1,364 research outputs found

    End-to-End Kernel Learning with Supervised Convolutional Kernel Networks

    Get PDF
    In this paper, we introduce a new image representation based on a multilayer kernel machine. Unlike traditional kernel methods where data representation is decoupled from the prediction task, we learn how to shape the kernel with supervision. We proceed by first proposing improvements of the recently-introduced convolutional kernel networks (CKNs) in the context of unsupervised learning; then, we derive backpropagation rules to take advantage of labeled training data. The resulting model is a new type of convolutional neural network, where optimizing the filters at each layer is equivalent to learning a linear subspace in a reproducing kernel Hilbert space (RKHS). We show that our method achieves reasonably competitive performance for image classification on some standard "deep learning" datasets such as CIFAR-10 and SVHN, and also for image super-resolution, demonstrating the applicability of our approach to a large variety of image-related tasks.Comment: to appear in Advances in Neural Information Processing Systems (NIPS

    Non-convex regularization in remote sensing

    Get PDF
    In this paper, we study the effect of different regularizers and their implications in high dimensional image classification and sparse linear unmixing. Although kernelization or sparse methods are globally accepted solutions for processing data in high dimensions, we present here a study on the impact of the form of regularization used and its parametrization. We consider regularization via traditional squared (2) and sparsity-promoting (1) norms, as well as more unconventional nonconvex regularizers (p and Log Sum Penalty). We compare their properties and advantages on several classification and linear unmixing tasks and provide advices on the choice of the best regularizer for the problem at hand. Finally, we also provide a fully functional toolbox for the community.Comment: 11 pages, 11 figure

    Interpretable Hyperspectral AI: When Non-Convex Modeling meets Hyperspectral Remote Sensing

    Full text link
    Hyperspectral imaging, also known as image spectrometry, is a landmark technique in geoscience and remote sensing (RS). In the past decade, enormous efforts have been made to process and analyze these hyperspectral (HS) products mainly by means of seasoned experts. However, with the ever-growing volume of data, the bulk of costs in manpower and material resources poses new challenges on reducing the burden of manual labor and improving efficiency. For this reason, it is, therefore, urgent to develop more intelligent and automatic approaches for various HS RS applications. Machine learning (ML) tools with convex optimization have successfully undertaken the tasks of numerous artificial intelligence (AI)-related applications. However, their ability in handling complex practical problems remains limited, particularly for HS data, due to the effects of various spectral variabilities in the process of HS imaging and the complexity and redundancy of higher dimensional HS signals. Compared to the convex models, non-convex modeling, which is capable of characterizing more complex real scenes and providing the model interpretability technically and theoretically, has been proven to be a feasible solution to reduce the gap between challenging HS vision tasks and currently advanced intelligent data processing models
    • …
    corecore