1,244 research outputs found

    Fundamentals of Biomedical Applications of Biomorphic SiC

    Get PDF

    Development of a novel microsensor for the study of oxygen profiles in biofilms

    Get PDF
    Understanding of the processes taking place inside biofilms is a key parameter to progress in the optimization of biofiltration technologies. This study was conducted with the aim of developing a novel dissolved oxygen (DO) microsensor specially designed for biofilms monitoring. The microsensor was fabricated through standard photolithography techniques, resulting in a microelectrodes array (MEA) of 11 gold circular working electrodes, with a diameter of 50 µm , and a gold reference electrode, which allows obtaining a snapshot oxygen profile of 1 mm of depth. The performance of the sensor was fully characterized under different conditions, inwhich the sensor presented high sensitivity and repeatability, and low detection and quantification limits. Monitoring of sensor performance showed a stable and reliable response. The developed sensor was used in obtaining micropofiles in an aerobic heterotrophic biofilm, showing similar response to Clark-type commercial microsensors. These studies concluded that the novel MEA sensor for DO monitoring allows obtaining oxygen profiles within biofilms, becoming a useful tool for the research of many biological applications.Postprint (author's final draft

    NASA SBIR abstracts of 1990 phase 1 projects

    Get PDF
    The research objectives of the 280 projects placed under contract in the National Aeronautics and Space Administration (NASA) 1990 Small Business Innovation Research (SBIR) Phase 1 program are described. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses in response to NASA's 1990 SBIR Phase 1 Program Solicitation. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 280, in order of its appearance in the body of the report. The document also includes Appendixes to provide additional information about the SBIR program and permit cross-reference in the 1990 Phase 1 projects by company name, location by state, principal investigator, NASA field center responsible for management of each project, and NASA contract number

    Small business innovation research. Abstracts of completed 1987 phase 1 projects

    Get PDF
    Non-proprietary summaries of Phase 1 Small Business Innovation Research (SBIR) projects supported by NASA in the 1987 program year are given. Work in the areas of aeronautical propulsion, aerodynamics, acoustics, aircraft systems, materials and structures, teleoperators and robotics, computer sciences, information systems, spacecraft systems, spacecraft power supplies, spacecraft propulsion, bioastronautics, satellite communication, and space processing are covered

    Biofilm oxygen profiling using an array of microelectrodes on a microfabricated needle

    Get PDF
    A novel microelectrode array (DO-MEA) sensor was designed and fabricated using microelectromechanical systems technology on a needle for real time measurement of dissolved oxygen (DO). The sensor consisted of eleven gold disk microelectrodes and a rectangular auxiliary electrode along them. The sensor can also be operated with an integrated reference system. Three different sensor designs were fabricated, and their responses were fully characterized and evaluated. The DO-MEA sensor presented a linear response in the 0-8 mg DO·L-1 concentration range in water, displaying high sensitivity and repeatability. Knowledge of bacterial activity inside biofilms is key to the optimization of applied biotechnologies. The developed sensor was validated against a commercial Clark-type microelectrode overcoming its drawbacks, by profiling a heterotrophic biofilm cultivated in a flat-plate bioreactor. The DO-MEA sensor provided a multipoint, simultaneous dissolved oxygen snapshot profile inside a biofilm with high spatial resolution due to its micrometric dimensions, thus becoming a powerful tool for the research of many similar biological-based processes and applications.Peer ReviewedPostprint (author’s final draft

    Silicon Carbide And Agile Optics Based Sensors For Power Plant Gas Turbines, Laser Beam Analysis And Biomedicine

    Get PDF
    Proposed are novel sensors for extreme environment power plants, laser beam analysis and biomedicine. A hybrid wireless-wired extreme environment temperature sensor using a thick single-crystal Silicon Carbide (SiC) chip embedded inside a sintered SiC probe design is investigated and experimentally demonstrated. The sensor probe employs the SiC chip as a Fabry-Perot (FP) interferometer to measure the change in refractive index and thickness of SiC with temperature. A novel temperature sensing method that combines wavelength-tuned signal processing for coarse measurements and classical FP etalon peak shift for fine measurements is proposed and demonstrated. This method gives direct unambiguous temperature measurements with a high temperature resolution over a wide temperature range. An alternative method using blackbody radiation from a SiC chip in a two-color pyrometer configuration for coarse temperature measurement and classical FP laser interferometry via the same chip for fine temperature measurement is also proposed and demonstrated. The sensor design is successfully deployed in an industrial test rig environment with gas temperatures exceeding 1200 C. This sensor is proposed as an alternate to all-electrical thermocouples that are susceptible to severe reliability and lifetime issues in such extreme environments. A few components non-contact thickness measurement system for optical quality semi-transparent samples such as Silicon (Si) and 6H SiC optical chips such as the one used in the design of this sensor is proposed and demonstrated. The proposed system is self-calibrating and ensures a true thickness measurement by taking into account material dispersion in the wavelength band of operation. For the first time, a 100% repeatable all-digital electronically-controlled pinhole laser beam profiling system using a Texas Instruments (TI) Digital Micro-mirror Device (DMD) commonly used in projectors is experimentally demonstrated using a unique liquid crystal image generation system with non-invasive qualities. Also proposed and demonstrated is the first motion-free electronically-controlled beam propagation analyzer system using a TI DMD and a variable focus liquid lens. The system can be used to find all the parameters of a laser beam including minimum waist size, minimum waist location and the beam propagation parameter M2. Given the all-digital nature of DMD-based profiling and all-analog motion-free nature of the Electronically Controlled Variable Focus Lens (ECVFL) beam focus control, the proposed analyzer versus prior-art promises better repeatability, speed and reliability. For the first time, Three Dimensional (3-D) imaging is demonstrated using an electronically controlled Liquid Crystal (LC) optical lens to accomplish a no-moving parts depth section scanning in a modified commercial 3-D confocal microscope. The proposed microscopy system within aberration limits has the potential to eliminate the sample or objective motion-caused mechanical forces that can distort the original sample structure and lead to imaging errors. A signal processing method for realizing high resolution three dimensional (3-D) optical imaging using diffraction limited low resolution optical signals is also proposed

    Development of a label-free graphene hall effect biosensor

    Get PDF
    PhD ThesisGraphene has recently motivated various research groups due to its peculiar properties and the research on this novel nanomaterial is growing rapidly. Electric transport properties of graphene make it a promising candidate for future nanoelectronics applications. Moreover, thermal, mechanical and optical properties are other powerful indications of its capability to open a new era in nanoscale developments in a variety of fields. Carbon materials have already been demonstrated to be promising in biomedical applications and graphene, as a building block for graphitic materials, holds a unique place in terms of biocompatibility; offering great opportunities due to its high surface to volume ratio and charge transport capability. Being electrically conductive and having ultrahigh mobility offers a great deal in electronic application developments. Therefore, in this study, the promise of graphene to build a biosensing platform has been investigated through developing a biosensor that exploits incredible electric transport properties of graphene along with its high sensitive and selective biocompatible structure. In order to achieve such a purpose, a labelfree biosensing platform has been developed by employing Hall effect principle. This thesis presents all the details to form a biosensing platform along with the promising results that have been obtained

    Carbon Nanomaterials and their application to Electrochemical Sensors: A review

    Get PDF
    Carbon has long been applied as an electrochemical sensing interface owing to its unique electrochemical properties. Moreover, recent advances in material design and synthesis, particularly nanomaterials, has produced robust electrochemical sensing systems that display superior analytical performance. Carbon nanotubes (CNTs) are one of the most extensively studied nanostructures because of their unique properties. In terms of electroanalysis, the ability of CNTs to augment the electrochemical reactivity of important biomolecules and promote electron transfer reactions of proteins is of particular interest. The remarkable sensitivity of CNTs to changes in surface conductivity due to the presence of adsorbates permits their application as highly sensitive nanoscale sensors. CNT-modified electrodes have also demonstrated their utility as anchors for biomolecules such as nucleic acids, and their ability to diminish surface fouling effects. Consequently, CNTs are highly attractive to researchers as a basis for many electrochemical sensors. Similarly, synthetic diamonds electrochemical properties, such as superior chemical inertness and biocompatibility, make it desirable both for (bio) chemical sensing and as the electrochemical interface for biological systems. This is highlighted by the recent development of multiple electrochemical diamond-based biosensors and bio interfaces

    Annual Report, 2015-2016

    Get PDF

    Femtosecond Laser Micromachining of Advanced Fiber Optic Sensors and Devices

    Get PDF
    Research and development in photonic micro/nano structures functioned as sensors and devices have experienced significant growth in recent years, fueled by their broad applications in the fields of physical, chemical and biological quantities. Compared with conventional sensors with bulky assemblies, recent process in femtosecond (fs) laser three-dimensional (3D) micro- and even nano-scale micromachining technique has been proven an effective and flexible way for one-step fabrication of assembly-free micro devices and structures in various transparent materials, such as fused silica and single crystal sapphire materials. When used for fabrication, fs laser has many unique characteristics, such as negligible cracks, minimal heat-affected-zone, low recast, high precision, and the capability of embedded 3D fabrication, compared with conventional long pulse lasers. The merits of this advanced manufacturing technique enable the unique opportunity to fabricate integrated sensors with improved robustness, enriched functionality, enhanced intelligence, and unprecedented performance. Recently, fiber optic sensors have been widely used for energy, defense, environmental, biomedical and industry sensing applications. In addition to the well-known advantages of miniaturized in size, high sensitivity, simple to fabricate, immunity to electromagnetic interference (EMI) and resistance to corrosion, all-optical fiber sensors are becoming more and more desirable when designed with characteristics of assembly free and operation in the reflection configuration. In particular, all-optical fiber sensor is a good candidate to address the monitoring needs within extreme environment conditions, such as high temperature, high pressure, toxic/corrosive/erosive atmosphere, and large strain/stress. In addition, assembly-free, advanced fiber optic sensors and devices are also needed in optofluidic systems for chemical/biomedical sensing applications and polarization manipulation in optical systems. Different fs laser micromachining techniques were investigated for different purposes, such as fs laser direct ablating, fs laser irradiation with chemical etching (FLICE) and laser induced stresses. A series of high performance assembly-free, all-optical fiber sensor probes operated in a reflection configuration were proposed and fabricated. Meanwhile, several significant sensing measurements (e.g., high temperature, high pressure, refractive index variation, and molecule identification) of the proposed sensors were demonstrated in this dissertation as well. In addition to the probe based fiber optic sensors, stress induced birefringence was also created in the commercial optical fibers using fs laser induced stresses technique, resulting in several advanced polarization dependent devices, including a fiber inline quarter waveplate and a fiber inline polarizer based on the long period fiber grating (LPFG) structure
    • …
    corecore