23 research outputs found

    Multi-Lane Perception Using Feature Fusion Based on GraphSLAM

    Full text link
    An extensive, precise and robust recognition and modeling of the environment is a key factor for next generations of Advanced Driver Assistance Systems and development of autonomous vehicles. In this paper, a real-time approach for the perception of multiple lanes on highways is proposed. Lane markings detected by camera systems and observations of other traffic participants provide the input data for the algorithm. The information is accumulated and fused using GraphSLAM and the result constitutes the basis for a multilane clothoid model. To allow incorporation of additional information sources, input data is processed in a generic format. Evaluation of the method is performed by comparing real data, collected with an experimental vehicle on highways, to a ground truth map. The results show that ego and adjacent lanes are robustly detected with high quality up to a distance of 120 m. In comparison to serial lane detection, an increase in the detection range of the ego lane and a continuous perception of neighboring lanes is achieved. The method can potentially be utilized for the longitudinal and lateral control of self-driving vehicles

    Toward robust visual odometry using prior 2D map information and multiple hypothesis particle filtering

    Get PDF
    Visual odometry can be used to estimate the pose of a robot from current and recent video frames. A problem with these methods is that they drift over time due to the accumulation of estimation errors at each time-step. In this short paper we propose and briefly demonstrate the potential benefit of using prior 2D, top-down map information combined with multiple hypothesis particle filtering to correct visual odometry estimates. The results demonstrate a substantial improvement in robustness and accuracy over the sole use of visual odometry

    You Are Here:Geolocation by Embedding Maps and Images

    Get PDF
    We present a novel approach to geolocalising panoramic images on a 2-D cartographic map based on learning a low dimensional embedded space, which allows a comparison between an image captured at a location and local neighbourhoods of the map. The representation is not sufficiently discriminatory to allow localisation from a single image, but when concatenated along a route, localisation converges quickly, with over 90% accuracy being achieved for routes of around 200m in length when using Google Street View and Open Street Map data. The method generalises a previous fixed semantic feature based approach and achieves significantly higher localisation accuracy and faster convergence.Comment: 18 pages, new version accepted for ECCV 2020 (poster), with new results on publicly available dataset and comparison with implementation of previously published alternative approac

    Pix2Map: Cross-modal Retrieval for Inferring Street Maps from Images

    Full text link
    Self-driving vehicles rely on urban street maps for autonomous navigation. In this paper, we introduce Pix2Map, a method for inferring urban street map topology directly from ego-view images, as needed to continually update and expand existing maps. This is a challenging task, as we need to infer a complex urban road topology directly from raw image data. The main insight of this paper is that this problem can be posed as cross-modal retrieval by learning a joint, cross-modal embedding space for images and existing maps, represented as discrete graphs that encode the topological layout of the visual surroundings. We conduct our experimental evaluation using the Argoverse dataset and show that it is indeed possible to accurately retrieve street maps corresponding to both seen and unseen roads solely from image data. Moreover, we show that our retrieved maps can be used to update or expand existing maps and even show proof-of-concept results for visual localization and image retrieval from spatial graphs.Comment: 12 pages, 8 figure

    Machine Learning for Identifying Group Trajectory Outliers

    Get PDF
    Prior works on the trajectory outlier detection problem solely consider individual outliers. However, in real-world scenarios, trajectory outliers can often appear in groups, e.g., a group of bikes that deviates to the usual trajectory due to the maintenance of streets in the context of intelligent transportation. The current paper considers the Group Trajectory Outlier (GTO) problem and proposes three algorithms. The first and the second algorithms are extensions of the well-known DBSCAN and kNN algorithms, while the third one models the GTO problem as a feature selection problem. Furthermore, two different enhancements for the proposed algorithms are proposed. The first one is based on ensemble learning and computational intelligence, which allows for merging algorithms’ outputs to possibly improve the final result. The second is a general high-performance computing framework that deals with big trajectory databases, which we used for a GPU-based implementation. Experimental results on different real trajectory databases show the scalability of the proposed approaches.acceptedVersio
    corecore