23,402 research outputs found

    Evidence for Information Processing in the Brain

    Get PDF
    Many cognitive and neuroscientists attempt to assign biological functions to brain structures. To achieve this end, scientists perform experiments that relate the physical properties of brain structures to organism-level abilities, behaviors, and environmental stimuli. Researchers make use of various measuring instruments and methodological techniques to obtain this kind of relational evidence, ranging from single-unit electrophysiology and optogenetics to whole brain functional MRI. Each experiment is intended to identify brain function. However, seemingly independent of experimental evidence, many cognitive scientists, neuroscientists, and philosophers of science assume that the brain processes information as a scientific fact. In this work we analyze categories of relational evidence and find that although physical features of specific brain areas selectively covary with external stimuli and abilities, and that the brain shows reliable causal organization, there is no direct evidence supporting the claim that information processing is a natural function of the brain. We conclude that the belief in brain information processing adds little to the science of cognitive science and functions primarily as a metaphor for efficient communication of neuroscientific data

    Optimization-based design of a heat flux concentrator

    Get PDF
    To gain control over the diffusive heat flux in a given domain, one needs to engineer a thermal metamaterial with a specific distribution of the generally anisotropic thermal conductivity throughout the domain. Until now, the appropriate conductivity distribution was usually determined using transformation thermodynamics. By this way, only a few particular cases of heat flux control in simple domains having simple boundary conditions were studied. Thermal metamaterials based on optimization algorithm provides superior properties compared to those using the previous methods. As a more general approach, we propose to define the heat control problem as an optimization problem where we minimize the error in guiding the heat flux in a given way, taking as design variables the parameters that define the variable microstructure of the metamaterial. In the present study we numerically demonstrate the ability to manipulate heat flux by designing a device to concentrate the thermal energy to its center without disturbing the temperature profile outside it.Peer ReviewedPostprint (published version

    Approximation and geometric modeling with simplex B-splines associated with irregular triangles

    Get PDF
    Bivariate quadratic simplical B-splines defined by their corresponding set of knots derived from a (suboptimal) constrained Delaunay triangulation of the domain are employed to obtain a C1-smooth surface. The generation of triangle vertices is adjusted to the areal distribution of the data in the domain. We emphasize here that the vertices of the triangles initially define the knots of the B-splines and do generally not coincide with the abscissae of the data. Thus, this approach is well suited to process scattered data.\ud \ud With each vertex of a given triangle we associate two additional points which give rise to six configurations of five knots defining six linearly independent bivariate quadratic B-splines supported on the convex hull of the corresponding five knots.\ud \ud If we consider the vertices of the triangulation as threefold knots, the bivariate quadratic B-splines turn into the well known bivariate quadratic Bernstein-BĂ©zier-form polynomials on triangles. Thus we might be led to think of B-splines as of smoothed versions of Bernstein-BĂ©zier polynomials with respect to the entire domain. From the degenerate Bernstein-BĂ©zier situation we deduce rules how to locate the additional points associated with each vertex to establish knot configurations that allow the modeling of discontinuities of the function itself or any of its directional derivatives. We find that four collinear knots out of the set of five defining an individual quadratic B-spline generate a discontinuity in the surface along the line they constitute, and that analogously three collinear knots generate a discontinuity in a first derivative.\ud Finally, the coefficients of the linear combinations of normalized simplicial B-splines are visualized as geometric control points satisfying the convex hull property.\ud Thus, bivariate quadratic B-splines associated with irregular triangles provide a great flexibility to approximate and model fast changing or even functions with any given discontinuities from scattered data.\ud An example for least squares approximation with simplex splines is presented

    Wireless Bidirectional Relaying using Physical Layer Network Coding with Heterogeneous PSK Modulation

    Full text link
    In bidirectional relaying using Physical Layer Network Coding (PLNC), it is generally assumed that users employ same modulation schemes in the Multiple Access phase. However, as observed by Zhang et al., it may not be desirable for the users to always use the same modulation schemes, particularly when user-relay channels are not equally strong. Such a scheme is called Heterogeneous PLNC. However, the approach in [1] uses the computationally intensive Closest Neighbour Clustering (CNC) algorithm to find the network coding maps to be applied at the relay. Also, the treatment is specific to certain cases of heterogeneous modulations. In this paper, we show that, when users employ heterogeneous but symmetric PSK modulations, the network coding maps and the mapping regions in the fade state plane can be obtained analytically. Performance results are provided in terms of Relay Error Rate (RER) and Bit Error Rate (BER).Comment: 10 pages, 10 figures and 3 table

    The perceptual and attentive impact of delay and jitter in multimedia delivery

    Get PDF
    In this paper we present the results of a study that examines the user’s perception—understood as both information assimilation and subjective satisfaction—of multimedia quality, when impacted by varying network-level parameters (delay and jitter). In addition, we integrate eye-tracking assessment to provide a more complete understanding of user perception of multimedia quality. Results show that delay and jitter significantly affect user satisfaction; variation in video eye path when either no single/obvious point of focus exists or when the point of attention changes dramatically. Lastly, results showed that content variation significantly affected user satisfaction, as well as user information assimilation

    Explaining the logic of pure preference in a neurodynamic structure

    Get PDF
    This paper uses Category Theory to integrate a nonlinear, nonhomogeneous ordinary differential equation system into an input/output representation in an attempt to capture the mechanism behind the formation of pure preference in humans. The model shows that the human brain belongs to the class of functions U Δ C2(R3, R). In addition, it shows that there exists an emerging factor, e, which is sine qua non for expressing a preference. The factor, e, may be associated with ‘judgement’ which, in turn, may neatly subsume ‘consciousness’, the arrival of new information, and cases of selection under risks and uncertainty.Input/output; Dynamo; Universal Unfoldings; Emergent factor; Awareness; and Preference

    Test-retest reliability of the magnetic mismatch negativity response to sound duration and omission deviants

    Get PDF
    Mismatch negativity (MMN) is a neurophysiological measure of auditory novelty detection that could serve as a translational biomarker of psychiatric disorders, such as schizophrenia. However, the replicability of its magnetoencephalographic (MEG) counterpart (MMNm) has been insufficiently addressed. In the current study, test-retest reliability of the MMNm response to both duration and omission deviants was evaluated over two MEG sessions in 16 healthy adults. MMNm amplitudes and latencies were obtained at both sensor- and source-level using a cortically-constrained minimum-norm approach. Intraclass correlations (ICC) were derived to assess stability of MEG responses over time. In addition, signal-to-noise ratios (SNR) and within-subject statistics were obtained in order to determine MMNm detectability in individual participants. ICC revealed robust values at both sensor- and source-level for both duration and omission MMNm amplitudes (ICC = 0.81-0.90), in particular in the right hemisphere, while moderate to strong values were obtained for duration MMNm and omission MMNm peak latencies (ICC = 0.74-0.88). Duration MMNm was robustly identified in individual participants with high SNR, whereas omission MMNm responses were only observed in half of the participants. Our data indicate that MMNm to unexpected duration changes and omitted sounds are highly reproducible, providing support for the use of MEG-parameters in basic and clinical research

    Optimal mixing enhancement

    Get PDF
    We introduce a general-purpose method for optimising the mixing rate of advective fluid flows. An existing velocity field is perturbed in a C1C^1 neighborhood to maximize the mixing rate for flows generated by velocity fields in this neighborhood. Our numerical approach is based on the infinitesimal generator of the flow and is solved by standard linear programming methods. The perturbed flow may be easily constrained to preserve the same steady state distribution as the original flow, and various natural geometric constraints can also be simply applied. The same technique can also be used to optimize the mixing rate of advection-diffusion flow models by manipulating the drift term in a small neighborhood
    • 

    corecore