13,655 research outputs found

    System For Treating Patients With Anxiety Disorders

    Get PDF
    A virtual reality system provides effective exposure treatment for psychiatric patients suffering from a particular anxiety disorder. The system is characterized by a video screen disposed in front of the patient to display an image of a specific graphical environment that is intended to trigger anxiety within the patient as a result of the particular patient phobia. A headset is worn by the patient, and has sensors disposed to detect movement and positioning of the patient's head. A computer program controls the operation of the system, and is designed to control the display of the graphical environment on the video screen, monitor the headset sensors and determine the position of the patient's head, and controllably manipulate the graphical environment displayed on the video screen to reflect the movement and position of the patient's head. In a preferred embodiment, a sensor is provided to automatically detect a level of patient anxiety, and the computer program is designed to monitor this sensor and controllably manipulate the graphical environment displayed on the video screen in response thereto. In other embodiments, sound and tactile feedback are provided to further enhance the graphic emulation.Emory University And Georgia Tech Research Corporatio

    Video-based assistance system for training in minimally invasive surgery

    Get PDF
    In this paper, the development of an assisting system for laparoscopic surgical training is presented. With this system, we expect to facilitate the training process at the first stages of training in laparoscopic surgery and to contribute to an objective evaluation of surgical skills. To achieve this, we propose the insertion of multimedia contents and outlines of work adapted to the level of experience of trainees and the detection of the movements of the laparoscopic instrument into the monitored image. A module to track the instrument is implemented focusing on the tip of the laparoscopic tool. This tracking method does not need the presence of artificial marks or special colours to distinguish the instruments. Similarly, the system has another method based on visual tracking to localize support multimedia content in a stable position of the field of vision. Therefore, this position of the support content is adapted to the movements of the camera or the working area. Experimental results are presented to show the feasibility of the proposed system for assisting in laparoscopic surgical training

    Adaptive User Perspective Rendering for Handheld Augmented Reality

    Full text link
    Handheld Augmented Reality commonly implements some variant of magic lens rendering, which turns only a fraction of the user's real environment into AR while the rest of the environment remains unaffected. Since handheld AR devices are commonly equipped with video see-through capabilities, AR magic lens applications often suffer from spatial distortions, because the AR environment is presented from the perspective of the camera of the mobile device. Recent approaches counteract this distortion based on estimations of the user's head position, rendering the scene from the user's perspective. To this end, approaches usually apply face-tracking algorithms on the front camera of the mobile device. However, this demands high computational resources and therefore commonly affects the performance of the application beyond the already high computational load of AR applications. In this paper, we present a method to reduce the computational demands for user perspective rendering by applying lightweight optical flow tracking and an estimation of the user's motion before head tracking is started. We demonstrate the suitability of our approach for computationally limited mobile devices and we compare it to device perspective rendering, to head tracked user perspective rendering, as well as to fixed point of view user perspective rendering

    User-centred design of flexible hypermedia for a mobile guide: Reflections on the hyperaudio experience

    Get PDF
    A user-centred design approach involves end-users from the very beginning. Considering users at the early stages compels designers to think in terms of utility and usability and helps develop the system on what is actually needed. This paper discusses the case of HyperAudio, a context-sensitive adaptive and mobile guide to museums developed in the late 90s. User requirements were collected via a survey to understand visitors’ profiles and visit styles in Natural Science museums. The knowledge acquired supported the specification of system requirements, helping defining user model, data structure and adaptive behaviour of the system. User requirements guided the design decisions on what could be implemented by using simple adaptable triggers and what instead needed more sophisticated adaptive techniques, a fundamental choice when all the computation must be done on a PDA. Graphical and interactive environments for developing and testing complex adaptive systems are discussed as a further step towards an iterative design that considers the user interaction a central point. The paper discusses how such an environment allows designers and developers to experiment with different system’s behaviours and to widely test it under realistic conditions by simulation of the actual context evolving over time. The understanding gained in HyperAudio is then considered in the perspective of the developments that followed that first experience: our findings seem still valid despite the passed time
    • …
    corecore