4,443 research outputs found

    Linear Time Logics - A Coalgebraic Perspective

    Full text link
    We describe a general approach to deriving linear time logics for a wide variety of state-based, quantitative systems, by modelling the latter as coalgebras whose type incorporates both branching behaviour and linear behaviour. Concretely, we define logics whose syntax is determined by the choice of linear behaviour and whose domain of truth values is determined by the choice of branching, and we provide two equivalent semantics for them: a step-wise semantics amenable to automata-based verification, and a path-based semantics akin to those of standard linear time logics. We also provide a semantic characterisation of the associated notion of logical equivalence, and relate it to previously-defined maximal trace semantics for such systems. Instances of our logics support reasoning about the possibility, likelihood or minimal cost of exhibiting a given linear time property. We conclude with a generalisation of the logics, dual in spirit to logics with discounting, which increases their practical appeal in the context of resource-aware computation by incorporating a notion of offsetting.Comment: Major revision of previous version: Sections 4 and 5 generalise the results in the previous version, with new proofs; Section 6 contains new result

    Expressive Logics for Coinductive Predicates

    Get PDF
    The classical Hennessy-Milner theorem says that two states of an image-finite transition system are bisimilar if and only if they satisfy the same formulas in a certain modal logic. In this paper we study this type of result in a general context, moving from transition systems to coalgebras and from bisimilarity to coinductive predicates. We formulate when a logic fully characterises a coinductive predicate on coalgebras, by providing suitable notions of adequacy and expressivity, and give sufficient conditions on the semantics. The approach is illustrated with logics characterising similarity, divergence and a behavioural metric on automata

    Heuristic Ranking in Tightly Coupled Probabilistic Description Logics

    Full text link
    The Semantic Web effort has steadily been gaining traction in the recent years. In particular,Web search companies are recently realizing that their products need to evolve towards having richer semantic search capabilities. Description logics (DLs) have been adopted as the formal underpinnings for Semantic Web languages used in describing ontologies. Reasoning under uncertainty has recently taken a leading role in this arena, given the nature of data found on theWeb. In this paper, we present a probabilistic extension of the DL EL++ (which underlies the OWL2 EL profile) using Markov logic networks (MLNs) as probabilistic semantics. This extension is tightly coupled, meaning that probabilistic annotations in formulas can refer to objects in the ontology. We show that, even though the tightly coupled nature of our language means that many basic operations are data-intractable, we can leverage a sublanguage of MLNs that allows to rank the atomic consequences of an ontology relative to their probability values (called ranking queries) even when these values are not fully computed. We present an anytime algorithm to answer ranking queries, and provide an upper bound on the error that it incurs, as well as a criterion to decide when results are guaranteed to be correct.Comment: Appears in Proceedings of the Twenty-Eighth Conference on Uncertainty in Artificial Intelligence (UAI2012

    Probability and nonclassical logic

    Get PDF

    Completeness of Flat Coalgebraic Fixpoint Logics

    Full text link
    Modal fixpoint logics traditionally play a central role in computer science, in particular in artificial intelligence and concurrency. The mu-calculus and its relatives are among the most expressive logics of this type. However, popular fixpoint logics tend to trade expressivity for simplicity and readability, and in fact often live within the single variable fragment of the mu-calculus. The family of such flat fixpoint logics includes, e.g., LTL, CTL, and the logic of common knowledge. Extending this notion to the generic semantic framework of coalgebraic logic enables covering a wide range of logics beyond the standard mu-calculus including, e.g., flat fragments of the graded mu-calculus and the alternating-time mu-calculus (such as alternating-time temporal logic ATL), as well as probabilistic and monotone fixpoint logics. We give a generic proof of completeness of the Kozen-Park axiomatization for such flat coalgebraic fixpoint logics.Comment: Short version appeared in Proc. 21st International Conference on Concurrency Theory, CONCUR 2010, Vol. 6269 of Lecture Notes in Computer Science, Springer, 2010, pp. 524-53
    • …
    corecore