1,702 research outputs found

    Building distributed sensor network applications using BIP

    No full text
    International audienceThe exponential increase in the demands for the deployment of large-scale sensor networks, makes the efficient development of functional applications necessary. Nevertheless, the existence of scarce resources and the derived application complexity, impose significant constraints and requires high design expertise. Consequently, the probability of discovering design errors, once the application is implemented, is considerably high. To address these issues, there is a need for the availability of early-stage validation, performance evaluation and rapid prototyping techniques at design time. In this paper we present a novel approach for the co-design of mixed software/hardware applications for distributed sensor network systems. This approach uses BIP, a formal framework facilitating modeling, analysis and implementation of real-time embedded, heterogeneous systems. Our approach is illustrated through the modeling and deployment of a Wireless Multimedia Sensor Network (WMSN) application. We emphasize on its merits, notably validation of functional and non-functional requirements through statistical model-checking and automatic code generation for sensor network platforms

    Incremental bounded model checking for embedded software

    Get PDF
    Program analysis is on the brink of mainstream usage in embedded systems development. Formal verification of behavioural requirements, finding runtime errors and test case generation are some of the most common applications of automated verification tools based on bounded model checking (BMC). Existing industrial tools for embedded software use an off-the-shelf bounded model checker and apply it iteratively to verify the program with an increasing number of unwindings. This approach unnecessarily wastes time repeating work that has already been done and fails to exploit the power of incremental SAT solving. This article reports on the extension of the software model checker CBMC to support incremental BMC and its successful integration with the industrial embedded software verification tool BTC EMBEDDED TESTER. We present an extensive evaluation over large industrial embedded programs, mainly from the automotive industry. We show that incremental BMC cuts runtimes by one order of magnitude in comparison to the standard non-incremental approach, enabling the application of formal verification to large and complex embedded software. We furthermore report promising results on analysing programs with arbitrary loop structure using incremental BMC, demonstrating its applicability and potential to verify general software beyond the embedded domain

    A Concurrent Perspective on Smart Contracts

    Get PDF
    In this paper, we explore remarkable similarities between multi-transactional behaviors of smart contracts in cryptocurrencies such as Ethereum and classical problems of shared-memory concurrency. We examine two real-world examples from the Ethereum blockchain and analyzing how they are vulnerable to bugs that are closely reminiscent to those that often occur in traditional concurrent programs. We then elaborate on the relation between observable contract behaviors and well-studied concurrency topics, such as atomicity, interference, synchronization, and resource ownership. The described contracts-as-concurrent-objects analogy provides deeper understanding of potential threats for smart contracts, indicate better engineering practices, and enable applications of existing state-of-the-art formal verification techniques.Comment: 15 page

    Code-level model checking in the software development workflow at Amazon Web Services

    Get PDF
    This article describes a style of applying symbolic model checking developed over the course of four years at Amazon Web Services (AWS). Lessons learned are drawn from proving properties of numerous C‐based systems, for example, custom hypervisors, encryption code, boot loaders, and an IoT operating system. Using our methodology, we find that we can prove the correctness of industrial low‐level C‐based systems with reasonable effort and predictability. Furthermore, AWS developers are increasingly writing their own formal specifications. As part of this effort, we have developed a CI system that allows integration of the proofs into standard development workflows and extended the proof tools to provide better feedback to users. All proofs discussed in this article are publicly available on GitHub

    TURTLE-P: a UML profile for the formal validation of critical and distributed systems

    Get PDF
    The timed UML and RT-LOTOS environment, or TURTLE for short, extends UML class and activity diagrams with composition and temporal operators. TURTLE is a real-time UML profile with a formal semantics expressed in RT-LOTOS. Further, it is supported by a formal validation toolkit. This paper introduces TURTLE-P, an extended profile no longer restricted to the abstract modeling of distributed systems. Indeed, TURTLE-P addresses the concrete descriptions of communication architectures, including quality of service parameters (delay, jitter, etc.). This new profile enables co-design of hardware and software components with extended UML component and deployment diagrams. Properties of these diagrams can be evaluated and/or validated thanks to the formal semantics given in RT-LOTOS. The application of TURTLE-P is illustrated with a telecommunication satellite system

    Separation of distributed coordination and control for programming reliable robotics

    Get PDF
    A robot's code needs to sense the environment, control the hardware, and communicate with other robots. Current programming languages do not provide the necessary hardware platform-independent abstractions, and therefore, developing robot applications require detailed knowledge of signal processing, control, path planning, network protocols, and various platform-specific details. Further, porting applications across hardware platforms becomes tedious. With the aim of separating these hardware dependent and independent concerns, we have developed Koord: a domain specific language for distributed robotics. Koord abstracts platform-specific functions for sensing, communication, and low-level control. Koord makes the platform-independent control and coordination code portable and modularly verifiable. It raises the level of abstraction in programming by providing distributed shared memory for coordination and port interfaces for sensing and control. We have developed the formal executable semantics of Koord in the K framework. With this symbolic execution engine, we can identify proof obligations for gaining high assurance from Koord applications. Koord is deployed on CyPhyHouse---a toolchain that aims to provide programming, debugging, and deployment benefits for distributed mobile robotic applications. The modular, platform-independent middleware of CyPhyHouse implements these functionalities using standard algorithms for path planning (RRT), control (MPC), mutual exclusion, etc. A high-fidelity, scalable, multi-threaded simulator for Koord applications is developed to simulate the same application code for dozens of heterogeneous agents. The same compiled code can also be deployed on heterogeneous mobile platforms. This thesis outlines the design, implementation and formalization of the Koord language and the main components of CyPhyHouse that it is deployed on
    • 

    corecore