1,963 research outputs found

    Flattening an object algebra to provide performance

    Get PDF
    Algebraic transformation and optimization techniques have been the method of choice in relational query execution, but applying them in object-oriented (OO) DBMSs is difficult due to the complexity of OO query languages. This paper demonstrates that the problem can be simplified by mapping an OO data model to the binary relational model implemented by Monet, a state-of-the-art database kernel. We present a generic mapping scheme to flatten data models and study the case of straightforward OO model. We show how flattening enabled us to implement a query algebra, using only a very limited set of simple operations. The required primitives and query execution strategies are discussed, and their performance is evaluated on the 1-GByte TPC-D (Transaction-processing Performance Council's Benchmark D), showing that our divide-and-conquer approach yields excellent result

    DMA:an algebra for multicriteria spatial modeling

    Get PDF

    Geospatial Narratives and their Spatio-Temporal Dynamics: Commonsense Reasoning for High-level Analyses in Geographic Information Systems

    Full text link
    The modelling, analysis, and visualisation of dynamic geospatial phenomena has been identified as a key developmental challenge for next-generation Geographic Information Systems (GIS). In this context, the envisaged paradigmatic extensions to contemporary foundational GIS technology raises fundamental questions concerning the ontological, formal representational, and (analytical) computational methods that would underlie their spatial information theoretic underpinnings. We present the conceptual overview and architecture for the development of high-level semantic and qualitative analytical capabilities for dynamic geospatial domains. Building on formal methods in the areas of commonsense reasoning, qualitative reasoning, spatial and temporal representation and reasoning, reasoning about actions and change, and computational models of narrative, we identify concrete theoretical and practical challenges that accrue in the context of formal reasoning about `space, events, actions, and change'. With this as a basis, and within the backdrop of an illustrated scenario involving the spatio-temporal dynamics of urban narratives, we address specific problems and solutions techniques chiefly involving `qualitative abstraction', `data integration and spatial consistency', and `practical geospatial abduction'. From a broad topical viewpoint, we propose that next-generation dynamic GIS technology demands a transdisciplinary scientific perspective that brings together Geography, Artificial Intelligence, and Cognitive Science. Keywords: artificial intelligence; cognitive systems; human-computer interaction; geographic information systems; spatio-temporal dynamics; computational models of narrative; geospatial analysis; geospatial modelling; ontology; qualitative spatial modelling and reasoning; spatial assistance systemsComment: ISPRS International Journal of Geo-Information (ISSN 2220-9964); Special Issue on: Geospatial Monitoring and Modelling of Environmental Change}. IJGI. Editor: Duccio Rocchini. (pre-print of article in press

    Four Soviets Walk the Dog-Improved Bounds for Computing the Fr\'echet Distance

    Get PDF
    Given two polygonal curves in the plane, there are many ways to define a notion of similarity between them. One popular measure is the Fr\'echet distance. Since it was proposed by Alt and Godau in 1992, many variants and extensions have been studied. Nonetheless, even more than 20 years later, the original O(n2log⁡n)O(n^2 \log n) algorithm by Alt and Godau for computing the Fr\'echet distance remains the state of the art (here, nn denotes the number of edges on each curve). This has led Helmut Alt to conjecture that the associated decision problem is 3SUM-hard. In recent work, Agarwal et al. show how to break the quadratic barrier for the discrete version of the Fr\'echet distance, where one considers sequences of points instead of polygonal curves. Building on their work, we give a randomized algorithm to compute the Fr\'echet distance between two polygonal curves in time O(n2log⁡n(log⁡log⁡n)3/2)O(n^2 \sqrt{\log n}(\log\log n)^{3/2}) on a pointer machine and in time O(n2(log⁡log⁡n)2)O(n^2(\log\log n)^2) on a word RAM. Furthermore, we show that there exists an algebraic decision tree for the decision problem of depth O(n2−ε)O(n^{2-\varepsilon}), for some ε>0\varepsilon > 0. We believe that this reveals an intriguing new aspect of this well-studied problem. Finally, we show how to obtain the first subquadratic algorithm for computing the weak Fr\'echet distance on a word RAM.Comment: 34 pages, 15 figures. A preliminary version appeared in SODA 201

    Usability testing for improving interactive geovisualization techniques

    Get PDF
    Usability describes a product’s fitness for use according to a set of predefined criteria. Whatever the aim of the product, it should facilitate users’ tasks or enhance their performance by providing appropriate analysis tools. In both cases, the main interest is to satisfy users in terms of providing relevant functionality which they find fit for purpose. “Testing usability means making sure that people can find and work with [a product’s] functions to meet their needs” (Dumas and Redish, 1999: 4). It is therefore concerned with establishing whether people can use a product to complete their tasks with ease and at the same time help them complete their jobs more effectively. This document describes the findings of a usability study carried out on DecisionSite Map Interaction Services (Map IS). DecisionSite, a product of Spotfire, Inc.,1 is an interactive system for the visual and dynamic exploration of data designed for supporting decisionmaking. The system was coupled to ArcExplorer (forming DecisionSite Map IS) to provide limited GIS functionality (simple user interface, basic tools, and data management) and support users of spatial data. Hence, this study set out to test the suitability of the coupling between the two software components (DecisionSite and ArcExplorer) for the purpose of exploring spatial data. The first section briefly discusses DecisionSite’s visualization functionality. The second section describes the test goals, its design, the participants and data used. The following section concentrates on the analysis of results, while the final section discusses future areas of research and possible development
    • …
    corecore