena of increasing complexity while ensuring discrete conservation of mass, momentum, and energy. The main drawback brought by the adoption of these models consists of the interface smearing, increasing with the simulation time, therefore, requiring a counteraction through the introduction of sharpening terms and a careful selection of the discretization level. In recent years, the diffuse interface models have been solved using several numerical frameworks including finite volume, discontinuous Galerkin, and hybrid lattice Boltzmann method, in conjunction with shock and contact wave capturing schemes. The present review aims to present the recent advancements of high-order accuracy schemes with the capability of solving discontinuities without the introduction of numerical instabilities and to put them in perspective for the solution of multi-species flows with the diffuse interface method.Engineering and Physical Sciences Research Council (EPSRC): 2497012. Innovate UK: 263261. Airbus U

    An Application of Gaussian Process Modeling for High-order Accurate Adaptive Mesh Refinement Prolongation

    Full text link
    We present a new polynomial-free prolongation scheme for Adaptive Mesh Refinement (AMR) simulations of compressible and incompressible computational fluid dynamics. The new method is constructed using a multi-dimensional kernel-based Gaussian Process (GP) prolongation model. The formulation for this scheme was inspired by the GP methods introduced by A. Reyes et al. (A New Class of High-Order Methods for Fluid Dynamics Simulation using Gaussian Process Modeling, Journal of Scientific Computing, 76 (2017), 443-480; A variable high-order shock-capturing finite difference method with GP-WENO, Journal of Computational Physics, 381 (2019), 189-217). In this paper, we extend the previous GP interpolations and reconstructions to a new GP-based AMR prolongation method that delivers a high-order accurate prolongation of data from coarse to fine grids on AMR grid hierarchies. In compressible flow simulations special care is necessary to handle shocks and discontinuities in a stable manner. To meet this, we utilize the shock handling strategy using the GP-based smoothness indicators developed in the previous GP work by A. Reyes et al. We demonstrate the efficacy of the GP-AMR method in a series of testsuite problems using the AMReX library, in which the GP-AMR method has been implemented

    Computational modeling of advanced, multi-material energetic materials and systems

    Get PDF
    The aim of this thesis is to develop and implement a robust reactive simulation tool that can aid in the design of explosive devices by numerically investigating the reactive mechanism of different explosive materials; study how detonation waves travel through them and determine how to initiate explosives with the smallest amount of booster material. These types of problems are numerically challenging to model and require multiple components that interact with each other. Multi-material models are necessary since shocks and detonation waves will travel through and impinge on material interfaces. High order and robust methods are needed to maintain sharp representations of these material boundaries. They need to be capable of numerically maintaining stable interfaces between high energy explosive materials and low density inerts such as air. This is a challenging problem since it involves strong wave interactions at the interface, large pressure and density gradients across the same, and non-linearity issues that result from the use of real equations of state. From a software developing point of view, consistent code infrastructure also needs to be followed to allow the ability to easily implement new models and modify existing ones. Also, given the multi-scaled nature of these types of problems, methods need to be efficient and scalable in both shared and distributed memory architectures for parallel computing. The proposed parallel and robust numerical reactive hydrodynamic solver implementation maintains sharp solid and material interfaces. The solver is designed to run on distributed memory architectures using a simple yet efficient MPI communication implementation. Multiple level sets are used to track the evolution of material interfaces over time and represent internal solid regions. Approximate Riemann solvers and the Ghost Fluid Method or Overlap Domain Method are used to enforce appropriate interface boundary conditions. Ghost nodes are set by a new local and point-wise node sorting algorithm that decouples these nodes by establishing their connectivity to other ghost nodes. This approach allows us to enforce boundary conditions via a direct procedure removing the need to solve a coupled system of equations numerically. Issues concerning the use of reactive, non-ideal equations of state and their implementation in high explosive hydrodynamic codes are studied. The accuracy and fidelity of the solver is examined by simulating a series of explosive multi-material problems, showing good agreement between numerical results and experimental data

    Continuous finite element subgrid basis functions for Discontinuous Galerkin schemes on unstructured polygonal Voronoi meshes

    Full text link
    We propose a new high order accurate nodal discontinuous Galerkin (DG) method for the solution of nonlinear hyperbolic systems of partial differential equations (PDE) on unstructured polygonal Voronoi meshes. Rather than using classical polynomials of degree N inside each element, in our new approach the discrete solution is represented by piecewise continuous polynomials of degree N within each Voronoi element, using a continuous finite element basis defined on a subgrid inside each polygon. We call the resulting subgrid basis an agglomerated finite element (AFE) basis for the DG method on general polygons, since it is obtained by the agglomeration of the finite element basis functions associated with the subgrid triangles. The basis functions on each sub-triangle are defined, as usual, on a universal reference element, hence allowing to compute universal mass, flux and stiffness matrices for the subgrid triangles once and for all in a pre-processing stage for the reference element only. Consequently, the construction of an efficient quadrature-free algorithm is possible, despite the unstructured nature of the computational grid. High order of accuracy in time is achieved thanks to the ADER approach, making use of an element-local space-time Galerkin finite element predictor. The novel schemes are carefully validated against a set of typical benchmark problems for the compressible Euler and Navier-Stokes equations. The numerical results have been checked with reference solutions available in literature and also systematically compared, in terms of computational efficiency and accuracy, with those obtained by the corresponding modal DG version of the scheme
    corecore