thesis

Gaussian Process Modeling for Upsampling Algorithms With Applications in Computer Vision and Computational Fluid Dynamics

Abstract

Across a variety of fields, interpolation algorithms have been used to upsample lowresolution or coarse data fields. In this work, novel Gaussian Process based methodsare employed to solve a variety of upsampling problems. Specifically threeapplications are explored: coarse data prolongation in Adaptive Mesh Refinement(AMR) in the field of Computational Fluid Dynamics, accurate document imageupsampling to enhance Optical Character Recognition (OCR) accuracy, and fastand accurate Single Image Super Resolution (SISR). For AMR, a new, efficient,and “3rd order accurate” algorithm called GP-AMR is presented. Next, a novel,non-zero mean, windowed GP model is generated to upsample low resolution documentimages to generate a higher OCR accuracy, when compared to the industrystandard. Finally, a hybrid GP convolutional neural network algorithm is used togenerate a computationally efficient and high quality SISR model

    Similar works