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Optimization-based design of a 
heat flux concentrator
Ignacio Peralta, Víctor D. Fachinotti & Ángel A. Ciarbonetti

To gain control over the diffusive heat flux in a given domain, one needs to engineer a thermal 
metamaterial with a specific distribution of the generally anisotropic thermal conductivity throughout 
the domain. Until now, the appropriate conductivity distribution was usually determined using 
transformation thermodynamics. By this way, only a few particular cases of heat flux control in 
simple domains having simple boundary conditions were studied. Thermal metamaterials based on 
optimization algorithm provides superior properties compared to those using the previous methods. As 
a more general approach, we propose to define the heat control problem as an optimization problem 
where we minimize the error in guiding the heat flux in a given way, taking as design variables the 
parameters that define the variable microstructure of the metamaterial. In the present study we 
numerically demonstrate the ability to manipulate heat flux by designing a device to concentrate the 
thermal energy to its center without disturbing the temperature profile outside it.

The control of the electromagnetic flux using metamaterials led to major innovations in electronics and commu-
nications1. Taking advantage of the analogies between electromagnetism and thermodynamics, some researchers 
developed materials with unprecedented thermal properties (the thermal “metamaterials”) for heat flux manipu-
lation, for instance the heat flux inverter by Narayana and Sato2.

Compared to the advances in electromagnetism, the design of thermal metamaterials is an emerging research 
and development area. In a first approach, metamaterials can be empirically designed (e.g., the thermal shield 
of Narayana and Sato2). More sophisticated thermal metamaterials can be designed using the transformation 
thermodynamics concept (e.g., the inverter and the concentrator proposed by Narayana and Sato2 or the cloaking 
device of Schittny et al.3, inherited from electromagnetism4). A straightforward example of the application of 
ideas from electromagnetism in thermal problems is the heat flux inverter of Narayana and Sato2, derived from 
the device to rotate electromagnetic fields proposed by Chen and Chan5 to rotate electromagnetic fields.

The transformation-based approach has been applied to specific heat control problems. For general prob-
lems (i.e., having arbitrary prescribed magnitude and direction of the heat flux, geometry of the manipulating 
device, geometry and boundary conditions of the domain where the device is embedded) we propose a new, 
optimization-based approach for the design of thermal metamaterials. A variety of optimization algorithms have 
been used to design efficient metamaterials but only in the field of photonic6–10. Here we solve a nonlinear con-
strained optimization problem where the objective function to minimize is the error in the accomplishment of the 
given heat manipulation task, and the design variables characterize the spatial distribution of the metamaterial 
throughout the manipulating device.

We show the capability of the present method by designing a device for thermal concentration, as alternative 
to the transformation-based design of Chen and Lei11, using an interior point optimization algorithm.

Definition of the heat flux guidance problem
Let us consider the domain Ω in Fig. 1, with boundary ∂ Ω divided in two non-overlapping portions: ∂ Ωq (where 
the heat flux qwall is prescribed) and ∂ ΩT (where the temperature Twall is prescribed). In steady state, the heat flux 
conduction in Ω is governed by the equation

+ = ΩT skdiv( grad ) 0 in , (1)

and the boundary conditions:
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= ∂ΩT T in , (2)Twall

− ⋅ = ∂ΩT qk ngrad in , (3)qwall

where T is the temperature, s is the internal heat source, k is the (effective) thermal conductivity tensor, and n is 
the unit vector normal to and pointing outwards ∂ Ω.

Using the finite element method (FEM), the temperature field in Ω is approximated as follows:

= ∀ ∈ ΩT N Tx x x( ) ( ) , (4)j j

where Nj is the shape function associated to the node j of the finite elements mesh (discretized Ω) and Tj is the 
temperature at node j (unknown). Using a standard (Galerkin) FEM, the nodal temperature Tj is the solution of 
the algebraic system of equations

=K T F , (5)ij j i

where Kij and Fi are the components of the global conductivity matrix and the nodal heat flux vector respectively, 
given by

∫= Ω
·K N N Vkgrad grad d , (6)ij i j

∫ ∫= + .
Ω ∂Ω

F sN V q N Sd d (7)i i iwallq

The system of equations (5) is the FEM version of the heat conduction (1) subject to the boundary conditions 
(2) and (3). This is a classical FEM problem, whose solution has been extensively detailed in classical FEM litera-
ture, for instance in the book of Zienkiewicz and Taylor on the basics of FEM12.

Influence of the inhomogeneous microstructure on the macroscopic thermal response. Let the 
microstructure vary throughout Ω and be sampled at a series of points x(μ) ∈  Ω (μ =  1, … , N). Further, let the 
microstructure at any x(μ) be characterized by n parameters µpi

( ), grouped in the vector p(μ). Then, the effective 
conductivity k at x(μ) is at last a function of p(μ), i.e.

= .µ µ
k x k p( ) ( )( ) ( )

The microstructure throughout Ω is characterized by the vector P =  [p(1), … , p(N)]. Then, the global con-
ductivity matrix K (whose components are given by equation (6)) is a function of P, and so they are the nodal 
temperatures Tj (solution of equation (5)) and the temperature field T (approximated by equation (4) for FEM).

Task accomplishment as an optimization problem. To design the microstructure in the macroscopic 
domain Ω consists of finding P such that Ω responds in a desired way. In this case, we aim to enforce the heat flux 
to take the magnitude as well as the direction of the vector q q( ) at a series of points x(q) ∈  Ω, q =  1, … , Q, as shown 
in Fig. 2. The heat flux at any x(q) is given by

= − = − 



 ≡ .T N Tq x k k p P q P( ) [ grad ] ( ) grad ( ) ( )q q

j j
q

x x
( ) ( ) ( )

q q( ) ( )

Figure 1. Thermal problem in a macroscopic domain Ω where the effective properties depend on a 
quantitatively characterized microstructure. 
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Then, we have to find P such that

= = … .q Qq P q( ) , for 1, , (8)q q( ) ( )

Let us look for P within a space  of admissible solutions. Generally, the task (8) cannot be exactly satisfied by 
any ∈P . So, let us accomplish this task as well as possible by solving the nonlinear constrained optimization 
problem


∑






−





∈ =Q
q P qmin 1 ( ) ,

(9)q

Q
q q

P 1

( ) ( ) 2
1/2

where the objective function is the root mean square (RMS) error in the accomplishment of the task (8).

Application to a heat concentration and cloaking problem
Let us apply the proposed optimization-based approach to design a device for heat concentration as alternative 
to that designed by Chen and Lei11 based on transformation thermodynamics. This device, embedded in a plate 
with prescribed heat flux, is designed to concentrate the thermal energy at its center while keeping the outer flux 
unaltered (i.e., cloaking the device).

The Ω domain is the entire plate, a square of sides Lx =  Ly =  14 cm subject to the following boundary condi-
tions: T =  Tmax =  100 °C for x =  − Lx/2, T =  Tmin =  0 °C for x =  Lx/2, and q ⋅  n =  0 for y =  ± Ly/2 (see Fig. 3). The 
heat flux normal to the plate is neglected. The plate is made of 40%-nickel steel with homogeneous and isotropic 
thermal conductivity kns =  10 W/(mK). Without the device, the heat flux in the plate is

=






− 




=





. 




.k T T L mq ( )/

0
7 14kW/

0
x

0
ns max min

2

The considered device is the ring Ωfree ⊂  Ω with inner and outer radii r =  1 cm and R =  5 cm, see Fig. 3. This 
ring is designed to thermally concentrate the heat flux in the region Ωfixint. A further design requirement on the 
device is to keep the heat flux outside it (i.e., in the remainder portion of the plate, Ωfixext) unaltered.

The domain Ω is discretized using a mesh of 70 ×  70 bilinear rectangular finite elements, as shown in Fig. 4(a). 
Each blue element, belonging to the device Ωfree, has a microstructure sampling point. In the other elements, the 
material is nickel steel.

Regarding the mesh refinement, it is well known that it affects the optimal result, as it is widely discussed in the 
book of Bendsøe and Sigmund13. Normally, the finer the mesh, the more optimal the solution. The current choice 
was found to be a good deal between optimality and computational cost.

Definition of the metamaterial for anisotropic heat conduction. Following Narayana and Sato2, the 
anisotropy in the effective conductivity of the device Ωfree is achieved by using a stacked composite or laminate 
made of alternating sheets of materials A and B with different isotropic conductivities. As pointed out by Schittny 
et al.14, a laminate is a metamaterial because its effective conductivity, being anisotropic, goes beyond the conduc-
tivities of its constituents, which are isotropic.

Like Chen and Lei11, we adopted A =  copper and B =  polydimethylsiloxane (PDMS), with isotropic conduc-
tivities kcopper =  398 W/(mK) and kPDMS =  0.27 W/(mK). The use of laminates of materials with markedly distinct 
conductivity at the microstructural level leads to a highly anisotropic effective conductivity, which is a key issue 
for guiding the heat flux. Actually, it is a popular choice in the literature2,11,15,16.

As shown in Fig. 4(b), the representative volume element (RVE) of the microstructure of such composite at the 
sampling point x(μ) ∈  Ωfree is a unit square characterized by the vector p(μ) of components =µ µp d1

( )
A
( ) (thickness 

Figure 2. The heat flux guidance problem in the macroscopic domain Ω; q q( ) denotes the desired heat flux 
at the point x(q) ∈  Ω.
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of sheet of material A) and θ=µ µp2
( ) ( ) (orientation of the sheets); the thickness of the sheet of material B is 

dB =  lμ −  dA, where lμ =  1 is the thickness of the RVE. The effective thermal conductivities at x(μ) in the direction 
of the sheets (λ) and normal to the sheets (τ) are17

=
+

=λλ
µ

µ µ

µ
λλ

µ
k d k d k

l
k dx( ) ( ),A

( ) A
( )

A B
( )

B ( )

=
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These are principal conductivities, to be arranged in the matrix

=















.µ λλ

µ
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 d
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k d
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( ) 0

0 ( )A
A
( ) A

( )

( )

Now, the matrix of tensorial components of the effective conductivity referred to the fixed Cartesian frame x-y 
at the point x(μ) can be computed as

θ θ= =µ µ µ µ µ
 ˆdk x R k R k p( ) [ ( )] ( ) ( ) ( ), (10)

T( ) ( )
A
( ) ( ) ( )

where R is the rotation matrix

Figure 3. Domain of analysis for the heat concentration and cloaking problem. 

Figure 4. (a) Finite element mesh of the analyzed domain Ω; the blue elements belong to the device, and the 
red ones have prescribed heat flux. (b) Representative volume element (RVE) of the microstructure at a point 
x(μ) in the the heat flux manipulating device Ωfree.
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θ θ θ
θ θ

= 

−



.R( ) cos sin

sin cos

The equation (10) explicitly defines the effective conductivity at a point as a function of the microstructure at 
that point.

Optimization settings. To design the current device implies to solve the optimization problem given by 
equation (9). The cloaking task is prescribed by setting =q qq( )

0 at the center of the elements in Ω(1) and Ω(2), 
while the heat concentration task is forced by setting = R rq q( / )q( )

0 at the center of elements in Ωfixint, with 
R/r =  5 in this case. Note that the vector P contains as variables only the vectors p(μ) characterizing the micro-
structure at the N =  1896 elements of Ωfree, with = =µ

µ µ
−P p d2 1 1

( )
A
( ) and θ= =µ

µ µP p2 2
( ) ( ), μ =  1, 2, …  N.

For the chosen metamaterial, the current optimization problem is subject to the following box constraints:

≤ = ≤µ
µ

−P d0 1, (11)2 1 A
( )

θ π µ≤ = ≤ = … .µ
µP0 , with 1, , N (12)2

( )

Here, this nonlinear constrained optimization problem was solved using the IPOPT interior point algorithm18. 
Additional constraints may serve to avoid “complications”13: dependence on the finite element mesh, numerical 
instabilities, non-uniqueness of the solution, presence of multiple minima, etc. For the purpose of the current 
work, only the above box constraints are considered.

Results
The optimal solutions for dA (that is in fact the fraction of copper since the RVE was assumed to be a unit square) 
and θ (the orientation of the sheets) in the device are plotted in Fig. 5, together with the corresponding tempera-
ture distribution. Note that the device accomplished the combined task up to an RMS error equal to =  1.67 kW/
m2 =  0.23||q0||.

Although we considered this error to be small enough, the solution is seriously affected by “checker-
board”-type instabilities, mainly in the orientation field (Fig. 5 at the center). This is a well-known and widely 
studied defect in material distribution problems (see the book of Bendsøe and Sigmund13 and references therein), 
which can be avoided using the density filter technique proposed by Sigmund19. The components of the vector P 
are still the design variables for the optimization problem (8), but the objective function in equation (9) as well as 
the constraints (11) and (12) are evaluated for the vector of physical or filtered parameters = … 

P p p[ , , ]N(1) ( ) . 
Then, the microstructure at the finite element e in Ωfree is actually characterized by the vector p e( ), which is defined 
as

= ∑
− ∆

∑ − ∆






r
r

p
p

,
(13)

e i ei
i

i ei

( )
( )

where r is the filter radius (to be adopted), measured from the center of the finite element e, p(i) is the vector of 
design variables associated to the finite element i, Δ ei is the distance between the centers of the elements e and i, 
and 〈 x〉  is the ramp function (〈 x〉  =  x for x >  0, and 〈 x〉  =  0 for x ≤  0).

Now, solving the optimization problem (9) using density filtering with =r 1 cm (i.e., five times the finite ele-
ment size), we obtain the metamaterial distribution shown in Fig. 6, which is completely checkerboard-free. The 
so-obtained device Ωfree has a crosslike structure, with horizontal arms (parallel to q0) mostly made of 
highly-conductive copper and vertical arms (normal to q0) mostly made of poorly-conductive PDMS.

As consequence of the metamaterial distribution depicted in Fig. 6, the effective thermal conductivity varies 
inside the device as shown in Fig. 7, being generally anisotropic. Thanks to this conductivity distribution in the 
device, the temperature field in the whole plate is that shown in Fig. 8(a). There, it can be qualitatively realized 

Figure 5. Optimal solutions without density filtering for the distribution of the fraction of copper (dA), the 
orientation of copper and PDMS sheets (θ), and the temperature T in the concentrator device. 
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how well the given combined cloaking and concentration task was accomplished: First, isotherms are almost 
parallel and equally spaced outside the device, as it would be the case without the device. Secondly, inside the 
device, the isotherms are significantly bent towards the inner region (Ωfixint), clearly demonstrating the strong 
energy concentration. This could be quantitatively appreciated in Fig. 8(b): The temperature along the center line 
y =  0, that where the heat flux is the most altered by the device, is slightly modified outside the device, while it has 
a gradient 4.58 times greater than the original one in the center of the device. Let us remark that, as solution of 
the optimization problem, the combined cloaking and concentration task was accomplished up to an RMS error 
equal to 2.04 kW/m2 =  0.29 ||q0||; individually, the RMS error for the concentration task in Ωfixint was 3.34 kW/
m2 =  0.09 (R/r)||q0||, while the RMS error for the cloaking task in Ω(1) and Ω(2) was equal to 0.39 kW/m2 =  0.05 
||q0||. Although the minimization problem (9) accounts only for the portions Ω(1) and Ω(2) of Ωfixext, the heat flux 
is practically unaltered all around Ωfixext: it approaches q0 with a RMS error equal to 0.07 ||q0||.

Chen and Lei11 defined a concentration efficiency index as f =  |(Tb −  Tc)/(Ta −  Td)|, where b and c are points 
located in the boundary of the heat concentration region Ωfixint, and a and d are points located at the outer bound-
ary of the device Ωfree (see Fig. 8(b)). For the current device, we obtain f =  94.2%, close to the ideal f =  100%. Let 
us recall that the device designed by Chen and Lei based on the transformation approach, made of 100 radial 
copper-PDMS laminates, had a theoretical efficiency f =  96.3%, which fell to f =  88.1% for the finally fabricated 
device.

Comparing the current device to Chen and Lei’s one, it appears a crucial advantage of the current 
optimization-based design with respect to the transformation-based design: the device is designed just for 
the desired task (to manipulate an originally one-direction heat flux), avoiding to “oversize” it by performing 
unwanted or unprescribed tasks (in the case of Chen and Lei’s device, to manipulate the heat flux coming from 
any direction). Further, if the task is only to concentrate heat, the cloaking task is just a collateral result of applying 
the transformation-based approach.

Note that the current device can be seen as a neutral inclusion because of its cloaking effect. A priori, accord-
ing to the theory of neutral inclusions (see chapter 7 in the book of Milton20 and references therein), it would be 
possible to determine in an analytical way a homogeneous isotropic material to make the cloaking device, a solu-
tion that is considerably more convenient than the current one using a heterogeneous metamaterial. However, let 
us remark that this trivial solution is not applicable to the current case. Actually, applying the Hashin-Shtrikman 
formula21 with the regions outside and enclosed by the device having the same isotropic conductivity kns, we 
determine that the only way of keeping the exterior flux unaltered is choosing the isotropic conductivity inside 
the device also equal to kns, which leads to completely ignore the heat flux concentration task.

Conclusions
We presented a novel method for designing metamaterials to control the diffusive heat flux in ways that were 
inconceivable using ordinary materials. This method consists in solving an optimization problem where the 

Figure 6. Optimal solutions using density filtering for the distribution of the fraction of copper (dA), the 
fraction of PDMS (dB), and the orientation of copper and PDMS sheets in the concentrator device. 

Figure 7. Distribution of the Cartesian components of the effective thermal conductivity in the 
concentrator device, given in W/(mK). 
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objective function to be minimized is the error in the accomplishment of a given heat flux control task, and 
the design variables define the microstructure in a heat flux manipulating device. Its potentiality was proved by 
designing a device for energy concentration that has close-to-ideal efficiency and, at the same time, leaves the 
external heat flux practically unaltered.

We expect these results may create opportunities to develop new advanced engineered materials for enhancing 
the efficiency of thermal devices in solar thermal collectors, for instance.

Future work will be devoted to ensure the manufacturability of these optimization-based designs.
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