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1 INTRODUCTION

Outlier detection problem involves detecting and, when appropriate, removing anomalous obser-

vations from data. This problem emerges in numerous applications [7, 25, 75]. The group outlier (or

anomaly) detection is general form of this problem, in which the aim is to identify sets of anoma-

lous observations rather than only individual ones [6, 38]. Typical applications include locating

unusual clusters of celestial objects from image processing [6], astronomical data [68], machine

monitoring [23], article and web site management [28], etc. This work considers trajectory outlier

detection— the outlier detection problem for spatial data that involves trajectories. This includes,

for instance, vehicle positioning data, hurricane tracking data, and animal movement data. The

aim is to identify trajectories that do not conform with the others [44].

The interest in this problem has been especially boosted by the proliferation of GPS-enabled

devices and ubiquitous wireless sensor technologies [27, 29] that produce countless trajectories.

The identification of outliers in such data is important to optimize routes in the short term, e.g.

in car navigation systems, or to make long-term decisions, such as improving the organization of

an urban area [39, 72]. Prior works on the trajectory outlier detection problem consider solely indi-

vidual outliers (see the next section for an overview). However, in real-world scenarios, trajectory

outliers may appear in groups. For instance, a group of vehicles that deviates from a usual trajec-

tory due to the maintenance of streets in the context of intelligent transportation, or a group of

hurricane trajectories that deviates from the normal ones in the context of climate change conse-

quences [32]. Considering the example of taxi trajectories, where each trajectory is mapped to the

road map network in the smart city. Traditional trajectory outlier detection algorithms [44, 69, 71]

cannot identify outliers presented by group of taxis deviating from the usual trajectory. Detecting

these trajectory outliers could help the planners to study the different correlations between these

trajectories to refer useful information. For instance, group of taxi trajectory outliers may indicate

that the taxis are partners in a taxi fraud.

This paper deals with the Group Trajectory Outlier detection (GTO) problem and explores dif-

ferent solutions based on data mining, machine learning and optimization. First, the use of data

mining is investigated by adopting the clustering, and the neighborhood computation techniques

in identifying the group of trajectory outliers. Machine learning techniques (including ensemble

learning) are then used to treat GTO as a feature selection problem. Further optimization methods

are explored to enhance the solutions, including computational intelligence, and high performance

computing,.This helps to deal with big trajectory databases in realtime, while ensuring the accu-

racy. Its main contributions can be summarized as follows:

• An adaptation of the DBSCAN algorithm [15] and kNN [52] are developed for solving the

GTO problem (DBSCAN-GTO and kNN-GTO, respectively). In particular, the DBSCAN-GTO

algorithm starts by applying the same method as the DBSCAN algorithm to derive the micro

clusters. These micro clusters are then considered as potential candidates for which a prun-

ing strategy based on density computation measure is proposed. The pruning produces

eventual groups trajectory outliers. Similarly, kNN-GTO algorithm starts by recursively

deriving the trajectory candidates from the individual trajectory outliers, and then prunes

these candidates using the proposed density computation measure;

• A novel algorithm, FS-GTO that models the GTO problem as feature selection problem is

proposed. In particular, the set of individual trajectory outliers are considered as the set of

all features, and the feature selection process is adopted to identify the group of trajectory

outliers;

• Two different enhancements are proposed for these algorithms by incorporating ensemble

learning, computational intelligence, and high performance computing (HPC). The ensem-

ble learning aims the accuracy, and the HPC the computational processing time, which will



enable solving big trajectory databases. An instantiation of the HPC framework is devel-

oped using GPU architecture.

• The performance of the proposed algorithms is analyzed using different real trajectory

databases. To the best of our knowledge, this is the first work that explores group trajec-

tory outlier detection in the current literature. The only option we have is thus to compare

the proposed solutions with the existing general group outlier detection solutions (see Sec-

tion 2 for an overview) when applied on trajectory data. The results of the experiments

demonstrate that the proposed algorithms clearly outperform the baseline algorithms. The

experiments show the scalability of the three approaches, as well as the ability of the HPC

implementation to efficiently deal with large trajectory databases.

The remainder of the paper is organized as follows. Section 2 reviews the main existing trajec-

tory and group outlier detection algorithms. The problem is formally defined in Section 3. Section 4

presents the proposed algorithms for tackling the GTO problem, DBSCAN-GTOD, kNN-GTOD and

FS-GTOD. Section 5 presents the performance evaluation, while Section 6 discusses the learned

lessons and draw directions from this work. Finally, Section 7 concludes the paper,

2 RELATED WORK

In this section we briefly discuss two main bodies of related literature: 1) on trajectory outlier

detection and, 2) on group outlier detection.

Trajectory outlier detection: Lee et al. [33] dealt with the angular sub-trajectory outlier detec-

tion problem, where the direction of anomalous sub-trajectories differ from those of neighboring

sub-trajectories. Their algorithm uses the partition and detect strategy, i.e., each trajectory in the set

of all trajectories is partitioned into different line segments called t-partitions. Each detection step

is performed by computing the adjusting coefficient of each t-partition for a given trajectory. If this

value is greater than 1, i.e., more adjustment is needed, and therefore the t-partition is considered

an outlier. Ge et al. [19] introduced a direction-based trajectory outliers in a robotic environment.

The monitoring area is partitioned into grids, each of which is further divided into eight direc-

tions.The outlying score of each trajectory is calculated by summing the density values of each

direction in each grid passed by this trajectory. Only trajectories having score less than a given

threshold are considered as outliers. Liu et al. [41] proposed the exploitation of a stochastic model

for context-aware anomaly detection in indoor location traces by using the hospital work flow,

and considering the movements of medical devices as transitions in finite state machines. Kong

et al. [31] proposed a long-term public transport traffic anomaly detection approach. This method

first creates a database from both the bus trajectory and the bus station line data. It then calculates

the anomaly index score of each road segment, based on its traffic density. Zhu et al. [80] proposed

Time-dependent Popular Routes based trajectory Outlier detection. Their solution first identifies

the popular routes for each time interval. The trajectories database is then divided into groups

so that each group contains trajectories with the same source points and the same destination

points in a given time interval. The score of the representative trajectory of each group is deter-

mined by comparing its similarity with the top popular roads. Yu et al. [69, 71] find sub-trajectory

outliers within a given time window by considering the neighbours of individual points and sub-

trajectories. In the work by Wu et al. [65], the set of historical trajectories is first matched to the

road network of the city according to the source and destination points. The probabilistic learning

model described by the maximum entropy inverse reinforcement [81] is then used to transform

the mapped trajectories into historical action trajectories. Thus, each road segment is regarded as

a state, the different road decisions, such as turning left, turning right, or moving straight forward,

are regarded as actions, and the drivers are considered agents. Afterwards, the learning model is

launched to estimate the cost of historical trajectories. For a new sub-trajectory, its probability is



computed based on the set of action historical trajectories. If the probability value is greater than 
a probability threshold then it is an outlier. In the work by Mao et al. [45], the set of trajectory 
fragments are derived. Each fragment of the given trajectory is composed by a line segment of two 
consecutive points. The local outlier factor algorithm is used to determine the fragment outliers, 
where the local difference density is used rather than the local reachability density. This process 
is repeated for all fragments in all trajectories.

In the domain of mobility analysis, trajectories have been largely studied. Fu et al. [18] explored  
trajectory abnormalities, and developed a general collective learning approach to understand the 
heterogeneous human mobility data towards identifying and quantifying the urban forms of resi-

dential communities. Liu et al. [42] first provided an integrated mobility pattern framework among 
the taxicabs and the bus transactions, and then developed a localized transportation model to pre-

dict the bus travel demand in a smart city environment. Wang et al. [63, 64] proposed a hybrid 
mixture of hawkes process and hierarchical topic model to identify abnormal trips. The origin and 
destination regions of trajectories are augmented by connecting to the neighborhood points of in-

terests. A latent probabilistic based model is then performed to represent the mixed functionality 
of the trajectories.

Group outlier detection: Some solutions employ statistical models to derive the group of 
outliers [38, 58, 68, 70]. In particular, Chalapathy et al. [6] considered the use of a deep generative 
model and test it on various image applications. The outlierness for each group in the input data is 
estimated by group reference function using a standard back-propogation algorithm. Liang et al.

[68] used flexible genre model to find group outliers, where their approach is based on topic mod-

eling, where the inference is performed by gibbs sampling [20], and the learning is done by monte 
carlo [5]. Das et al. [9] considered the different correlation b etween the data outliers to detect 
pattern anomalous by investigating bayesian network anomaly detection [48], and conditional 
anomaly detection [8]. Thus, the correlation score between the individual outliers is determined 
by the probability of possible values of these outliers in the training data. Tang et al. [56] defined 
contextual outlier detection as small group of points that share similarity, on some attributes, with 
a significantly larger reference group of data, but deviates dramatically on some other attributes. 
In order to avoid enumerating all contextual outliers, they only maintain the closure context 
outliers. In addition, only contextual outliers with a statistical significance t est g reater t han a 
given threshold are retrieved. Other works which explore contextual outlier detection include 
[37, 76]. [37] assigns feature weights on each group outlier, and compute chain rule entropy to 
determine correlation between different feature groups. [76] designs a parallel computing solution 
to deal with contextual outlier detection in high and sparse dimensional space. Xiong et al. [67] 
studied detecting two kinds of group anomalies: a group of individual anomalous points, and a set 
of normal points the distribution of whom as a group is abnormal. The authors define a mixture of 
gaussian mixture model by adopting the likelihood of each group, the marginal likelihood of each 
observation within a group, and the maximum likelihood estimation to learn the hyperparameters 
of the mixture model. An application of this algorithm in social media analysis was investigated 
in [70] by taking into account the dynamic properties of the social media data. Masumoto et al.

[46] proposed a new algorithm to detect both local and global outliers from fashion data. It 
incorporates the local outlier factor algorithm in identifying the top data slices that generate 
local outlier results of automatically generated OLAP queries. Camacho et al. [4] developed an 
intrusion detection, which adopts the principal component analysis, and introduce the group-wise 
concept. The proposed framework is a simple and easy to understand by security professionals 
not trained in multivariate tools. Fan et al. [16] suggested a hybrid unsupervised model based on 
convolutional auto-encoder and gaussian process regression to idnetify group outlier detection 
from high dimensional data. Wu et al. [66] considered the group anomaly detection as a one-class



classification problem, and introduce a fault-attention generative probabilistic adversarial au-

toencoder to automatically retrieve the low-dimensional manifold embedded in high-dimensional

space of the signal. Other approaches use clustering strategies on the individual of outliers to

group these outliers into similar clusters [9, 54, 56]. Each cluster is then considered as a group

of outliers. Soleimani et al. [54] proposed supervised learning approach that groups anomalous

patterns when memberships are previously unknown. The salient features are extracted from

an appropriate training set with discrete data inputs. It implements a nonparametric bootstrap

sampling procedure to evaluate the statistical significance of a detected anomalous behavior for a

single object as well as a cluster of objects. The approach is applied on topic documents modeling

and it is able to discover irregular topic mixtures from a collection of documents. Sun et al. [55]

proposed abnormal group-based joint medical fraud approach. The abnormal group problem was

converted to the maximal clique enumeration problem [47] by considering the set of patients

as the set of vertices, and each edge indicates that the two connected patients are similar. Note

that, the similarity between patients is determined by computing their identical joint behaviors.

Maximal clique enumeration is NP-hard problem, to do such task efficiently different partition

strategies [13] have been investigated to reduce the graph size. As a result, each maximal clique

is considered as abnormal group of patients.

Discussion: As can be seen from the above short literature overview, existing solutions for trajec-

tory data focus on discovering individual outliers. Typically, off-line processing is used to discover

whole trajectories while on-line one for sub-trajectories. As for the existing group outlier detection

algorithms they are not dedicated to trajectory data. Furthermore, they focus on finding a group

outliers from the set of candidate groups, and not from the individual outliers. In contrast, this

work is the first dedicated to detect group trajectory outliers from individual trajectory outliers.

3 PROBLEM STATEMENT

Some preliminary definitions are needed to introduce the group trajectory outlier problem. A tra-

jectory is a sequence of location points in space. In the remaining of the paper pt denotes a single

spatial location point, where each pt is a tuple of two values—the latitude and the longitude of this

location.

Definition 3.1 (Trajectory Database). A trajectory database T = {T1,T2, . . . ,Tm } is a database in

which each raw trajectory Ti is a sequence of spatial location points {pti1,pti2, . . . ,ptin }.

As common in the literature [12], the location points which are similar enough are aggregated

into regions. Let us denote by R a location region in space.

Definition 3.2 (Mapped Trajectory Database). In a mapped trajectory database Λ = {Λ1,Λ2...Λm },
each mapped trajectory Λi is a sequence of spatial location regions {Ri1,Ri2...Rin }, obtained by

replacing each point ptik in Ti with its region Rik .

In the literature, several similarity measures have been used for trajectories data such as longest

common subsequence, dynamic time warping, and edit distance [57]. However, all these measures

are point-based, it means that the computation of the similarity is based on the points of the tra-

jectories. In real applications, trajectories have different points but may belong to the same region.

In the following, a new measure to determine the similarity between trajectories is introduced.

Definition 3.3 (Trajectory Similarity). The similarity between two trajectories Λi , and Λj , de-

noted d (Λi ,Λj ), is defined by the number of all regions in the two trajectories minus the number

of shared regions in the two trajectories. Formally:

d (Λi ,Λj ) = n − {|(Ril ,R jl ) |Ril = R jl ,∀l ∈ [1..n]} (1)



Note that the trajectories do not necessary need to have the same length, it means trajectories

may contain different number of regions. To deal with this issue, trajectories with less number of

regions are completed by an empty regions called null.

Trajectory candidates form the set of potential trajectories belong to a group of trajectory out-

liers. These trajectory candidates are retrieved from the individual trajectory outliers.

Definition 3.4 (Trajectory Candidates). The set of the first p individual trajectory outliers, i.e.,

G+A = {Λ
+
1 ,Λ

+
2 ...Λ

+
p } (where A is a given trajectory outlier detection algorithm) is defined as

follows:

G+A = {Λ
+
i |∀j ∈ Λ \ G+A , Score (Λi ,A) ≥ Score (Λj ,A)}, (2)

where Score(•, A) is the ranking function used by A.

The density of a group is an important concept in our analysis. Intuitively, it is defined as the

number of shared regions between all the trajectories of the group.

Definition 3.5 (Group Density). We define the density of the candidate group of trajectory out-

liers, G, as

Density (G) = |{R |∀Λi ∈ G,R ∈ Λi }| (3)

The group of trajectory outliers is defined as individual of trajectory outliers which share a cer-

tain number of regions. An intuition behind this definition is that these trajectories are individual

outliers, it means that these trajectories deviate from the normal trajectories. If these trajectories

are close from each other, they can form a group of trajectory outliers. In the following, the concept

of a group of trajectory outliers is formally defined.

Definition 3.6 (Group of Trajectory Outliers). Set of trajectories G is said to be a group of trajec-

tory outliers iff {
G ⊆ G+A
Density (G) ≥ γ ,

(4)

where that γ ∈ [1, . . . ,n] is the density threshold.

Definition 3.7 (Group Trajectory Outlier Problem). Group Trajectory Outlier Problem aims to

discover from the set of all individual trajectory outliers, the set of all groups of trajectory outliers,

denoted by G∗.

Example 3.8. Let us assume that the plane in Figure 1 is a map with 16 different regions and the

lines represent 15 mapped trajectories. The map may be viewed as matrix where the element in ith

row and jth column represents the region R ((i−1)∗j )+j . Let us denote by Λ1, Λ2, and Λ3 trajectories

represented by dashed lines. This is the set of the trajectory candidates, G+A = {Λ
+
1 ,Λ

+
2 ,Λ

+
3 }. If we

consider two candidate groups G1 = {Λ2,Λ3}, and G2 = {Λ1,Λ2,Λ3}, Density (G1) = 4 by sharing

{R5,R6,R7,R8}, and Density (G2) = 3, by sharing {R6,R7,R8}. If γ > 3 only G1 is a group of trajec-

tory outliers, otherwise, both G1 and G2 are group of trajectory outliers.

A straightforward process of detecting groups of trajectory outliers would include the following

two activities:

• to consider all possible combinations between the individual trajectory outliers; and

• to evaluate each subset separately using Definition 3.5.

Obviously, this method does not scale (its complexity is O (2 |G
+
A | )). Therefore, we propose in 

the next section a general framework and within a number of different dedicated solutions that 
significantly improve upon the above process of detecting groups of trajectory outliers.



Fig. 1. An example of a group of trajectory outliers: Λ1, Λ2, and Λ3 are represented by the dashed lines.

Fig. 2. The solution schema for the GTO problem.

4 PROPOSED SOLUTION & ALGORITHMS

Let us begin by describing the key element of the solution to the GTO problem (see Figure 2 for

an overview). Generally speaking, our approach builds upon machine learning and high perfor-

mance computing. In particular, several machine learning techniques are used when developing

the proposed algorithms, including clustering, feature selection, neighborhood computation. The

algorithms’ performance is further improved by applying ensemble learning, and computational

intelligence. Finally, HPC is used to further boost the runtime performance and deal with big tra-

jectory databases in a reasonable time.



As shown in Figure 2, the approach can be divided into:

1. Mapping (Pre-processing): Typically, trajectories in most applications consist of noisy

GPS data points where errors can exceed several meters. This can negatively influence the

final output of many algorithms. Hence, first a map-matching stepshould be used to project

GPS data points of each trajectory onto a road network. Several approaches have been de-

veloped to achieve this [3, 21, 40]. Since in this work considers sparse trajectory databases,

probabilistic model based on a Hidden Markov Model [21, 51] are used. In particular, we

represent each road segment as hidden state in the Markov chain—it has an emission prob-

ability which is the likelihood of observing the GPS point conditional on the candidate road

segment being the true match. A higher probability to a road segment is assigned if the

observed trajectory points are close to it. The maximum likelihood path over the Markov

chain that has highest probability is then determined, and the corresponding road segment

is associated to the observed trajectory point.This way the mapped trajectory database is

created, in which every observed trajectory is assigned to the associated road segment.

2. Processing: After constructing the mapped trajectory database, a processing step is per-

formed to find out the group of trajectory outliers. In this context, we propose two ways

to find group of trajectory outliers and investigate a few approaches including clustering,

neighborhood computation, and feature selection. The first way is to start by determining

the individual trajectory outliers and then find out the group of trajectory outliers. An-

other way is to derive directly the group of trajectory outliers from the mapped trajectory

database. Further improvements are presented, using incorporating ensemble learning and

HPC.

In the remainder of this section describes in details the proposed algorithms (Sections 4.1-4.3),

ensemble learning (Section 4.4), and the HPC framework (Section 4.6).

4.1 The DBSCAN-GTO Algorithm

To present the adaptation of the DBSCAN algorithm [15], the following three definitions are

needed:

Definition 4.1 (Trajectory Neighborhoods). The neighborhoods of a trajectory Λi ,NΛi
, for a given

threshold ϵ is defined by

NΛi
= {Λj |d (Λi Λj ) ≤ ϵ ∨ j � i}. (5)

Definition 4.2 (Core T rajectory). A trajectory Λ i is defined as a core trajectory if there is at least 
a minimum number of trajectories MinPts such that |NΛi | ≤ MinPts.

Definition 4.3 (Micro C luster). A cluster of trajectories C i is defined as a micro cluster if and only 
if 0 < |Ci | ≤ μ, where  μ is a user threshold.

In general, solutions to trajectory clustering [34, 35] are able to derive clusters with different den-

sities. However, these algorithms do not explore the micro clusters property for anomaly detection. 
This section presents the proposed approach for identifying group of trajectory outliers, DBSCAN-

GTO, that uses the DBSCAN algorithm to search for clusters by checking the ϵ-neighborhood 
of each trajectory (See Definition 4.1). The core trajectories are determined using Definition 4.2. 
DBSCAN-GTO then iteratively collects density-reachable trajectories from these core trajecto-

ries directly, which may involve merging a few density-reachable clusters. The process terminates 
when no new trajectories can be added to any cluster. Initially, the set of trajectories are grouped 
(as in DBSCAN). This generates several clusters with different s izes. E ach m icro c luster (See 
Definition 4.3) is considered as group candidates. For each group, the density of each group is



determined using Definition 3.5, if the density exceeds γ threshold, then the group is selected as

outlier.

4.2 The kNN-GTO Algorithm

Let us begin the presentation of the adaptation of the kNN algorithm [52], with the following

definition:

Definition 4.4 (kNN). kNN of a trajectory Λi , denoted by kNN(Λi ), is defined as

kNN(Λi ) = {Λj ∈ Λ \ {Λi }|d (Λi ,Λj ) ≤ kdist (Λi )}, (6)

where kdist (Λi ) = d (Λi ,Λl ) is the k-distance of the trajectory Λi defined such as it exists k trajec-

tories Λ′ ∈ Λ, it holds that d (Λi ,Λl ) ≥ d (Λi ,Λ
′).

The following proposition holds:

Proposition 4.5. Let us consider two trajectories Λ′ and Λ′′. Let G∗ (t ) be a group of trajectory

outliers at the iteration t such that:

Λ′ ∈
⋃

Λ∗
i
∈G∗ (t )

kNN(Λ∗i ) ∧ Λ′′ �
⋃

Λ∗
i
∈G∗ (t )

kNN(Λ∗i ).

Then, the following holds:

Λ′ � G∗ (t + 1) ⇒ Λ′′ � G∗ (t + 1).

Proof. Given that:

Λ′ ∈
⋃

Λ∗
i
∈G∗ (t )

kNN(Λ∗i ) ∧ Λ′′ �
⋃

Λ∗
i
∈G∗ (t )

kNN(Λ∗i )

⇒ Density (G∗ (t ) ∪ {λ′′}) ≤ Density (G∗ (t ) ∪ {λ′}) . . . (7)

Λ′ � G∗ (t + 1) ⇒ Density (G∗ (t ) ∪ {λ′}) ≤ γ . . . (8)

From (7) and (8) it yields: Density (G∗ (t ) ∪ {λ′′}) ≤ γ ⇒ Λ′′ � G∗ (t + 1). �

It follows from the above proposition that if a trajectory Λi belongs to the k nearest neighbors

of at least one trajectory in the current group of trajectory outliers, and Λi is not in the group of

trajectory outliers of the next iteration, then, any trajectory that belongs to the k nearest neighbors

of Λi could not be in the group of trajectory outliers of the next iteration. Consequently, it is

judicious to prune the search into k nearest neighbors of the individual trajectory outliers.

kNN-GTO algorithm, an adapted kNN algorithm for identifying group trajectory outliers, con-

siders as input the set of the first p individual trajectory outliers G+ = {Λ+1 ,Λ+2 . . .Λ+p }, ranked

according to the kNN value, i,e, ∀i ≥ j, kNN(Λ+i ) ≥ kNN(Λ+j ). The process aims to enumerate the

sets of group trajectory outliers, G∗, by exploring a search tree of G+. It starts by adding the indi-

vidual trajectory outlier ranked first, Λ+1 , to the group trajectory outliers, denoted by G∗1 . It then

generates all potential candidates from Λ+1 . A trajectory t is a potential candidate from Λ+1 , if and

only if, t ∈ G+ ∨ t ∈ kNN(Λ+1 ). The density of G∗1 is updated by adding the potential candidates

to G∗1 , one by one. Only the potential candidates respecting the density threshold are saved, and

the remaining ones are removed. Once the potential candidate is added to G∗1 , it is removed from

G+. If G∗1 contains less than two elements, it is removed from G∗. The same process is recursively

applied to all potential candidates added to G∗1 , and the overall process is repeated for all trajectory

outliers in G+.



4.3 FS-GTO

Definition 4.6 (Transformation to FS Problem). Consider GTO problem 〈G+A ,G
∗〉. This problem is

transfomed to the feature selection problem, represented by the set of all features F and the subset

of selected features F ∗, as follows: F = G+A , and F ∗=G∗. F ∗ is evaluates as follows:

Eval (F ∗) = Quality (F ∗) − |F
∗ |
|F | , (9)

where Quality(F ∗) is computed as per Definition 3.5.

We consider each individual trajectory outlier as one feature, while the aim is to select the most 
relevant features from the set of all features. This set then becomes the group of trajectory out-

liers (see Definition 4.6). The evaluation of the selected set of features (trajectories) is computed 
using the group density measure, see Equation (9). According to the recent work of Li et al. [36], 
feature selection algorithms have been categorized into similarity based, information theoretical 
based, and statistical based methods. In particular, information theoretical based methods explore 
different h euristics s uch a s i nformation g ain [ 30], M inimum R edundancy M aximum Relevance 
[50], and Joint Mutual Information [22], These algorithms can only work for supervised learning; 
while the ground truth is not always available in the problem treated herin. Conversely, statistical 
based methods calculate different statistical measures such as low variance [53], T-score [11], and 
Chi-Square Score [79]. These algorithms work only on discrete data, where preprocessing step is 
required for numerical and continuous data. Finally, similarity based methods determine similari-

ties between features to associate weight importance on each feature candidate. These algorithms 
of this kind, such as Laplacian Score [24], SPEC [77], Fisher Score [49], and Trace Ratio Criterion 
[26], proved excellent performance in both supervised and unsupervised scenarios. They are also 
easy to implement, as the main process focuses on designing an affinity matrix from which the 
scores of features can be computed. Thus, we chose similarity based methods, and SPEC in par-

ticular, as it considers unsupervised learning. In more detail, in SPEC, a feature that is consistent 
with the data manifold structure should assign similar values to instances that are near each other. 
The process starts by applying the SPEC algorithm on the set of individual trajectory outliers, The 
output of this step is a ranking of individual outliers in the descending order in terms of score 
feature relevance. Using the SPEC ranking vector of individual outliers, a search enumeration 
tree is generated in the breadth-first-search (BFS) manner. If the quality of the current group can-

didate does not reach the criteria from Definition 3 .5, a  backtracking procedure i s launched by 
taking the next trajectory in the SPEC ranking vector. While exploring the enumeration tree of 
individual outliers, the aim is to maximize the function reported in Equation (9).

4.4 Ensemble Learning

Each of the previously proposed techniques—clustering (DBSCAN-GTO), neighborhood computa-

tion (KNN-GTO) and feature selection (FS-GTO)—returns potential groups of trajectory outliers. 
Out of these groups, some groups are usually good while others may not be useful. In order to 
improve the accuracy of the detected group of trajectory outliers, we propose the use of ensemble 
learning [61, 83]. In particular, the proposed algorithms, DBSCAN-GTO, kNN-GTO, and FS-GTO, 
are launched in this context called learners. The three outputs—sets GDBSCAN  , Gk N  N  , and GF S  —

are then merged to derive the final set of groups of trajectory outliers. Hence, the main challenge 
of this approach is to find an efficient merging strategy. We propose the following one. For each 
group of trajectory outliers, the number of the occurrences of the three learners is determined, 
by looking for the groups that are highly frequent. For instance, if there are two groups: the first 
group {Λ1, Λ2, Λ4} appears two times—ones in the output of the GDBSCAN  algorithm, and another



time in the output of the Gk N N algorithm—and the second group {Λ1,Λ2,Λ3} appears only one

time in the output of GF S , then the first group is better ranked than the second one.

4.5 Computational Intelligence

Evolutionary computing draws ideas from natural evolution such as survival of the fittest, natural

selection, reproduction, mutation, competition and symbiosis [14]. The aim of the computational

intelligence methods, such as genetic algorithms, genetic programming, mimetic algorithms, im-

mune and swarm intelligence algorithms, is to make an accurate solution for the given optimiza-

tion problems. In this work, evolutionary computation, and in particular, the genetic algorithm

[10] is used to improve the quality of the returned group of trajectory outliers. The initial pop-

ulation is first generated by randomly selecting the group of trajectory outliers from the results

obtained by DBSCAN-GTO, kNN-GTO, or FS-GTO. Each chromosome in the initial population will

be one potential group of trajectory outliers. Two operators are then used to refine the initial so-

lution: i) The first one is crossover, it takes two chromosomes from the population, and generates

two new chromosomes by making intersection operator between the groups selected, and ii) The

second one is mutation, it takes two generated chromosomes on the crossover step, and generates

two more chromosomes by making the union operator between the groups selected. All generated

chromosomes are evaluated by the fitness function using Definition 3.5. The best chromosomes

are selected for the next iteration. This process is repeated until a maximum number of iterations

are reached.

4.6 High Performance Computing

In this section, a generic approach is first proposed to implement the proposed solutions on par-

allel architectures. A particular instantiation on GPU architecture of this generic approach is then

presented.

Generic Approach to Parallelize GTO Solutions: To run the proposed GTO algorithms on any

parallel architecture, the following sequential steps need to be performed:

(1) Map Partitioning: In this step, the map is divided into several grids, whereby each grid

contains a set of similar trajectories. This step is performed in CPU.

(2) Computing and storing the local results: In this step, each parallel node applies one

of the GTO solutions on each cluster, generates all group trajectory outliers from the grid

that is assigned to it, and stores them in the set of all groups of trajectory outliers. The

latter is built following the same logic of building the list of the group of trajectory outliers

in the serial implementation of GTO solutions. Once the local group trajectory outliers are

calculated, they will be sent to CPU for further processing.

(3) Merging the local results: The local group of trajectory outliers are merged into a global

one on the CPU side. This can be done using a simple concatenation of all the local results.

GPU-GTO: The instantiation of the three steps defined above must be carefully designed to fit the

hardware in use. Here, we present an instantiation of this generic approach using GPU hardware.

GPUs (Graphic Processing Units) are graphical cards initially developed for efficient generation

of images intended for a display device, but their use as a powerful computing tool has gained

popularity in many domains during the last decade [59, 60, 62]. The hardware is composed of two

hosts, the CPU one and the GPU one. The former contains processor(s) and the main memory.

The latter is a multi-threading system that consists of multiple computing cores, where each core

executes a block of threads. The threads of a block in the same core communicate with one another

using a shared memory, whereas the communication between blocks relies on a global memory.

The CPU/GPU communication is made possible by hardware buses. GPU-GTO is our adaptation



of GTO for deployment on GPU architectures. In GPU-GTO, the map is first partitioned on k grids

{д1,д2 . . .дk } using the map partitioning step. The set of designed grids are then sent to GPU.

Each block of threads is mapped onto one grid, where the GTO solutions are applied on each

block in parallel. Let the size of the shared memory of each block to be denoted sm. The first

sm trajectories of the grid дi are allocated to the shared memory of the block, and the remaining

trajectories of the grid дi is allocated to the global memory of the GPU host. GPU-GTO defines a

local table, tablei , to store the group of trajectory outliers of the grid дi . The local table of each

grid is sent to CPU for further processing. In this context, CPU host performs a merging step

to find the global group of trajectory outliers, where the union of all sets of group of trajectory

outliers in the local tables is computed. From a theoretical standpoint, GPU-GTO improves the

GTO solutions by exploiting the massively threaded computing of GPUs while mining the grids of

trajectories. GPU-GTO also minimizes the CPU/GPU communication, by defining only two points

of CPU/GPU communication. The first one takes place when the grids are loaded into the GPU

host, and the second one when the local tables are returned to the CPU. GPU-GTO also provides an

efficient memory management by using different levels of memories including global and shared

memories. However, GPU-GTO may suffer from the synchronization between the GPU blocks.

This takes place when the GPU blocks process grids with different number of trajectories. This

issue degrades the performance of the GPU-based implementation of the GTO solutions. In real

scenarios, different number of trajectories per grid may be obtained, this depends to the way of the

trajectories are placed into the map, as the size of the grids are different, as the synchronization

cost of the GPU-based implementation will be high. All these statements will be clearly explained

in the performance evaluation section below.

5 EXPERIMENTAL EVALUATION

In this section, the GTO framework is experimentally evaluated and its different components.

In particular, the serial implementations of the different GTO solutions are compared with the

state-of-the art group outlier detection algorithms using standard trajectory databases. In addi-

tion, the scalability performance of the GPU-based implementation is carried out on big trajectory

databases.

Experimental Setup: The implementation of the different components of the GTO framework1

has been integrated on the SPMF data mining library [17]. The experimental evaluation of the

serial implementations has been performed on a computer with 64bit core i7 processor running

Windows 10 and 16GB of RAM. The evaluation of the the GPU-based implementation has been

carried out on a CPU host coupled with a GPU device. The CPU host is a 64-bit quad-core In-

tel Xeon E5520 with a clock speed of 2.27GHz. The GPU device is an Nvidia Tesla C2075 with

448 CUDA cores (14 multiprocessors with 32 cores each) and a clock speed of 1.15GHz. It has

2.8GB of global memory, 49.15KB of shared memory, and a warp size of 32. Both the CPU and

GPU are used in single precision.

In general, a common problem of outlier detection techniques is the evaluation procedure. This

is particularly the case for new applications such as the GTO problem, where a ground truth is

typically unknown. To facilitate a quantitative evaluation, for group trajectory outlier detection

techniques, the process of Zhang et al. [74] is adapted to inject synthetic group trajectory outliers.

In particular:

• Injecting individual trajectory outliers: Individual trajectory outliers are generated by

adding noise several times with a certain probabilityp ∼ U (0.0, 1.0) and a given threshold μ.

1https://github.com/YousIA/GTOD.

https://github.com/YousIA/GTOD


• Injecting group trajectory outliers: Group of trajectory outliers are generated by adding

noise to the set of individual of trajectory outliers, but now only a few times with a certain

probability p ∼ U (0.0, 1.0) and a given μ.

Note thatU (0.0, 1.0) is the continuous uniform distribution with lower, and upper bounds set to

0, and 1, respectively. For both injections, each point pil in the trajectory Λi is changed as follows:

pil =

{
pil + n ∼ N (0, 1) if p ≥ μ
pil otherwise.

(10)

The evaluation is performed using F-measure, and ROCAUC, which are common measures for the

evaluation of outlier detection methods [52].

Data Description: Benchmark trajectory databases from different domains are used, i.e.:

(1) Intelligent Transportation: A database from the ECML PKDD 2015 databases com-

petition2 is used. The database contains real trajectories retrieved from 01/07/2013 to

30/06/2014 of 442 taxis in the city of Porto, in Portugal. This allows to recuperate more

than 3 GB of data stored in one single CSV file. Each row contains information related to

one trip including: TripID, CallType and TaxiID. The last component of the row contains

a list of GPS coordinates. This list contains one pair of coordinates for each 15 seconds of

trip. The last list item corresponds to the trip’s destination while the first one represents

its start.

(2) Climate Change: Thehurricane track data set is used, which contains latitude, longitude,

maximum sustained surface wind, and minimum sea-level pressure of hurricane trajec-

tories in USA at 64 hourly intervals. The Atlantic hurricanes [32] is used, which was re-

trieved from the years 1851 to 2018. This data contains 52775 hurricane trajectories.

(3) Environment: A database of the Starkey Project3 is used. We consider the animal move-

ment data illustrated by the radio-telemetry locations of elk, deer, and cattle retrieved from

1989 to 1999. The locations are recorded at 30 minute intervals. This data is considered

sparse one with 100 trajectories, and more than 40,000 different points.

Moreover, two additional big databases are used in the experiments: i) taxi 13-1 containing

1.89 million trajectories, and ii) taxi 13-2 containing 3.69 million trajectories [44].

The results of the experiments are presented in the following.

5.1 Parameters Setting

The first part of this experiment focuses on tuning the parameters of different proposed GTO solu-

tions. As shown in Figures 3, 4, and 5, several tests have been performed by varying the user thresh-

old (from 1 to 10) for DBSCAN-GTO, the number of neighborhood (from 1 to 10) for kNN-GTO,

and the tree depth (from 1 to 10) for FS-GTO. In all the trajectory database used as input (Intel-

ligent Transportation, Climate Change or Environment), the accuracy (determined by F-measure

and ROC-AUC) of DBSCAN-GTO and kNN-GTO increases as the value of the corresponding pa-

rameter grows up to reaching an optimal point. After this, the accuracy starts decreasing except

for FS-GTO that converges at this point. The best parameter values obtained in this step are used in

the remaining of the experiments. The best values of the proposed solutions for different trajectory

databases are as summarized for each dataset as follows:

2http://www.geolink.pt/ecmlpkdd2015-challenge/dataset.html.
3https://www.fs.fed.us/pnw/starkey/introduction.shtml.

http://www.geolink.pt/ecmlpkdd2015-challenge/dataset.html
https://www.fs.fed.us/pnw/starkey/introduction.shtml


Fig. 3. The parameter setting of the proposed algorithms on Intelligent Transportation.

Fig. 4. The parameter setting of the proposed algorithms on Climate Change.



Fig. 5. The parameter setting of the proposed algorithms on Environment.

(1) Intelligent Transportation: user threshold is set to 4 for DBSCAN-GTO, k is set to 6 for

kNN-GTO, tree depth is set to 6 for FS-GTO.

(2) Climate Change: user threshold is set to 6 for DBSCAN-GTO, k is set to 5 for kNN-GTO,

tree depth is set to 6 for FS-GTO.

(3) Intelligent Transportation: user threshold is set to 6 for DBSCAN-GTO, k is set to 5 for

kNN-GTO, tree depth is set to 7 for FS-GTO.

5.2 Performance of Serial GTO Solutions

The aim of this experiment is to compare the proposed solutions with the state-of-the art algo-

rithms in terms of accuracy and processing time. Since, to the best of our knowledge, this is the first

work that explores group trajectory outlier detection, the proposed solutions are compared with

general group outlier detection solutions (see Section 2). We adopted four well-known algorithms

to trajectory data, i.e., DGM [6], WATCH [37], ATD [54], and AGJFD [55]. DGM considers the use of

a deep generative model, in which the outlierness is estimated using a standard back-propogation

algorithm. WATCH deals with contextual outlier detection in high and sparse dimensional space

using feature grouping. ATD is a clustering-based solution that uses a nonparametric bootstrap

sampling and topic modeling to identify group outliers. AGJFD uses the maximal clique enumera-

tion problem to identify the abnormal group of patients. Figures 6, 7, 8, and 9 present both accuracy

and runtime of the proposed solutions (DBSCAN, kNN, Feature Selection, Ensemble Learning, and

Computational Intelligence), and the baseline algorithms (DGM, WATCH, ATD, and AGJFD). For

any gamma threshold from 1 to 1000, the solutions based on feature selection, ensemble learning,

and computational intelligence methods outperform the baseline algorithms in terms of accuracy.

However, solutions based on neighborhood computation and DBSCAN are less competitive. This

comes from the fact that the former solutions use more advanced and recent strategies, while the



Fig. 6. Accuracy: The Proposed Solutions Vs. State-of-the art Group Detection on Intelligent Transportation.

latter solutions use less advanced concepts. Regarding the time processing, the advanced solutions 
require more time than the less advanced ones, but they are still competitive in this respect to the 
baseline algorithms.

5.3 Performance of GPU-GTO Solutions

In this section, the GPU-based solutions are evaluated on big trajectory databases. Figure 10 
presents the speedup obtained by the proposed algorithms. The number of blocks has been varied 
from 128 to 1,024, and the number of threads per block from 1 to 512. The figure show that the 
speedup increases considerably for the proposed solutions. This is the case, in particular, for com-

putational intelligence method. While, for small number of blocks and small number of threads



Fig. 7. Accuracy: The Proposed Solutions Vs. State-of-the art Group Detection on Climate Change.

per block, the speedup of the proposed solutions is a bit less than 100, for large number of blocks

and large number of threads per block, the GPU-based solutions are 200 times faster than the serial

solutions. This means that computational overhead is relatively small, and this is among others

due to an efficient partition strategy to map the trajectories to different GPU blocks.

Figure 11 compares the proposed GPU-solution using the computational intelligence with

the baseline GPU-based outlier detection algorithms (SolvingSet [?], SolvingSet+ [1], and MoN-

avGPU [73]), using big trajectory databases. SolvingSet, and SolvingSet+ are GPU-based imple-

mentations of neighborhood-based outlier detection algorithm, whereas MoNavGPU is the GPU

implementation of MoNav algorithm [43]. By increasing with the percentage of trajectory sizes

from 10% to 100%, our solution outperforms the baseline approaches in terms of processing time.



Fig. 8. Accuracy: The Proposed Solutions Vs. State-of-the art Group Detection on Environment.

Its runtime does not exceed 300 seconds to deal with the whole trajectory taxi 13-2 database, while

the other solutions need x500 seconds for processing such trajectory database. These speedup is

obtained due to the intelligent mapping between trajectories and the GPU blocks, the parallelism

by nature of computational intelligence approach.

6 DISCUSSIONS AND FUTURE PERSPECTIVES

The findings from the application of the group of outlier detection to the trajectory data are:

(1) The efficient combination of several concepts from different fields in detecting group

of trajectory outliers improves the overall performance (for both quality and runtime)

compared to the baseline approaches for group detection. Notably by exploring machine



Fig. 9. Runtime: The Proposed Solutions Vs. State-of-the art Group Detection.

learning algorithms (micro clusters, nearest neighbors, feature selection), as well as en-

semble learning, computational intelligence and the high performance computing.

(2) From a machine learning research standpoint, the GTO solutions proposed in this work

are examples of the adaptation of generic algorithms to a specific context of trajectory

outliers. As in many other cases, porting a pure machine learning technique into a specific

application domain requires methodological refinement and adaptation [39, 54]. In our

specific context, this adaptation has been implemented by integrating a new model called

group of trajectory outliers.

This work is just the first milestone of a long path, while much investigation by the machine

learning community is required before reaching mature solutions ready to be exploited by city

planners in smart city environments. The directions of future work include:

(1) Techniques for GTO: other more sophisticated techniques can be developed for GTO prob-

lem. For instance, other traditional outlier detection techniques may be adopted such as

Local Outlier Factor (LOF) [2]. This can be done by developing new concepts of density

and local reachability density, designed for the GTO problem.

(2) Missing of the ground truth It is a common problem in evaluating of trajectory out-

lier detection algorithms [78, 82]. The following issues and research questions represent

challenges for future research on the aspect of quality assessment of group of trajectory

outlier detection results:

(1) Defining useful, publicly available benchmark data for group trajectory outlier detec-

tion problem would allow for a more objective research study for analyzing the group

of trajectory outlier detection algorithms.

(2) It would be very useful to identify meaningful criteria of to run an internal evaluation

of group trajectory outlier detection. One way to address this challenging issue is to

provide unified ranking function scores to rank the group trajectory outliers. These

functions should be independent from the whole process of retrieving the group tra-

jectory outliers.

(3) GTO applications: more effort is needed to investigating and targeting new applications

of GTO, such as climate change analysis, for example, finding a group of hurricane



Fig. 10. The speed of the proposed solutions on the GPU architecture.



Fig. 11. The Proposed Solutions Vs. State-of-the art GPU-based Outlier Detection.

trajectories that deviates from the normal hurricane ones. This allows to identify other

cities that could be affected by the hurricanes. The last hurricanes observed in the United

States during the period of 2018-2019 is a real example of such study. In addition, new

visualization techniques can be developed for GTO, in order to present in an accessible

way groups of trajectory outliers to the city planners.

7 CONCLUSIONS

The problem of Group Trajectory Outlier (GTO) detection has been dealt with in this paper, which

focuses on discovering group of trajectory outliers. This is different from previous trajectory

outlier detection approaches, which are only able to derive individual trajectory outliers. The



GTO problem is particularly relevant to smart city applications, where a large volume of data

on trajectories is collected daily. In order to solve the new problem efficiently, we have proposed

three algorithms, DBSCAN-GTO, kNN-GTO, and FS-GTO. All approaches have been tested on

real trajectory databases, and the results demonstrate the usefulness of exploring ensemble

learning, computational intelligence, and high performance computing in identifying group

trajectory outliers. The advantages of the approaches proposed in this paper over to the baseline

group detection has been validated through extensive experimental study. Moreover, the results

demonstrate that GPU-parallel approach outperforms the existing HPC approaches when dealing

with big trajectory databases.
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