
c© 2020 Ritwika Ghosh

SEPARATION OF DISTRIBUTED COORDINATION AND CONTROL FOR
PROGRAMMING RELIABLE ROBOTICS

BY

RITWIKA GHOSH

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2020

Urbana, Illinois

Doctoral Committee:

Professor Sayan Mitra, Chair
Professor Gul Agha
Professor Geir Dullerud
Assistant Professor Taylor Johnson, Vanderbilt University
Assistant Professor Sasa Misailovic

ABSTRACT

A robot’s code needs to sense the environment, control the hardware, and communicate

with other robots. Current programming languages do not provide the necessary hardware

platform-independent abstractions, and therefore, developing robot applications require

detailed knowledge of signal processing, control, path planning, network protocols, and

various platform-specific details. Further, porting applications across hardware platforms

becomes tedious.

With the aim of separating these hardware dependent and independent concerns, we

have developed Koord : a domain specific language for distributed robotics. Koord abstracts

platform-specific functions for sensing, communication, and low-level control. Koord makes

the platform-independent control and coordination code portable and modularly verifiable.

It raises the level of abstraction in programming by providing distributed shared memory

for coordination and port interfaces for sensing and control. We have developed the formal

executable semantics of Koord in the K framework. With this symbolic execution engine, we

can identify proof obligations for gaining high assurance from Koord applications.

Koord is deployed on CyPhyHouse—a toolchain that aims to provide programming,

debugging, and deployment benefits for distributed mobile robotic applications. The modular,

platform-independent middleware of CyPhyHouse implements these functionalities using

standard algorithms for path planning (RRT), control (MPC), mutual exclusion, etc. A high-

fidelity, scalable, multi-threaded simulator for Koord applications is developed to simulate

the same application code for dozens of heterogeneous agents. The same compiled code can

also be deployed on heterogeneous mobile platforms.

This thesis outlines the design, implementation and formalization of the Koord language

and the main components of CyPhyHouse that it is deployed on.

ii

To my parents, for their endless patience, love and support.

iii

ACKNOWLEDGMENTS

I knew I wanted to eventually pursue a Ph.D., even as a 13 year old starting to prepare

for various college entrance exams in India. I didn’t know then that it would be a such a

long, arduous, challenging, but ultimately rewarding and enriching journey. First, I want to

thank Professor Sayan Mitra for being my advisor. Sayan leads by example; his intellect,

hard work, enthusiasm for research, and discipline will continue to inspire me to be better

for the years to come. Aside from his professional guidance, he is truly considerate and kind,

and a friend to every one of his students. I am not exaggerating when I say that had it not

been for Sayan, I might not have persevered in this journey.

I am also grateful to my doctoral committee: Prof. Geir Dullerud, Prof. Sasa Misailovic,

Prof. Gul Agha, and Prof. Taylor Johnson. The work presented in this benefited immensely

from their wealth of knowledge, ideas, and suggestions. I am truly fortunate to have had the

opportunity to interact and learn from these outstanding researchers.

I would like to express my gratitude to the National Science Foundation for funding my

research. I am thankful to Viveka Kudaligama, Maggie Metzger Chappell, and Computer

Science Graduate Advising for their diligence and continuous support during the entire Ph.D.

process.

A big thank you to everyone who worked on the CyPhyHouse project, because their hard

work and creativity made this thesis possible. Thank you Joao Porto, Peter Du, Amelia

Gosse, and Chiao Hsieh and Minghao Jiang for suffering through the development pains, and

working long hours in the lab with me. I am also very grateful to Chuchu Fan and Hussein

Sibai, for being wonderful labmates and friends, and being there when I needed them.

Ph.D. is an isolating process, but I was lucky to have many friends who were there every

step of the way. #Hashtag, my trivia team, thank you for always being a source of fun and

happiness; thank you Carol Wisniewski, for being a mom away from home; and thank you

David, for being a wonderful friend and support system, specially in the last few months of

this process. I would be remiss if I didn’t acknowledge Prof. Rajmanujam, whose lecture on

the Incompleteness theorem made me venture into formal methods in the first place. He and

Prof. Kamal Lodaya have my gratitude for their teaching and mentorship, that led me into

this journey. Finally, I would like to thank my parents for everything. Their unconditional

love is my fundamental axiom.

iv

TABLE OF CONTENTS

LIST OF ABBREVIATIONS AND SYMBOLS . vii

CHAPTER 1 INTRODUCTION . 1
1.1 Motivation and Approach . 2
1.2 Related Work . 5
1.3 Thesis Outline . 8

CHAPTER 2 OVERVIEW OF THE KOORD LANGUAGE FRAMEWORK . . . 9
2.1 The Koord Language . 9
2.2 Koord Semantics . 11
2.3 Semantics-Driven Decomposed Verification: Koord Prover 12
2.4 Engineering Reliable DRAs With the Koord System 14
2.5 Semantics-Driven Bounded Model Checking 14
2.6 Implementing Koord . 16
2.7 Summary . 17

CHAPTER 3 FORMAL SEMANTICS OF KOORD 19
3.1 Koord Language Syntax . 19
3.2 Configurations . 22
3.3 Koord Execution Rounds . 24
3.4 Robot-Level Semantics of Event Execution and Dynamics 24
3.5 Expression-Level Semantics . 28
3.6 System-Level Semantics . 28
3.7 Synchronization and Consistency Assumptions 30
3.8 Summary . 31

CHAPTER 4 IMPLEMENTING AN EXECUTABLE SEMANTICS OF KOORD . 32
4.1 Execution of a Koord Program in the K framework 32
4.2 Configurations in K . 33
4.3 Defining Executable Semantics in K . 36
4.4 Robot-Level Semantics in K . 38
4.5 Expression-Level Semantics . 42
4.6 System-Level Semantics . 43
4.7 Summary . 44

CHAPTER 5 SEMANTICS-DRIVEN VERIFICATION OF KOORD PROGRAMS 46
5.1 Defining Reachable Configurations . 46
5.2 Verification through Bounded Model Checking 49
5.3 Bounded Model Checking of Benchmark Applications 52
5.4 Decomposing Inductive Invariance Verification 54

v

5.5 Capturing Constraints on Controller Behavior 56
5.6 Dealing With Functions and Loops . 57
5.7 Symbolic Execution for Proving Inductive Invariants 57
5.8 Summary . 58

CHAPTER 6 CASE STUDY: DISTRIBUTED FORMATION CONTROL 59
6.1 Formal Modeling and Analysis . 59
6.2 Validating Dynamic Behavior . 60
6.3 Summary . 62

CHAPTER 7 CASE STUDY: DISTRIBUTED DELIVERY 64
7.1 Problem Setup . 64
7.2 Formal Modeling and Analysis . 65
7.3 Proof Setup . 66
7.4 Validating Dynamic Behavior . 68
7.5 Summary . 69

CHAPTER 8 CASE STUDY : COLLABORATIVE MAPPING 70
8.1 Problem Setup . 70
8.2 Formal Modeling and Analysis . 73
8.3 Summary . 74

CHAPTER 9 IMPLEMENTING KOORD : CYPHYHOUSE 75
9.1 CyPhyHouse Architecture: An Overview . 75
9.2 CyPhyHouse Middleware Harness . 76
9.3 The Koord Compiler . 77
9.4 CyPhyHouse Shared Memory and Communication 78
9.5 CyPhyHouse Interfaces for Controllers . 78
9.6 Portability Across Execution Platforms . 79
9.7 CyPhyHouse Multi-Robot Simulator . 79
9.8 Simulator Performance Analysis Experiments and Results 82
9.9 Deployment Setup . 83
9.10 Vehicles . 84
9.11 Test Arena and Localization . 84
9.12 Deployment Interface with Middleware . 85
9.13 Automatically Launching on Heterogeneous Platforms 85
9.14 Experiments With Delivery on up to Four Vehicles 86
9.15 Summary . 89

CHAPTER 10 CONCLUSIONS . 91
10.1 Contribution Summary . 91
10.2 Future Directions of Research . 93

CHAPTER 11 REFERENCES . 96

vi

LIST OF ABBREVIATIONS AND SYMBOLS

BMC Bounded Model Checker

DSM Distributed Shared Memory

PO Proof Obligation

V&V Verification and Validation

DRA Distributed Robotics Application

SMT Satisfiablity Modulo Theory

DSL Domain Specific Language

CPS Cyber Physical Systems

RRT Rapidly-exploring Random Tree

MPC Model Predictive Control

PID Proportional-Integral-Derivative (controller)

BNF Backus-Naur Form

SATS Small Aircraft Transport System

SLAM Simultaneous Localization and Mapping

HVAC Heating, Ventilation and Air-Conditioning

AST Abstract Syntax Tree

I/O Input/Output

UDP User Datagram Protocol

RT factor Real Time factor

GPS Global Positioning System

R≥0 Set of non-negative real numbers

JϕKc Evaluation of ϕ on a configuration c

M [x 7→ v] Replacing the value of x by v in the map M

C Set of all possible system configurations

S Set of all possible global memory mappings

vii

L Set of all possible robot configurations

℘(X) Power set of X

viii

CHAPTER 1: INTRODUCTION

Distributed robotic applications manufacturing [66, 31], agriculture [12, 69], transporta-

tion [32, 38], delivery [57], and mapping [75]. Following the trends in cloud, mobile, and

machine learning applications, programmability is critical to unlocking this potential as

robotics platforms become increasingly accessible, and hardware developers shift to the

applications marketplace. Available domain-specific languages (DSL) for robotics are tightly

coupled with platforms, and they combine low-level sensing, communication, and control

tasks with the application-level logic. Programming languages like C#, Swift, Python, and

development tools like LLVM [49] have helped make millions of people with diverse back-

grounds, into mobile application developers. Open-source software libraries like Caffe [39],

PyTorch [63], and Tensorflow [1] have propelled the surge in machine learning research and

development. To a lesser degree, similar efforts are afoot in democratizing robotics. Most

prominently, ROS [68] provides hardware abstractions, device drivers, messaging protocols,

many common library functions and has become prevalent. Libraries such as PyRobot [59]

and PythonRobotics provide hardware-independent implementations of common functions

for physical manipulation and navigation of individual robots.

Nevertheless, it requires significant effort and time (of the order of weeks) to develop,

simulate, and debug a new application for a single mobile robot—not including the effort to

build the robot hardware. The required effort multiplies for distributed and heterogeneous

systems, as none of the existing robotics libraries provide either

(i) support for distributed coordination or

(ii) easy portability of code across different platforms.

This tight-coupling and the attendant lack of abstraction hinders application development

on all fronts—portability, code reuse, and verification and validation (V&V). In particular,

formal reasoning about a collection of robots communicating, coordinating, and interacting

with a physical environment is complexified by cyber-physical interactions. Correctness

under concurrency and asynchrony are prominent research problems in distributed computing.

Correctness under noise, disturbances, and imprecise platform (plant) models is studied inten-

sively by roboticists and control theorists. These areas involve related but entirely different

hardware level concepts of control and sensing and software level concepts of distributed

protocols and program interactions. The analysis techniques from these communities are

based on very different formal models and mathematics, and both would be necessary to

provide satisfactory safety guarantees for distributed robotic applications. Our vision is, not

1

to combine all of the above in an all-encompassing formalism, but to create a language that

separates the concerns to divide and conquer using existing analyses from both communities.

1.1 MOTIVATION AND APPROACH

Our aim is to design abstractions and language constructs that separate the platform-

independent decision and coordination from platform-dependent actions. For example, in

an application for distributed package delivery with mobile robots, the code for waypoint

assignment, load-balancing, and handling failures should abstract away implementations

of waypoint tracking controllers and functions for navigation and communication. Such

application code will be portable, with appropriate platform-specific implementations of these

abstractions, e.g., steering controller for car, thrust controller for a quadcopter, and GPS or

indoor localization subroutines.

Our goal towards building reliable distributed robotics applications (DRAs) requires us

to be able to model them rigorously. The correctness or reliability of such applications is

typically described in terms of specific properties such as collision avoidance, mutual exclusion,

among others. These properties should be invariants, i.e., they should always hold true

during any execution of the DRA.

This is the main motivation behind our desired separation of platform-independent decision

and coordination from platform-dependent control. Formal models of distributed systems

usually treat them as a collection of interacting individual agents or processes. Interactions

between the agents or processes in a distributed system model can be easily captured using

shared variables or resources. In Chapter 3, we present our model for distributed robotics

systems, in which the execution of DRAs is captured as alternating discrete and continuous

transitions. This model is similar to Hybrid I/O automata [54], which also decomposes hybrid

system descriptions. Given such a formal model, we explore the following analysis techniques

for verifying invariants.

Explicit State Bounded Model Checking The reachable states of the system are

explicitly computed to check whether every state satisfies a given invariant. The number

of reachable states of the system can grow exponentially in the number of variables. This

state-space explosion is compounded even further in a multi-robot system, with continuous

behaviors. We explore the explicit state bounded model checking technique as a proof of

concept in Chapter 5, to provide a path towards symbolic bounded model checking for DRAs

in the future.

2

Inductive Invariants Verification of invariants becomes more tractable when they are

inductive; i.e., if a property is true in a state of the system, then it is true for any state

reachable in a single transition from the system. In Chapter 5, we discuss how inductive

invariants can be verified for our model. One of the issues that arise in verifying inductive

invariants for distributed robotics systems is from continuous behavior during its interactions

with the environment. In our model, a single transition is either discrete or continuous.

Defining the notion of a state reachable in a single transition in this context becomes difficult

as technically, there are infinitely many such states for the continuous component of the

DRA. However, our separation of distributed coordination from control enables separate

verification of said inductive invariants for its discrete and continuous components. We use

data-driven verification techniques to compute an overapproximation of reachable states

during a continuous transition from a state which satisfies the invariant.

Data-Driven Analysis Data-driven analysis [28] uses uses sampled execution traces of

the continuous behaviors of the system from a given state or set of states to verify an invariant

for states reachable during an execution with the same length (or duration). Such analysis

can be performed to generalize these sampled traces to an overapproximation of reachable

states, and the invariant can then be verified on this generalized set of reachable states. This

can sometimes return inconclusive results if the overapproximation is too coarse. In Chapter 6

and 7, we show how we used data-driven analysis for verifying properties of DRAs through

case studies.

Formal Semantics of Languages for DRAs Typical formal analyses of distributed

systems and hybrid systems are performed on theoretical mathematical models. In our view,

implementing DRAs with guarantees based on such models do not completely capture possible

issues arising from their implementation in actual programming languages. Thus, guaranteeing

correctness of DRAs implemented in a programming language requires verification of the

formal model combined with verification of the language features themselves. This becomes

difficult if the programming language in question lacks a formal semantics. Given a formal

semantics for a language specifically designed with abstractions for programming DRAs,

it becomes possible to perform a formal analysis of the distributed robotics system model

directly using said semantics. We demonstrate such a semantics-based model in Chapter 3.

This thesis discusses the design, development, and implementation of Koord : a language

and supporting verification and testing tools for programming distributed robotic systems.

Koord has been designed with the following three stakeholders in mind:

• The application developer, for whom our Koord language provides key abstractions

3

(sensor and actuator ports, distributed shared memory, and synchronous execution)

to develop robot applications that interact with the physical environment and other

participating robot programs.

• The V&V engineer, for whom the K-based formal executable semantics we have

developed for Koord and our Z3-based prover, can help discharge key invariants of

the Koord applications. This verification process also helps identify the platform-

dependent proof obligations that have to be discharged or validated through simulation

and testing.

• The platform engineers deploying the robot applications, for whom our abstraction

makes the Koord programs portable across platforms. Our high-fidelity Koord simulator

can be used in conjunction with other reachability analysis tools to test and validate

the platform-dependent proof obligations.

Figure 1.1: Swarm formation show by FireFly Inc. (Left). Simulation of shape formation (Right)

.

Additionally, intending to simplify application development for distributed and heteroge-

neous systems, we implemented Koord as a part of CyPhyHouse—an open-source software

toolchain for programming, simulating, and deploying mobile robotic applications. Our Ko-

ord compiler, which is a part of CyPhyHouse, generates code that can be and has been

directly deployed on aerial and ground vehicle platforms and simulated with the CyPhyHouse

simulator. We have built the CyPhyHouse middleware with a modular structure to make

it easy for roboticists to add support for new hardware. Figure 1.2 shows an overview of

the Koord and CyPhyHouse tools and infrastructure that we have built.

In this work, we target distributed coordination applications such as collaborative map-

ping [20], surveillance, delivery, formation-flight, etc. with aerial drones and ground vehi-

cles. Figure 1.1 shows a formation flight application in an aerial drone show, and a similar

4

Figure 1.2: Programmers develop distributed robotics applications in a high-level language and
prove properties using symbolic executable semantics in K. Platform-specific assumptions are
abstracted and can be checked using simulations and hardware deployments.

formation application in the CyPhyHouse simulator for Koord . We believe that for such

applications, low-level motion control for the individual robots is standard but tedious, and

coordination across distributed (and possibly heterogeneous) robots is particularly difficult

and error-prone.

1.2 RELATED WORK

Early domain specific languages for robotics were proprietary and tied to specific platforms.

See [61] for a detailed survey. With the lowering hardware costs and increasing popularity,

there is a growing interest in open and portable frameworks and languages [65, 15, 82, 79].

Our point of view on automating robot programming is different in that we expect that the

programmer’s creativity and efforts will be necessary well beyond writing high-level specs in

solving distributed robotics problems; consequently only the tedious and standard steps in

coordination and control are automated using the Koord compiler.

Languages for Distributed Shared Memory Systems Programming systems using the

shared memory paradigm have been developed for several distributed computing systems [60,

2, 17, 48, 21]. Specifically, P [22] and PSync [24] are DSLs for asynchronous partially

5

distributed systems, but cyber-physical interactions are not supported.

DSM has also been proposed as a programming model in the context of wireless networks [9,

34]. These programming models are defined mathematically in terms of state machines or in

terms of APIs, and are typically not embodied in a programming language with carefully

designed syntax and semantics to enforce the models.

Uncertainty and Robotics Abstractions λO is a probabilistic programming language

in which sampling methods are used to specify probability distributions, while expressing

and reasoning about these methods formally. It finds application in robot localization and

mapping. In the same vein, Uncertain〈T 〉 provides a programming language abstraction

for uncertain data. It is a departure from previous probabilistic programming languages in

the wide range of developers it serves, as opposed to being accessible only by experts. The

language provides abstractions and semantics for uncertain data, like sensed information about

location, temperature, etc. Koord does not currently perform reasoning involving uncertainty

in sensor readings or robot localization currently, and these are concerns that cannot currently

be explored by exploiting the extensibility of the Koord semantics implemented in K, as

K doesn’t support probabilistic reasoning yet. While these languages provide semantics

for uncertainty in robot abstractions and sensing issues, they do not provide distributed

application design capabilities.

Robotics Application Development Frameworks Robot Operating System (ROS) [68]

is the predominant member in this category. At its core, ROS supports a publish-subscribe-

based communication, and the ROS community has built drivers for numerous hardware

components.

Framework Dist. Hetero- Sim Prog. CompilerV&V
/system Sys. geneous Lang.
ROSBuzz [73] X X X Buzz X
PythonRobotics X X Python
PyRobot [59] X X Python
MRPT [11] X C++
Robotarium [64] X X Matlab
DRONA [23] X X P [22] X X
Live [18] X LPR X
Koord X X X Koord X X

Table 1.1: Comparison of CyPhyHouse and existing robotics frameworks.

Our implementation of the Koord abstractions for the quadcopter and vehicle platforms

use ROS just like thousands of other robotics products and projects.

6

The Voltron programming system has been to explore the concept of team-level pro-

gramming in active sensing applications. Voltron offers programming constructs to create

the illusion of a simple sequential execution model while still maximizing opportunities to

dynamically re-task the drones as needed. However, the framework itself relies on testing

and system heuristics to provide approximate guarantees, and doesn’t provide any soundness

or completeness assurances.

The Live language [18] allows the program to be changed while running, hence reducing the

feedback loop across writing, compiling, and testing of robot programs. It does not support

for distributed applications.

The table above gives a summary of robotics languages that have been deployed on hardware.

ROSBuzz [73] supports the Buzz language, which doesn’t provide abstractions like Koord

for path planning and shared variables. The Live Robot Programming language provides

abstractions in terms of nested state machines and allows the program to be changed while

running. It does not support robot ensembles. Programming systems using the shared memory

paradigm have been developed for several distributed computing systems [60, 2, 17, 48, 21].

Programming Robotics with Support for Formal Analysis P [22] and PSync [24]

are DSLs for asynchronous partially distributed systems, but cyber-physical interactions are

not supported. P has been integrated into the DRONA framework [23] and the latter has

very similar objectives to our work, but the approaches and solutions are different. DRONA

is a framework for multi-robot motion planning and so far deployed only on drones. Koord

and the underlying middleware aims to be more general, and multiple applications have

been deployed on cars and drones in both simulations and hardware. The explicit model

checker (using Zing) of DRONA relies on manual proofs of their safe-plan-generator and

path-executor, which are analogous to Koord function summaries and controller assumptions.

DRONA’s model checker explores reachable states upto a given depth (number of transitions

from an initial state). Koord proves inductive invariants using our own symbolic executable

semantics. Therefore, when all proof obligations are discharged for a candidate invariant, the

Koord system proves the invariant holds for all reachable states. Further, while our Task

application implements something similar to the distributed plan generator which is a built-in

feature for DRONA, Koord ’s port interfaces allow portability across arbitrary planners.

VeriPhy [15] also has some commonality with CyPhyHouse; however, instead of a program-

ming language, the starting point is differential dynamic logic [14].

“Correct-by-construction” synthesis from high-level temporal logic specifications has been

applied to mobile robotic systems (see, for example [45, 43, 80, 81, 77]).

7

1.3 THESIS OUTLINE

During the course of this Ph.D. research, we identified the following three major contribu-

tions.

• Identifying programming abstractions for DRAs: We have several baked-in abstractions

in the design of Koord to simplify the distributed robotics programming. Our design

of Koord creates a separation of platform-specific from platform-independent concerns.

In Chapter 2, we present an overview of the Koord design, development, semantics,

formal analyses, and its implementation in CyPhyHouse. We dive into the details of

the Koord semantics in Chapter 3, and discuss how we implemented these semantics in

the K semantic framework in Chapter 4.

• Developing verification approaches for distributed robotics applications: The formal

semantics of Koord enables our formal analysis to benefit from the separation of

distributed coordination and control. Chapter 5 includes our approach to formal

verification of several benchmarks using explicit state bounded model checking and

our decomposed verification of inductive invariants. Chapters 6, 7 and 8 present case

studies on three benchmark applications using our decomposed verification approach.

• Implementing a simulation and deployment toolchain for Koord : There are several

engineering challenges that arise while implementing abstractions for a distributed

robotics system. We present our implementation of Koord in the CyPhyHouse toolchain

in Chapter 9.

Reading this thesis Chapter 2 essentially presents a high level overview of the the-

sis. Chapter 3 defines the Koord language semantics, and is-self contained. Chapter 4 and 5

are parallel, and we recommended that they be read after Chapter 3. Chapter 6, 7 and 8 are

independent of each other. These chapters present case studies based on the theory discussed

in Chapter 5, so we would suggest reading Chapter 5 before them. While Chapter 9 can be

read by itself, it heavily references the application discussed in Chapter 7. Finally, Chapter 10

includes our concluding remarks and presents directions for future work.

8

CHAPTER 2: OVERVIEW OF THE KOORD LANGUAGE FRAMEWORK

In this thesis, through our design and implementation of the programming language Koord ,

we explore a distributed, decentralized approach for coordination and control in multi-robot

systems through an executable semantics and a simulation and deployment framework. We

will also show how our design of the executable semantics of Koord aids in the formal

verification of invariants for Koord application programs.

In this chapter, we will first discuss the key features of the Koord programming system.

One of the most studied forms of coordination among multiple robots in a system is movement

done in a formation-preserving manner. We first provide an overview of Koord with an

example application for formation control in Section 2.1. This application causes a collection

of quadrotors to form a pattern of the kind seen in aerial drone shows (Figure 1.1). In

Sections 2.3 and 2.4, we highlight how Koord ’s design enables verification techniques which

decouple distributed coordination from low-level control. Later in Section 2.6, we introduce

our implementation of Koord in the CyPhyHouse toolchain [7].

2.1 THE KOORD LANGUAGE

We first give a quick overview of the Koord with an example and introduce the semantic

notions that we present in more detail in Chapter 3.

agent

Koord	application

Controller

Plant

sensor
ports

actuator
ports

sensor
messages

actuator
messages

Figure 2.1: Koord system architecture.

A Koord program, LineForm, for a set of robots to form an equispaced line is shown

in Figure 2.2. Each robot program has access to three constants (a) a unique integer identifier

pid for itself, (b) a list ID of identifiers of all participating robots and (c) the number N sys

of participating robots.

Distributed Shared Variables for Platform-Independent Coordination Koord pro-

vides shared variables that participating robots can use to communicate and coordinate. At

9

1 using Motion:
2 sensors: Point psn

3 actuators: Point target

4

5 allread: Point x

6

7 TargetUpdate:
8 pre True

9 eff : if not(pid == N sys − 1 or pid == 0):
10 Motion.target = mid([x[pid+1],x[pid−1]])
11 x[pid] = Motion.psn

xt+1 = Axt, where

x0: initial position vector,
xt: position at time t
A: transition matrix, e.g.,

A =

0 0 0 0 0
1
2 0 1

2 0 0
0 1

2 0 1
2 0

0 0 1
2 0 1

2
0 0 0 0 0

Figure 2.2: LineForm program in Koord (Left) and its mathematical counterpart as it would appear
in a typical robotics and control textbook (Right).

Line 5 in LineForm, the variable x, declared with the allread keyword, is a shared array from

which all robots can read, but each robot pid can only write to x[pid]. The shared array x

makes it possible for a robot to read the current position of other robots in a single line of

code. LineForm uses:

(i) the unique integer identifier pid for itself and

(ii) the number N sys of all participating robots.

For multi-robot programs that write to shared variables, Koord provides concurrency control

with mutual exclusion and atomic blocks. The semantics of Koord distributed shared memory

(DSM) is discussed in Chapter 3.

Port Abstractions for Platform-Dependent Control For abstract functions such as

reading the current position, sensing of obstacles, and movement between points in space,

different robot platforms need different implementations. Koord abstracts the details of those

implementations and allows the robot program to interact with its environment through

sensor and actuator ports. For example, LineForm uses a module (library) called Motion,

which provides a sensor port called psn that publishes the robot’s position (with some

periodicity and accuracy), and an actuator port called target for specifying a target position

that the controller should try to drive to. From the programmer’s perspective, ports work

like variables: the program can read from the sensor ports and write data to actuator ports

10

to specify the control objectives. Implementations of Motion would use different strategies

for different platforms. In our experiments, the Motion module for a quadcopter uses an

indoor-camera-based positioning system to update the psn port and uses an RRT-based [50]

path planner and PID controller. On the other hand, for a small racing vehicle platform, the

implementation uses a model-predictive controller [47, 35].

Events Koord uses an event-driven style of programming, in which events are written in a

usual precondition-effect style to define how program variables are updated. LineForm uses a

single TargetUpdate event, which sets the target of each robot (except the extremal robots)

to be the center of the position of its neighbors. This event has a precondition which always

evaluates to True. As we shall see in Chapter 3, Koord semantics ensures a synchronous round-

by-round execution of events for all robots. That is, for a given execution parameter δ > 0,

one event per robot can occur every δ time. Notice that the mathematical representation of

the linear system shown in Figure 2.2 (Right) is similar to the synchronous update encoded

on Line 10 of the Koord implementation of LineForm on Figure 2.2 (Left). This type of a

synchronous update rule is a typical example of a large family of textbook algorithms for

distributed consensus, rendezvous, optimization, flocking, and pattern formation [76, 13, 55].

2.2 KOORD SEMANTICS

In a distributed robotics application (DRA), multiple instances of the same program are

executed by all participants to solve a problem. The execution semantics of such a DRA is

complicated by issues of asynchrony and concurrency, as well as by the interactions between

software and the physical environment. In our design of the Koord semantics, we made a few

simplifying assumptions:

• The execution of a Koord program advances in a synchronous, round-by-round fashion.

Each round lasts for some δ > 0 time, where δ is a parameter of the semantics.

• During a δ-duration round, the robots compute, move, and communicate with each

other through distributed shared memory.

We have developed the full executable semantics of Koord in the K semantics framework [70].

K is a rewriting-based executable framework for defining language semantics. A syntax

and an executable semantics of a language implemented in K behave as a parser and an

interpreter for the language. K also supports exhaustive nondeterministic exploration of

program behaviors, at no additional development cost. A consequence of our use of K to

11

implement the executable language semantics is that the Koord language is consistently

extensible, to support a broader set of applications.

In Chapter 3, we discuss the formal semantics of the Koord language and our implementation

of this formal semantics in K in Chapter 4.

2.3 SEMANTICS-DRIVEN DECOMPOSED VERIFICATION: KOORD PROVER

We have implemented the Koord Prover tool on top of the Koord semantics in order to

perform symbolic checking of inductive invariants for Koord programs. Through case studies

in Chapters 5, 6, and 7, we show how we used the K executable semantics of Koord with

DryVR [28, 27] to check inductive invariants for Koord application.

Consider a geofencing requirement [74], a natural requirement for LineForm: given a

(hyper)rectangle rect(a, b) defined by two corners a and b, if all robots are initialized within

rect(a, b), then we would like them to stay in rect(a, b) at all times. This requirement can be

stated as an invariant of the system:

Invariant 2.1. ∧
i∈ID

(
Motion.psni ∈ rect(a, b) ∧ xi ∈ rect(a, b)

)
(2.1)

To check Invariant 2.1, it is necessary to reason about both platform-dependent and indepen-

dent parts of the application. Using the Koord Prover, one can reason about the application

in a decomposed fashion as follows.

(1) Assuming that all shared positions x[i] are in rect(a, b), we have to show that the targets

computed by LineForm are in rect(a, b). This platform-independent proof obligation

is about the correctness of the program logic of LineForm (particularly line 10, which

updates Motion.target). To validate this proof obligation, one has to compute the states

of the system that are reachable after the TargetUpdate event executes, and check that

Invariant 2.1 holds on those states.

The Koord Prover uses symbolic execution to compute these states and encodes the check

as an SMT problem. For Invariant 2.1, and many other applications and invariants, this

proof obligation is discharged fully automatically as it involves only linear arithmetic.

(2) Assuming that the sensed current position Motion.psni and the computed target are in

rect(a, b), we have to show that a given robot’s controller indeed keeps it in rect(a, b). This

platform-dependent proof obligation is about the correctness of the controller implemented

12

Koord	
Program

Blackbox
Dynamics

Koord
Semantics DryVR

Koord
Prover

Sampled
Trajectories

Safe/
Inconclusive

UnsafeCandidate
Invariant

Controller
Assumption

UNSAT

SAT

Figure 2.3: Workflow for invariant verification using Koord Prover.

in the Motion controller. Koord helps identify such obligations or assumptions about

controller implementations. If we have a model traj for computing the trajectory of a

vehicle’s motion, we can state and prove this proof obligation as follows:

Assumption 2.1.

∀t ∈ [0, δ], traj (Motion.psn, Motion.target, t)

⊆ rect(Motion.psn, Motion.target), (2.2)

where traj gives the position of the robot at time t as a function of the target and

its initial position at the beginning of the round. To check such assumptions, we can

use a reachability analysis tool for dynamical and hybrid systems. Many such tools

exist [30, 19, 26, 8, 28]. In our experiments, we used the simulation-driven reachability

tool DryVR [28], to verify these assumptions. DryVR is scalable and does not require

complete dynamical models of the controller. It computes overapproximations of reachable

states from sampled system trajectories. When such overapproximations are completely

contained within the set of states allowed by the assumption (or the invariant), the output

remains safe. If not, then the output becomes inconclusive because of two possibilities:

either the assumption may be invalid, or the computed overapproximation is too coarse.

Figure 2.3 shows the overview of the workflow using the Koord Prover to verify inductive

invariants. Given a Koord program and a candidate invariant, the Koord semantics generates

a symbolic execution. The Koord Prover then uses this symbolic execution and controller

assumptions to check the validity of the candidate invariant. To verify the controller

assumptions, sampled trajectories obtained from the blackbox dynamics of the robots are

analyzed using DryVR. For valid invariants with verified controller assumptions, the Koord

13

program is pronounced ‘safe’ (with respect to the candidate invariant). When DryVR is

unable to verify the controller assumption, the result is ‘inconclusive’.

2.4 ENGINEERING RELIABLE DRAS WITH THE KOORD SYSTEM

The Koord Prover supports the engineering of reliable systems by helping discover and

validate platform-dependent proof obligations.

In general, if the assumptions needed for proving the correctness of an application are

too strong, a DRA engineer could either revise the assumptions or modify the invariant

requirement so that weaker assumptions may be sufficient. Using the high-fidelity Koord

simulator, which is part of the CyPhyHouse toolchain, we can gain insights about when such

assumptions are violated.

For instance, we see in Chapter 6 that sensitivity analysis using DryVR is able to detect

violations of Assumption 2.1. A quadcopter model with poor PID control could temporarily

go out of bounds because of inertia while moving towards the target. After we configured

the same quadcopter model with a different PID controller, DryVR was able to verify

Assumption 2.1. Similarly, we see in Chapter 7 that DryVR is able to detect a ground

vehicle’s possible inability to follow a path computed by a path planner as closely as required

to maintain safe distances between vehicles. As we shall see in those case studies, the

aforementioned assumptions require us to reason only about the platform-dependent control

ports, allowing us to decouple the verification of these assumptions from the distributed

program logic.

2.5 SEMANTICS-DRIVEN BOUNDED MODEL CHECKING

Koord’s executable semantics enables explicit and exhaustive exploration of the nonde-

terministic behaviors of Koord applications. Using that capability, we implemented a tool,

the Koord Bounded Model Checker, or Koord BMC, for checking bounded invariants for

Koord applications that use explicit state reachability analysis. The inputs to the Koord

BMC are

(i) P, the Koord application program;

(ii) inv , a candidate invariant predicate;

(iii) ID , the set of robots executing P;

(iv) δ, the duration of a round; and

14

(v) n, the number of rounds of execution.

The tool uses the Koord executable semantics to compute all reachable configurations that

can be reached during program transitions. As mentioned earlier, the Koord semantics allows

the program to use a blackbox model of the environment. The blackbox controllers generate

traces of the sensor and actuator ports of the system during the environment transitions

of duration δ; those traces can be analyzed using a reachability analysis or model checking

tool for dynamical and hybrid systems. We used DryVR for analysis of the sensor and

actuator traces of Koord programs. The tool outputs safe if the invariant holds for n rounds

of execution and unsafe, if it finds a counterexample execution of length n. Figure 2.4 shows

an overview of the architecture of the Koord BMC.

To complete the verification, we then perform DryVR analysis of the blackbox traces of

safe outputs to verify safety during environment transitions.

Koord	
Program

Blackbox
Dynamics

Koord
Semantics DryVR

Koord
BMC

Sampled
Trajectories

Safe/
Inconclusive

UnsafeCandidate
Invariant

UNSAT

SAT

Figure 2.4: Workflow for bounded model checking using the Koord BMC.

While we require the programmer to provide a candidate inductive invariant for the Koord

Prover, Koord BMC makes the verification procedure accessible to programmers who have

no expertise in formal methods. Bounded model checking is hampered by the state-space

explosion problem, as expected. However, we have several heuristics for pruning the search

tree when the program has certain properties. For instance, if the events do not write to

any shared variables, it is enough for the Koord BMC to explore only one order of execution

as opposed to the worst case of N sys orders, where N sys is the number of robots in the

system. Domain knowledge and observation of symmetries in the program can also lead to

improvements in performance.

The importance of using programming language semantics in the context of distributed

robotics applications is that it allows us is to verify the implementation of the applications

in a programming language, as opposed to verifying them based on an abstract description

15

of an automaton. Traditional theorem provers and model checking tools require the pro-

grammer to encode every automaton through its states and transitions. In contrast, our tool

makes such formal analysis tools available to the programmer without requiring expertise

in formal methods. We show in Chapter 5 how we performed verification through bounded

model checking of applications through our K executable semantics. To our knowledge, our

framework of Koord executable semantics and our associated formal analysis tools Koord

BMC and Koord Prover is the only distributed multi-robot system analysis framework with

a language semantics component to it, thus reducing the gap between theory and practice.

2.6 IMPLEMENTING KOORD

Recall that we made some simplifying assumptions in Section 2.2 about the Koord system

and that they sidestepped issues of asynchrony and failures. While those assumptions make

our executable semantics tractable, we also implemented an actual runtime system for Koord

to confirm that the assumptions can be met by the platforms on which Koord is deployed.

The CyPhyHouse toolchain [7] is an open-source implementation of Koord , presented in [7],

which includes programming tools for simulation and hardware deployment.

As part of CyPhyHouse, we developed a software-hardware interface (middleware) in

Python 3.5 to support the three-plane architecture comprising the Koord runtime system as

shown in Figure 2.1.

The Koord compiler included with CyPhyHouse generates Python code for the application

using all the supported libraries, such as the implementation of distributed shared variables

using message passing over WiFi, motion libraries of the robots, high-level collision and

obstacle avoidance strategies, etc. The application then runs with the Python middleware

for CyPhyHouse.

At a high level, updates to a shared variable by one robot are propagated by the CyPhyHouse

middleware and become visible to other robots in the next round. CyPhyHouse implements

the shared memory between robots through UDP messaging over WiFi. Any shared memory

update translates to an update message which the robot broadcasts over WiFi.

CyPhyHouse uses ROS to handle the low-level interfaces with hardware. To communicate

between the high-level programs and low-level controllers, we use rospy, a Python client

library for ROS, which enables the (Python) middleware to interface with ROS topics and

services used for deployment or simulation. Each hardware platform and its controller requires

its own interface in the CyPhyHouse middleware. We present the details of the CyPhyHouse

middleware in Chapter 9. Figure 2.5 shows a high-level overview of the CyPhyHouse toolchain.

The CyPhyHouse simulator for Koord is high-fidelity, scalable, and flexible. It executes

16

Runtime	SystemCode Execution	Platform

Koord
Compiler

Koord
Program

Python
Application

Code

Middleware

Gazebo
Simulation
Environment

Hardware
Deployment

ROS

Figure 2.5: Overview of the CyPhyHouse Toolchain.

multiple instances of the application code, one for each robot in the scenario. Within the

simulator, individual robots communicate with each other over a wired or a wireless network

and with their own simulated sensors and actuators through ROS topics. For example,

a simulation with 16 drones can spawn over 1.4K ROS topics and 1.6K threads, yet our

simulator is engineered to execute and visualize such scenarios in Gazebo, running on standard

workstations and laptops. Figure 2.6 shows a screenshot of such a simulation in Gazebo.

Figure 2.6: CyPhyHouse simulator running different scenarios with the same Koord application.

Koord applications have also been deployed on heterogeneous multi-robot systems of

quadcopters and small racing vehicles using the CyPhyHouse toolchain.

2.7 SUMMARY

In this chapter, we presented an overview of our design of the Koord language with

an illustrative example. We highlighted our semantics-driven approach to decomposed

verification of inductive invariants, and explicit state bounded model checking and outlined

17

our implementation of Koord in the CyPhyHouse toolchain. In the next chapter, we elaborate

upon the semantics of Koord , which we only touched upon so far.

18

CHAPTER 3: FORMAL SEMANTICS OF KOORD

Programming language semantics are used to precisely define the behavior of programs one

can write in the language. Language semantics gives every syntactic construct of the language

a mathematical meaning. While individual robots run instances of a Koord program, the

language design also determines the multi-robot system’s behavior. Koord language semantics,

therefore, should also precisely define the behavior of the system.

In designing such a distributed robotics system, one feature that requires particular

attention is how and when each robot executes its events. Additionally, the shared memory

design should capture the impact of the order in which robots execute their events. A Koord

program execution consists of program transitions where the robots perform the computational

steps required for distributed coordination; and environment transitions where the robots

behave according to the control parameters set during the aforementioned computational

steps. Since another facet of the semantics design is the interaction of the robots with the

environment through port abstractions, we need to specify how these interactions interleave

with computational steps performed by the robot while executing the program. Specifying

such interactions becomes even more challenging when viewing the system of robots as a

whole.

In this chapter, we present the syntax and discuss how our design of Koord semantics

addresses the above challenges. We present some notable features of the Koord semantics as

rewrite rules, and in Chapter 4, we discuss how we implemented these semantics in K.

3.1 KOORD LANGUAGE SYNTAX

When a Koord application runs in a distributed multi-robot system, each robot executes

an instance of the Koord application program. Figure 3.2 shows a Koord program Follow,

where the participating agents move through a shared set of waypoints, where each point is

visited exactly once by a participating robot.

Figure 3.1 shows the core grammar of Koord syntax in BNF. In the syntax presented

in Figure 3.1, given an nonterminal NT, NT? means that it is optional in the syntax at

that position, NT* refers to zero or more occurrences, and NT+ refers to one or more

occurrences. The expression (E1 | E2) denotes that one can use either E1 or E2. Each

syntactic production is presented as a rule in the format NT ::= A. This rule indicates

that the nonterminal NT expands to A, where A can be nonterminal or terminal. We

indicate Koord keywords and data types in bold.

19

Program ::= Defs Module? DeclBlock Init? Event+

Defs ::= [FuncDef +]? [AdtDef +]?

FuncDef ::= def fun identifier(Param+) : Stmt+

AdtDef ::= def adt identifier : Decl+

Param ::= Type identifier

Module ::= using module identifier : SPorts APorts
SPorts ::= sensors : Decl+

APorts ::= actuators : Decl+

Decl ::= Type identifier | Type identifier =Val
Type ::= int | float | bool | Point | adt

| Type[Int] | List 〈Type〉 | Queue 〈Type〉

DeclBlock ::= AWDecls ARDecls LocalDecls
AWDecls ::= allwrite : Decl+

ARDecls ::= allread : Decl+

LocalDecls ::= local : Decl+

Init ::= init : Stmt+

Event ::= identifier : pre (Cond) eff : Stmt+

Expr ::= AExpr |BExpr
AExpr ::= AExpr AOp AExpr

| Expr++ | -AExpr | Var | AVal
AOp ::= + | − | ∗ | /
BExpr ::= Expr RelOp Expr |Expr COp Expr

| notExpr | Var | BVal
RelOp ::= ≥|≤|≥|==|>|<|6=
COp ::= and | or

Stmt ::= Assign | FnCall | Atomic
| Ite | Loop | Return

Assign ::= Var = Expr
Ite ::= if BExpr Stmt+ [else Stmt+]?
FnCall ::= identifier(Expr+)
Atomic ::= atomic : Stmt+

Loop ::= for identifier in AExpr : Stmt+

Return ::= return Expr | return

Var ::= identifier | identifier [Expr]
| identifier .identifier

Val ::= AVal | BVal
AVal ::= Int | Float
BVal ::= Bool

Figure 3.1: Core Koord program syntax.

A Koord program essentially consists of the following:

(i) Declarations of ports, which act as interfaces between the program and the sensor/actu-

ator modules.

(ii) Declarations of shared and local program variables.

(iii) Events, which define how variables and sensor and actuator ports are written to and

read from during the execution of this program.

Robot programs (rule Program) first can import sensor/actuator modules. In a Koord

program, the controller (rule Module) specifies the ports: it contains all input and output

ports for actuators (APorts) and sensors (SPorts) that the program uses. In Follow, the

Motion module includes the declaration of the target actuator, which can be used to set a

target waypoint for the robot. It also includes the sensors psn and done, which indicate the

robot’s current position, and whether it has reached its set target, respectively. One can also

write Koord programs that have no interaction with the environment, in which case no such

module needs to be specified.

Koord has three types of variables for reading/writing values.

(i) Sensor and actuator ports are used to read from sensor ports and write to actuator

ports of controllers.

20

(ii) Local program variables record the state of the program.

(iii) Distributed shared variables are used for coordination across robots. All participating

robots can read all shared variables. Any participating robot can write to an allwrite

variable; while an allread variable, which is an array of size the same as the number of

robots, can only have a single writer. Given an allread variable x, each robot with pid

i can read any index in x, but can only write to x[i].

1 using Motion

2 actuators:
3 Point target

4 sensors:
5 Point psn

6 bool done

7

8 allwrite:
9 List〈Point〉 dests

10

11 local:
12 bool pick = True

13 Point currentDest

14

15 init:
16 dests = [(200,10,0);(100,100,0)]

17

18 PickDest:
19 pre pick

20 eff: atomic:
21 if !isEmpty(dests):
22 currentDest = head(dests)
23 remove(dests,currentDest)
24 Motion.target = currentDest

25 pick = False

26

27 Remove:
28 pre !pick
29 eff: if Motion.status == done:
30 pick = True

Figure 3.2: Koord code for Follow.

For instance, in the Follow application shown in Figure 3.2, dests on Line 9 is a shared

variable including the destinations to be visited by the robots; on Line 13, pick is a local

variable which determines whether the robot is picking a new destination waypoint or currently

moving towards a destination.

After declaring these variables, programmers can optionally specify the initial values of

program variables (rule Init). In Follow, we use the init block to initialize the set of shared

destinations to be visited by the robots on Line 16.

The main body of the program comprises of a set of events (rule Event) which has a Boolean

precondition (pre) and an effect (eff). The effect of an event is also a statement (rule Effect).

Each event has a name, a precondition for its execution, and an effect consisting of statements.

For instance, in Follow, the PickDest event on Line 18 can be executed only when pick is

True, and its effect determines how the robot picks its destination and how it sets its target

actuator.

21

A statement (rule Stmt) in Koord , like those in most imperative languages, can be a

conditional statement, a function call, a variable assignment, or a block of statements.

Mutual exclusion is always an important feature when shared variables are involved. Koord

provides a locking mechanism using the keyword atomic to update the shared variable safely.

In Follow, the keyword atomic is used to update the shared set of destinations by the robots

during the PickDest event. This application does not allow the robots to pick a destination

that another robot has already picked. The atomic keyword indicates that only one robot is

allowed to execute the statements on Lines 21 to 25 during a round of execution.

To discuss the behavior of such Koord application programs and provide a formal semantics

for Koord , we need to establish the notion of system and robot state.

3.2 CONFIGURATIONS

We now describe the system state, or system configurations used in defining Koord semantics.

Figure 3.3 shows a general system configuration. We denote the set of all possible system

configurations by C. A system configuration is a tuple c = ({Li}i∈ID, S, τ, turn), where

(i) {Li}i∈ID or {Li} in short, is an indexed set of robot configurations–one for each partici-

pating robot. Li refers to the configuration of the i-th element, i.e., the i-th robot in

the system.

(ii) S : Var 7→ Val is the global memory , mapping all shared variable names to their values.

(iii) τ ∈ R≥0 is the global time.

(iv) turn ∈ {prog, env} is a binary bookkeeping variable indicating whether program or

environment transitions are being processed.

Figure 3.3: A general system configuration.

Bookkeeping variables are invisible in the language syntax and only used in the semantics.

The variable turn for the system configuration is a bookkeeping variable. We will see later

22

Figure 3.4: A general robot configuration.

in Section 3.4 how the semantics uses this variable to achieve the separation of platform-

dependent and platform-independent concerns in the semantics. We now define the robot

configurations which define the state of individual robots in the system.

A robot configuration is used to specify the semantics of each robot. Figure 3.4 shows a

general robot configuration. Given a Koord program P , we define Var to be the set of shared

and local variables, Val to be the set of values that an expression in Koord can evaluate to,

CPorts to be the set of sensor and actuator ports of the controller, and Events to be the set

of events in P . The configuration for robot i is a tuple Li = (M, cp, turn), where

(i) M : Var 7→ Val is its local memory mapping both local and shared variables to values.

Note that this implies that M includes a copy of shared variable values.

(ii) cp : CPorts 7→ Val is the mapping of sensor and actuator ports to values.

(iii) turn ∈ {prog, env} is a bookkeeping variable indicating whether this robot is executing

a program or environment transition.

For readability, we use the dot (“.”) notation to access components of a robot configuration

L. For example, L.M means accessing the local memory M in the tuple L.

We mentioned in Section 2.1 that a Koord application is deployed on a fleet of N sys

robots. Each robot runs an instance of the same program. Each robot is assigned a unique

index pid from a known set of identifiers ID = {0, 1, . . . , N sys− 1}. For a system of N sys

robots running the Follow application, an example configuration for robot i has the form:

Li =([dests 7→ v1, pick 7→ v2, currentDest 7→ v3],

[target 7→ t1, psn 7→ t2, done 7→ t3], prog), (3.1)

where v1, v2, v3, t1, t2, t3 ∈ Val .

23

An example system configuration looks like

c = ({Li} , [dests 7→ s1], 100.0, env) , (3.2)

. Since dests is a shared variable, it appears once in the local memory of each robot and

once again in the shared memory.

3.3 KOORD EXECUTION ROUNDS

As mentioned earlier in Chapter 2, the semantics of a Koord program execution is based

on synchronous rounds. Each round is divided into program transitions and environment

transitions that update the system configuration. Program transitions are comprised of event

executions by robots. In each round, each robot performs at most one event. We model

the update performed by a single robot executing an event as an instantaneous transition

that updates the program variables and potentially actuator ports; however, different events

executed by different robots may interleave in an arbitrary order.

In between the events of successive rounds, δ > 0 duration of time elapses, where the

program variables remain constant while the values held by the sensor and actuator ports

may change.

We model these changes as environment transitions that advance time and the sensor and

actuator ports. Thus, each round consists of a burst of (at most N sys) program transitions

followed by an environment transition. This alternating program and environment transition

model is a standard one for distributed systems where computation speed is much faster than

the speed of communication [52, 6]. Such models are also standard for hybrid automaton

models where computation is faster than physical movements [51, 42].

The execution semantics for a Koord program captures the separation of the platform-

independent distributed program behaviors and the platform-specific controller behaviors

(the program and environment transitions) of the robots through rewrite rules. Rewrite rules

at various levels: Robot, System, and Expression are used to specify the semantics of a Koord

program, allowing us to create a framework for formal analysis. We first describe some of the

semantic rules at the robot level.

3.4 ROBOT-LEVEL SEMANTICS OF EVENT EXECUTION AND DYNAMICS

During a program transition, each robot executes an event’s effect, which is a sequence

of statements. We express the semantics of these statements as rewrite rules for statement

24

L.turn = prog

∧“Name: pre: Cond eff: Body” ∈ Events ∧ JCondKS ,L

〈S,L,⊕〉 →stmt 〈S,L,Body〉
SelectEvent

〈S,L,⊕〉 →stmt 〈S,L, ·〉 SkipEvent

〈S, (M, cp, prog), ·〉 →stmt 〈S, (M, cp, env), ·〉 EndEvent

turn = env ∧ ∀x ∈ Keys(S),M ′ = M [x 7→ S[x]] ∧ cp′ = f (cp, δ)

〈S, (M, cp, env)〉 →env 〈S, (M ′, cp′, prog)〉
RobotEnv

Figure 3.5: Partial per robot semantic rules for Koord .

semantics of the following type:

→stmt⊆ (S× L× (Stmt ∪ {⊕, ·})) 7→ ℘(S× L× Stmt ∪ {·}), (3.3)

where S refers to the set of all possible valuations of the global memory, L refers to all

possible robot configurations, and Stmt refers to the set of all possible statements allowed

by Koord syntax. We use internal syntactic symbols ‘⊕’ and ‘·’, (which are not part of

the Koord syntax themselves) to represent control flow in Koord programs, as we will see in

the discussion on per-robot semantics. ‘⊕’ denotes nondeterministic selection of events, and

‘·’ indicates an “empty” statement.

The →stmt relation takes as input a tuple of ((i)) a global memory, ((ii)) a robot configura-

tion, and ((iii)) a statement,and maps it to a set of such tuples.

We first go into some detail of the→stmt rewrites, that specify each robot’s behavior during

a program transition. The semantics uses such rules to modify individual robot configurations.

3.4.1 Event Execution Semantic Rules

Events are the main computational blocks in a Koord program. We present the core

semantic rules for a robot executing an event in a Koord program. Rule SelectEvent

in Figure 3.5 shows that any event may be executed when the precondition Cond is evaluated

to true. After replacing ⊕ with the event effect Body , the ⊕ rule ensures that only one event

is selected and executed. For Follow, if the program counter indicates ⊕, then the only rule

applicable by the semantics is the SelectEvent rule.

25

Consider a robot with a configuration as follows:

Li =([dests 7→ [(100, 100, 0)], pick 7→ True, currentDest 7→ (200, 10, 0)],

[target 7→ (200, 10, 0), psn 7→ (100, 10, 0), done 7→ False], prog). (3.4)

The tuple 〈[dests 7→ [(100, 100, 0)]], Li,⊕〉 is mapped to 〈[dests 7→ [(100, 100, 0)]], Li,B〉
by the SelectEvent rule, where B refers to Lines 20 to 25 of the program in Follow.

The robot then executes the event effect following the semantics of each statement in Body .

Rule SkipEvent allows the robot to skip the event altogether. At the end of the event, the

sequence of statements becomes empty ‘·’. Rule EndEvent then makes sure the robot sets

its turn to env, indicating that an environment transition will occur afterward.

While→stmt rewrites define each robot’s behavior during a program transition, we separate

the platform-dependent semantics of how each robot interacts with the environment (including

other robots) using environment transition rules of the following type:

→env⊆ (S× L) 7→ ℘(S× L), (3.5)

which takes the global memory and a robot configuration as input.

Rule RobotEnv simply states that the new local memory M ′ is the old local memory

M updated with the global memory S; thus ensuring that all robots have consistent shared

variable values before the next program transition. It is only applied when the turn of the

system is env. For Follow, when a robot i updates the shared list dests by removing a

destination from it, it writes to the shared memory. Before the next round, every other

robot copies the shared memory into its local memory, so each robot has an updated list of

destinations.

To define the executable K semantics of Koord applications, we must provide executable

descriptions for the environment transitions. The type of this executable object (f) is defined

by CPorts, namely, f : [CPorts 7→ Val] × R≥0 7→ [CPorts 7→ Val]. Given old sensor and

actuator values and a time point, f should return the new values for all sensor and actuator

ports, making it a blackbox for simulating the dynamics of each robot in the system.

New sensor readings cp ′ are then obtained by evaluating the blackbox dynamics f with

time δ. For Follow, Figure 3.6 shows that given a robot currently at position (100,0,0) with

its target set to (200,10,0), f returns the position of the robot at δ time from now.

In actual execution, the controller would run the program on hardware, whose sensor ports

evolve for δ time between program transitions. This formalization allows the ports to behave

arbitrarily over δ-transitions. Hence in verification, additional assumptions over the behavior

26

Figure 3.6: Blackbox dynamics simulated by f updates the sensor and actuator values of the robot
at δ time.

of the sensor and actuator ports are needed. Finally, the turn of the robot reverts to prog.

3.4.2 Assignment and Control Flow Semantic Rules

Aside from the broader semantics discussed above, during program transitions, Koord

semantics include rewrite rules that dictate the impact of the shared memory abstractions on

each of the robot configurations, control flow, among others. We illustrate a few of these rules,

in Figure 3.7. The rules StmtSeq1 and StmtSeq2 show how a statement representing

a sequence of statements executes. Rule LvarAssign and Rule SvarAssign show the

semantic rules for local and shared variable assignments, respectively, are also examples of

statement-level rules.

〈S,L, St〉 →stmt 〈S′, L′, St′〉
〈S,L, St StList〉 →stmt 〈S′, L′, St′ StList〉

StmtSeq1

〈S,L, · StList〉 →stmt 〈S,L, StList〉 StmtSeq2

x ∈ Keys(S) ∧ x ∈ Keys(L.M) ∧ L′.M = L.M [x 7→ v]

〈S,L, x = v〉→stmt〈S[x 7→ v], L′, ·〉
SvarAssign

x /∈ Keys(S) ∧ x ∈ Keys(L.M) ∧ L′.M = L.M [x 7→ v]

〈S,L, x = v〉→stmt〈S,L′, ·〉
LvarAssign

Figure 3.7: Example statement level semantic rules for Koord .

For Follow, the pick variable is updated on Line 30. Given a robot with configuration

Li =([dests 7→ [(100, 100, 0)], pick 7→ True, currentDest 7→ (200, 10, 0)],

[target 7→ (200, 10, 0), psn 7→ (200, 10, 0), done 7→ True], prog). (3.6)

〈[dests 7→ [(100, 100, 0)]], Li, pick = False〉 maps to 〈[dests 7→ [(100, 100, 0)]], L′i, ·〉, where

L′i = Li.M [pick 7→ False] by the LvarAssign rule.

27

3.5 EXPRESSION-LEVEL SEMANTICS

Evaluating these robot-level rules requires expression-level rules, which include variable

lookup, arithmetic, boolean, and relational operations. We demonstrate a few illustrative

examples below. The expression level semantics are given by rewrite rules of the type

→E ⊆ (S× L× E)× (S× L× E), (3.7)

where S is the set of all possible global memory mappings S, L is the set of all possible

values for configurations of a robot, and E is the set of all possible expressions allowed by

the language syntax.

L.M [x] = v

〈S,L, x〉 →E 〈S,L, v〉
Var-Lookup-rule

E1 →E E
′
1

〈S,L,E1 + E2〉 →E 〈S,L,E′1 + E2〉
Aexpr-Add-rule-1

E1 ∈ Val ∧ E2 →E E
′
2

〈S,L,E1 + E2〉 →E 〈S,L,E1 + E′2〉
Aexpr-Add-rule-2

v1 + v2 →E v3

〈S,L, v1 + v2〉 →E 〈S,L, v3〉
Aexpr-Add-rule-3

Figure 3.8: Partial expression semantic rules for Koord .

The variable lookup rule Var-Lookup-Rule states that every robot has a local copy of

every variable in the program. If a robot is evaluating an expression involving variable x,

it will replace x with the current value v from the local memory M . M [x] here obtains the

value corresponding to the key x.

Figure 3.8 also includes the rules for addition. They are fairly standard: the execution first

evaluates the left subexpression (Aexpr-Add-rule-1); given that left is already evaluated

fully (i.e., it is in val), it evaluates the right subexpression (Aexpr-Add-rule-2); finally, it

adds the two values of fully evaluated subexpressions (Aexpr-Add-rule-3).

3.6 SYSTEM-LEVEL SEMANTICS

Now we turn to another set of important design choices, which capture the system’s

behavior as a whole with interleaving program and environment transitions. For system-level

28

semantics, the rewrite rule is a mapping from an initial system configuration to a set of

configurations. It has the following type:

→G ⊆ C 7→ ℘(C). (3.8)

where that C is the set of all possible system configurations.

The bookkeeping variable turn is used by the system to determine whether the system (all

robots in the system) is performing a program transition or an environment transition.

An event is enabled when its precondition evaluates to True in the current configuration.

Rule EventTrans expresses that given a system configuration c = ({Li}, S, τ, prog), a

robot i with the configuration Li first selects an enabled event, executes the event via a

sequence of →stmt rewrites, and sets its own turn to env at the end of the event execution.

The system itself goes from a configuration c to c′ = ({L′i}, S ′, τ, prog), with possibly different

robot configurations and shared memory depending on whether any statement executed

resulted in writes to shared variables. Additionally, the system can display nondeterministic

behaviors arising from different robots executing their events in different orders.

The system executes an environment transition only when the local turn of each robot is

env. After all robots enter the env turn, rule EndProgTrans sets the global turn from

prog to env indicating the end of program transition, and an environment transition will

occur afterward.

∀i ∈ ID, Li.turn = env

({Li}, S, τ, prog)→G ({Li}, S, τ, env)
EndProgTrans

∀i ∈ ID, 〈S,Li〉 →env 〈S,L′i〉
∧ Li.turn = env ∧ L′i.turn = prog

({Li}, S, τ, env)→G ({L′i}, S, τ + δ, prog)
EnvTrans

∃i ∈ ID, 〈S,Li,⊕〉 →stmt 〈S′, L′i, ·〉
∧ Li.turn = prog ∧ L′i.turn = env

({Li}, S, τ, prog)→G ({L′i}, S′, τ, prog)
EventTrans

Figure 3.9: System semantic rules for Koord .

Rule EnvTrans shows the evolution of the system configuration after the rule EndProg-

Trans is applied. This rule synchronizes the environment transitions of the robots and

advances the global time from τ to τ + δ. Note that the separation of the distributed coordi-

29

nation and control happens explicitly in these rules: the rule EndProgTrans determines

when the program transitions (distributed coordination) end and rule EnvTrans determines

when the environment transitions(control) occur.

3.7 SYNCHRONIZATION AND CONSISTENCY ASSUMPTIONS

Our semantic rules in Section 3.4 assume that all program transitions of Koord program

take zero time. However, the environment transitions take δ time for the evolution of the

sensor and actuator ports together with the update of the local memory from the global

memory.

To reiterate, the following are the timing requirements from rule EventTrans and

EnvTrans:

(i) a program transition takes zero time,

(ii) new values of sensor and actuator ports are sampled at the end of each round

(iii) shared variables should reach consistent values within δ time, and

(iv) we can use a global clock to synchronize each δ-time round.

The first two requirements are approximately satisfied if the time taken to complete a program

transition is negligible compared to δ. Furthermore, δ can be a common multiple of the

sampling intervals of all controller ports in use. These constraints are reasonable when

computation and communication are comparatively much faster. Using the Motion module

as an example, our position sensor on each device publishes every 0.01 sec (100Hz) while the

CPU on each drone is 1.4 GHz. If we set δ to be 0.01 sec, a program transition taking 10K

CPU cycles is still less than 0.1% of δ. We discuss how the choice of δ can impact program

behavior in Chapter 5, Section 5.3.

How to satisfy requirements (iii) and (iv), is a common research question in distributed

computing with extensive literature. We can achieve a global clock with existing techniques

that synchronize all local clocks on robots. The toolchain in [7] uses message passing to

implement distributed shared memory for shared variables. It ensures that the time taken to

propagate values through messages and reach consistency is smaller than δ, and the update

is visible in the next round of program transitions for all robots. We, therefore, conclude our

round-based semantics with shared memory is a reasonable abstraction.

The semantic rules we discussed realize the (distributed) and computational components

of the Koord system. We designed the memory-consistency model, and the synchronization

30

model of Koord to complement the separation and analysis of the platform-independent

program transitions and platform-dependent environment transitions.

3.8 SUMMARY

In this chapter, we presented the formal syntax of the Koord language and illustrated

it using a waypoint following example. We then introduced the notion of configurations,

which we use to define the formal semantics of the Koord language. We presented the core

semantics rules for the expression evaluation, individual robot behavior, and the behavior of

the system executing a Koord application program. In the next chapter, we show how we

implemented these executable semantics in K. In Chapter 5, we will demonstrate how we use

executable semantics to perform reachability analysis and verification of Koord programs.

31

CHAPTER 4: IMPLEMENTING AN EXECUTABLE SEMANTICS OF
KOORD

We have built the semantics of Koord in the K framework1. K is a rewriting-based

executable framework for defining language semantics. Given a syntax and a semantics of a

language, K generates a parser and an interpreter for application programs written in the

language at no additional development cost. In this chapter, we discuss how we implemented

our Koord semantics in K.

4.1 EXECUTION OF A KOORD PROGRAM IN THE K FRAMEWORK

We first parse each Koord program written in syntax presented in Figure 3.1 using standard

indentation parser that we implemented in Python. We add parameters including the required

rounds of execution, the duration of a round δ and the number of robots N sys along with

the parsed program as input for the K executable semantics.

We can view the execution of a Koord program in K proceeds in stages. We specify the

code stages in K as shown in Figure 4.1.

syntax CodeStage ::= "Preproc"

| "ActPreproc"

| "SensorPreproc"

| "AWPreproc"

| "ARPreproc"

| "EventPreproc"

| "ParamPreproc"

| "LocPreproc"

| "Init"

| "Prog"

| "Update"

| "Env"

| "End"

Figure 4.1: Declaring possible execution stages of a Koord program in K.

Figure 4.2 shows the stages of execution of the Koord code in our implementation of

of the executable semantics. First, the code is preprocessed through several intermediate

preprocessing stages for (i) sensor declarations (SensorPreproc), (ii) actuator declara-

tions (ActPreproc), (iii) shared variable declarations (AWPreproc, ARPreproc), (iv) event

1The semantics of Koord is available at https://github.com/ritwika314/koord

32

code (EventPreproc), (v) execution parameters (ParamPreproc), and (vi) local declarations

(LocPreproc) .

Preprocessing Program
Transition

Environment
Transition

UpdateEnd Finished
Rounds?

yes

no

Init

Figure 4.2: Control flow in stages of execution of a Koord program in K.

Once the code has been preprocessed, the Init block of the program, if it exists, is executed.

After that, program (Prog) and environment (Env) transitions followed by a shared variable

update (Update) stage are executed repeatedly until the specified number of rounds is finished.

After that, the code reaches its end stage (End).

4.2 CONFIGURATIONS IN K

In Chapter 3, we expressed the Koord semantics using configurations. Semantics in

K is also expressed using configurations, which organize the components in elements

called cells. Cells are labelled, have types indicating what kind of elements can be con-

tained in them, and help specify rewrite rules. A cell is specified using the notation

<cellname> cell-contents </cellname>. We show how the components of robot and

system configurations correspond to configuration cells in our K implementation.

4.2.1 System Configurations in K

Figure 4.3 shows a (partial) system configuration. The ‘...’ notation indicates that we

are omitting the details of some intermediate cells in the configuration. The top level cell is

System, which indicates that this is the configuration of the system in K. We have omitted

some of the details of the cells in the configuration in this figure, and we will address them

separately in later sections in this chapter. Recall that a system configuration in our formal

semantics is a tuple ({Li}i∈ID, S, τ, turn), where {Li} is the set of robot configurations, S is

the global memory, τ is the global time, and turn indicates whether program or environment

transitions are being processed. The System configuration specified in K captures our notion

of system configurations as follows:

33

configuration

<System>

<robot multiplicity = "*" type="Set">

...

</robot>

...

<codeStage> Preproc </codeStage>

...

<AWEnv> .Map </AWEnv>

<AWStore> .Map </AWStore>

<AREnv> .Map </AREnv>

<ARStore> .Map </ARStore>

...

<tau> 0.0 </tau>

...

</System>

Figure 4.3: Partial K System configuration.

1. The cell robot corresponds to robot configurations Li. For the robot cell, the statement

‘multiplicity = *’ indicates that there can be multiple robot cells contained in the

System configuration, and ‘type = Set’ indicates that each robot cell is unique.

2. The cells AWEnv, AWStore, AREnv, and ARStore collectively makeup the global memory

S in the system configuration. AWEnv contains the mapping of allwrite variables to

memory locations, and AWStore contains a mapping of memory locations to the values

of the allwrite variables. The notation .Map indicates that the the type of elements

that can be stored in these cells are maps, and that there is currently an empty map

in the cells. Similarly, AREnv contains the mapping of allread variables to memory

locations, and ARStore contains a mapping of memory locations to the values of the

allread variables.

3. The tau cell contains the global time or τ . It is initialized as 0.0, which also indicates

that it has type float.

4. The codeStage cell actually corresponds to turn. The code stages aside from Prog and

Env are conveniences for specifying the executable semantics of Koord in K.

Having defined system configurations, we now turn to robot configurations in K. We use

the robot cell which we omitted expanding in the system configuration to define robot

configurations.

34

4.2.2 Robot Configurations in K

Recall that we defined robot configurations in Chapter 3 as a tuple Li = (M, cp, turn)

where M is the local memory of each robot, cp a mapping of sensor and actuator ports to

their values, and turn indicates whether the robot is performing a program or an environment

transition. Figure 4.4 shows the partial robot configuration in K.

<robot multiplicity = "*" type="Set">

<k> $PGM:Pgm </k>

<env> .Map </env>

<store> .Map </store>

...

<senseEnv> .Map </senseEnv>

<senseStore> .Map </senseStore>

<actEnv> .Map </actEnv>

<actStore> .Map </actStore>

...

<LocAWEnv> .Map </LocAWEnv>

<LocAWStore> .Map </LocAWStore>

<LocAREnv> .Map </LocAREnv>

<LocARStore> .Map </LocARStore>

...

<pid> 0 </pid>

<turn> Prog </turn>

</robot>

Figure 4.4: Partial Robot Configuration in K.

The robot configuration specified in K captures our notion of robot configurations as

follows:

1. The cells env contains the mapping of local variables to memory locations, and store

contains a mapping of memory locations to the values local variables. The cells

LocAWEnv, LocAWStore, LocAREnv and LocARStore constitute the robot’s local copies

of the shared variables. Together, these cells make up the local memory M .

2. The senseEnv cell contains the mapping of the robot’s sensor ports to memory locations,

and senseStore contains a mapping of memory locations to the values of the robot’s

sensor ports. Similarly, actEnv contains the mapping of actuator ports to memory

locations, and actStore contains a mapping of memory locations to the values of the

actuator ports. These cells comprise the cp component of the robot configuration.

35

3. The turn cell corresponds to turn.

Note that the robot configuration in K also consists of a pid cell, which is the same as the

unique integer identifier pid of the robot.

Before we look at how we implement executable Koord semantics in K, we first discuss

some features of K that are essential to be able to express the semantics.

4.3 DEFINING EXECUTABLE SEMANTICS IN K

One can view a language semantics naturally as a set of rewrite (reduction) rules over

configurations. K allows underspecification of rewrite rules, meaning, only the rewrite rules

affecting part of the configurations need to be specified if the rule doesn’t affect the other parts

of the rule. The rewrite rules in Sections 4.4, 4.5 and 4.6 heavily utilize this functionality.

K provides computational structures, or computations to express language semantics.

Computations are are sequences of computational tasks, where each computational task is a

term over an extended core syntax. Computations are used to define evaluation strategies of

the various language constructs. We provide the rewrite rules that convert the core language

syntax into computations.

K uses a special cell called the k cell to store the current computation in the program.

Each robot has a k cell to store its computation, as shown in Figure 4.4.

In our implementation, we heavily rely on a feature of K that allows us specify how

computations can be sequentialized: “∼>”, which is read as “followed by. If t1, t2, . . . , tn

are computations, then t1 ∼> t2 ∼> . . . ∼> tn represents that the computation consisting

of t1 is followed by t1 is followed by . . . , is followed by t1.

4.3.1 Bookkeeping Cells

We use several bookkeeping cells to help simplify the specification of rewrite rules. Figure 4.5

shows the some of the bookkeeping cells used at the system level: we only present the ones

that we will require to demonstrate the rewrite rules in this chapter.

(i) numBots stores the number of robots in the system N sys.

(ii) numProcessed stores the number of robots that have been preprocessed and are ready

to move to the initialization stage of execution. Since the rewrite rules are applied

sequentially, only one robot applies a rewrite rule at a time. This is required in order to

ensure that no robot moves on to initialization before all robots have been preprocessed.

36

<System>

....

<numBots> 1 </numBots>

<numProcessed> 0 </numProcessed>

<updateReady> 0 </updateReady>

<inProg> 0 </inProg>

<inEnv> 0 </inEnv>

<active> -1 </active>

<delta> 0 </delta>

<rounds> 0 </rounds>

<module> .K </module>

<numEvents> 1 </numEvents>

<effmap> .Map </effmap>

</System>

Figure 4.5: System level bookeeping cells in K.

(iii) updateReady stores the number of robots that are ready to move to the update stage

of execution after a round of program and environment transitions, during which each

robot updates its local copies of the shared variables from the shared memory.

(iv) inProg stores the number of robots that are currently executing their program transi-

tions. This is used to conveniently update the turn of the system when the turn of

each robot becomes env.

(v) inEnv stores the number of robots that are currently executing their environment

transitions. This is used to conveniently update the turn of the system when the turn

of each robot becomes prog.

(vi) active stores the pid of the robot that is currently executing its event. This is helpful

in documenting the order of execution of events.

(vii) delta stores the duration of each round.

(viii) rounds stores the number of rounds that the Koord application is required to execute.

(ix) module stores the module (if any) of the Koord program. The type .K indicates that it

is a syntactic object in Koord .

(x) numEvents stores the number of events. This is used to evaluate the preconditions of

all events before a program transition.

37

(xi) effmap is a map of each event to its effect.

<robot multiplicity = "*" type="Set">

...

<evPreMap> .Map </evPreMap>

</robot>

Figure 4.6: Robot level bookkeeping cells in K.

Figure 4.6 shows a bookkeeping cell used by each robot, evPreMap, which is used to store

the evaluation of each event precondition. This is used to pick which event to execute.

4.4 ROBOT-LEVEL SEMANTICS IN K

We extend the core syntax by the following computational terms :

(i) startEvent, which we use to indicate that the effect of an event will start execution.

(ii) endEvent, which we use to indicate ending an event execution.

(iii) callBB, to indicate that the blackbox dynamics corresponding to the declared module

should be used to update the sensor/actuator ports. endCallBB to indicate that the

robot’s sensor and actuator ports have been updated.

4.4.1 Event Execution by Robots

After each robot finishes their preprocessing stage of execution, startEvent is the compu-

tation which remains at the in the k cell of each robot. Figure 4.7 shows how the each robot

executes an event starting from that point.

The effmap cell stores a mapping of events to their effects denoted by a variable EFFMAP.

If there is an event L whose precondition evaluates to true as indicated by L |-> true in the

evPreMap cell of the robot, then the startEvent computational task rewrites to the effect

of the event stored in EFFMAP[L]. Then, this computation should be followed by endEvent,

which is followed by callBB, and then endcallBB. This rule can only be applied when the

turn of the robot is Prog. The active cell is set to the robot’s pid to indicate that robot

I will be executing an event. We use the active cell to that there no interleaving rewrites

during an event execution by another robot.

Figure 4.8 shows our implementation of EndEvent in K.

38

rule <robot>

<k> startEvent => EFFMAP[L] ∼> endEvent

∼> callBB ∼> endcallBB ... </k>

<id> I </id>

<evPreMap> ... L |-> true ... </evPreMap>

<turn> Prog </turn>

...

</robot>

<codeStage> Prog </codeStage>

<effmap> EFFMAP </effmap>

<active> -1 => I </active>

Figure 4.7: SelectEvent rule in K

rule <robot> <k> endEvent => </k>

<turn> Prog => Env </turn>

...

</robot>

<active> _ => -1 </active>

<inEnv> N => N +Int 1 </inEnv>

Figure 4.8: EndEvent rule in K.

When a robot finishes executing its event, the endEvent computation rewrites to empty

(.), and the remainder of the computation in the k cell can execute next. The turn of the

robot is set to Env, and the bookkeeping cell inEnv is incremented by one to show that one

more robot is ready to start its environment transition. The active cell is rewritten to -1,

to allow another robot to execute its event if required.

4.4.2 Variable Updates

Figure 4.9 shows how local variables are updated in our implementation of the LvarAssign

rule in K. Variables in our implementation are assigned a builting K type Id, which stands

for “string identifier”. V:Id indicates that V is a term with type Id. When a variable X is

assigned to V of type V al, which we defined to be the set of values that a variable in Koord

can take, its value is updated as follows. Given memory location storing the value of X is L in

the env cell of the robot, whatever value () is currently stored at the location L is rewritten

to V in the store cell. This rule is only applicable to a currently active robot during the

Prog stage. Note that the ordering of cells in the rewrite rule is immaterial.

39

rule <robot> <k> X:Id = V:Val ; => </k>

<pid> I </pid>

<env> ... X |-> L ... </env>

<store> ... L |-> (_ => V) ... </store> ... </robot>

<active> I </active>

<codeStage> Prog </codeStage>

Figure 4.9: LvarAssign rule in K.

We now turn to shared variable updates. Figure 4.10 shows how shared variables are

updated in our implementation of the SvarAssign rule in K.

rule <robot> <k> X:Id = V:Val ; => </k>

<pid> I <pid>

<LocAWEnv> ... X |-> L ... </LocAWEnv>

<LocAWStore> ... L |-> (_ => V) ... </LocAWStore>

<turn> Prog </turn> ... </robot>

<AWEnv> ... X |-> L1 ... </AWEnv>

<AWStore> ... L1 |-> (_ => V) ... </AWStore>

<codeStage> Prog </codeStage>

<active> I </active>

rule <robot> <k> X:Id [I] = V:Val ; => </k>

<LocAREnv> ... X |-> L ... </LocAREnv>

<LocARStore> ... (L +Int I) |-> (_ => V) ... </LocARStore>

<turn> Prog </turn>

<pid> I </pid> ... </robot>

<AREnv> ... X |-> L1 ... </AREnv>

<ARStore> ... (L1 +Int I) |-> (_ => V) ... </ARStore>

<active> I </active>

<codeStage> Prog </codeStage>

Figure 4.10: Rules for shared variable assignment (SvarAssign) in K.

The first rule in Figure 4.10 shows how allwrite variables are updated. Both the robot’s

local copy of the variable X and the shared memory are updated at the same time. In the

second rule in Figure 4.10, the update of an allread variable is shown. Given an allread

variable X, the robot can only update it at the index corresponding to its own pid. The

memory location of this allread variable in the shared memory starts at L1 as indicated

by X |-> L1, and it is stored at an offset equal to the pid of the robot in the ARStore

40

rule <robot> <k> callBB => </k>

<senseEnv> SE </senseEnv>

<senseStore> SS => BBSense(M, AE, AS, SE, SS, D) </senseStore>

<actEnv> AE </actEnv>

<actStore> AS => BBAct(M, AE, AS, SE, SS, D) </actStore>

... </robot>

<delta> D </delta>

<module> M </delta>

rule <robot> <k> endcallBB => . ~> updateMem ... </k> ... </robot>

<updateReady> N => N +Int 1 </updateReady>

<codeStage> Env </codeStage>

Figure 4.11: Updating sensor/actuator ports through a blackbox function in K.

cell. The local copy of the robot is also analogously updated. Both the rules implementing

SvarAssign are applicable only to an active robot.

4.4.3 Updating Sensor/Actuator Ports Through a Blackbox Function

Figure 4.11 shows how the blackbox function to update the sensor and actuator ports is

called. We extended the core syntax by another computational term updateMem to indicate

that at the end of a round, each robot updates its copies of the shared variables.

We implemented blackbox functions BBSense and BBAct for each module, at the backend

of K to update the sensor and actuator ports. These functions take as input:

(i) M : the module,

(ii) AE : the map of actuator ports to memory locations,

(iii) AS : the map of memory locations to actuator values,

(iv) SE : the map of sensor ports to memory locations,

(v) SS : the map of memory locations to sensor values, and

(vi) D : the duration of the round δ.

4.4.4 Shared Memory Updates

At the end of a round, we need to update the shared memory.

41

rule <updateReady> N => 0 </updateReady>

<numBots> N </numBots>

<codeStage> Env => Update </codeStage>

<rounds> I => I -Int 1 </rounds>

rule <robot>

<k> updateMem => endUpdate ... </k>

<senseStore> SS </senseStore>

<actStore> AC </actStore>

<LocAWStore> AW => AWS </LocAWStore>

<LocARStore> AR => ARS </LocARStore>

...

</robot>

<numEvents> N </numEvents>

<AWStore> AWS </AWStore>

<ARStore> ARS </ARStore>

<codeStage> Update </codeStage>

Figure 4.12: Updating shared memory after a round in K.

Figure 4.12 shows how shared variables are updated after a round. We extended the core

syntax by the computational terms endUpdate to indicate that a robot has finished updating

its memory after a round. The first rule in Figure 4.12 indicates When the number of robots

ready to update the shared memory in the updateReady cell is the same as the number of

robots (numbots) the system goes from the Env execution stage to the Update execution

stage. The updateReady cell is reset for the next round. The number of remaining rounds is

reduced by 1. The second rule shows that the updateMem computation rewrites to endUpdate,

while copying the shared memory maps to the robot’s local maps.

The rules in Figure 4.12 and Figure 4.11 implement the RobotEnv in Chapter 3.

4.5 EXPRESSION-LEVEL SEMANTICS

The rule that each subexpression of an arithmetic expression requires to be evaluated to a

numerical value can be added in K by simply adding an attribute “strict” to the description

of its syntax in K. The left attribute indicates that this operation is left associative. We

also specify that numerical values qualify as result values, so that the rewriting system

doesn’t attempt to rewrite them further. The syntactic production in K subsumes the rules

aexpr-add-rule-1 and aexpr-add-rule-2.

42

Expr ::= Expr "+" Expr [left,strict]

Figure 4.13: K implementation of aexpr-add-rule-1 and aexpr-add-rule-2.

We add rewrite rules for every type of expression that evaluates to a numerical value.

Figure 4.14 shows a direct translation of rule aexpr-add-rule-3. For instance, given I1

and I2 which are integer values, indicated by I1:Int and I2:Int, the following rules indicate

that their sum should be simply the integer addition of their values. Similarly for floats, the

sum should be the float addition of the float values. These rules are specified without any

cells as only applied when such an addition is at the top of the computation cell k.

I1:Int + I2:Int => I1 +Int I2

F1:Float + F2:Float => F1 +Float F2

Figure 4.14: K implementation of aexpr-add-rule-3.

rule <robot> <k> X:Id => V ...</k>

<env>... X |-> L ...</env>

<store>... L |-> V:Val ...</store> ... </robot>

rule <robot> <k> X:Id => V ...</k>

<LocAWEnv>... X |-> L ...</LocAWEnv>

<LocAWStore>... L |-> V:Val ...</LocAWStore> ... </robot>

rule <robot> <k> X:Id [I:Val] => V ...</k>

<LocAREnv>... X |-> L ...</LocAWEnv>

<LocARStore>... L +Int I |-> V:Val ...</LocARStore> ... </robot>

Figure 4.15: Var-Lookup-Rule in K

Figure 4.15 shows the variable lookup rules. Each robot looks up a local variable through

its env and store cells. For allwrite variables, it uses the LocAWEnv and LocAWStore cells;

for allread variables it uses the LocAREnv LocARStore cells.

4.6 SYSTEM-LEVEL SEMANTICS

We now discuss some system level rewrite rules which implement the EnvTrans rule in

K, as shown in Figure 4.16.

43

rule <robot>

<k> endUpdate => startEvent ... </k>

<turn> Env => Prog </turn> ... <robot>

<inProg> N => N +Int 1 </inProg>

<codeStage> Update </codeStage>

rule <inProg> N => 0 </inProg>

<numBots> N </numBots>

<codeStage> Update => Prog </codeStage>

<delta> D </delta>

<tau> T => T + D </tau>

<rounds> I </rounds> requires I >Int 0

rule <inProg> N => 0 </inProg>

<numBots> N </numBots>

<codeStage> Update => Final </codeStage>

<delta> D </delta>

<tau> T => T + D </tau>

<rounds> 0 </rounds>

Figure 4.16: Rule EnvTrans in K.

The first rule in Figure 4.16 shows that each robot rewrites the endUpdate computation

to startEvent, and changes its turn to Prog. The bookkeeping cell inProg increments by 1

to show that one more robot has finished updating its shared memory.

The second rule shows that when all the robots that have finished updating their shared

memory, the inProg cell is reset for the next round. The global time in the tau cell is

incremented by the duration of each round (δ = D) in the Delta cell. If there are rounds

remaining, then the codeStage goes from Update to Prog. The third rule captures the case

when there are no more rounds remaining, and the execution has reached its Final stage.

4.7 SUMMARY

We presented the K implementation of our semantics in this chapter. In Section 4.1, we

outlined the various stages of execution of Koord code. We then showed how our definition of

configurations in Chapter 3 and configurations in K are consistent with each other. Finally, in

Sections 4.4, 4.5 and 4.6, we discussed robot level rewrite rules, expression level rewrite rules

and system level rewrite rules corresponding to semantic rules discussed earlier in Chapter 3.

44

In the next chapter, we discuss how we use Koord semantics to verify invariants for Koord

programs.

45

CHAPTER 5: SEMANTICS-DRIVEN VERIFICATION OF KOORD
PROGRAMS

Verification and debugging of distributed systems is generally a difficult problem: partially

due to multiple possible points of failure and nondeterminism in the presence of any amount

of asynchrony. While our design requires that Koord applications execute in a partially

synchronous fashion, various sources of nondeterminism exist, such as the order of writes

to shared variables. Further, the robots’ dynamic behavior adds to the complexity of the

verification problem.

Our verification approach uses the Koord executable semantics to explore possible behaviors

or reachable states (configurations) of a Koord program. Traditional verification techniques

for verifying the required properties of distributed algorithms typically require embedding a

model of the system within a theorem proving or verification environment. However, such

methods cannot provide the same guarantees for a programming language implementation of

the system model. Our executable semantics allows us to compute the system’s reachable

configurations through program execution and check whether the required properties hold in

each of those configurations.

This chapter discusses formal verification methods for Koord programs enabled by Koord

design and semantics and presents some bounded verification results. We also set up

preliminaries for verification of inductive invariants for Koord applications.

5.1 DEFINING REACHABLE CONFIGURATIONS

Given a set of system configurations C, we define the following sets using the semantic

rules of Chapter 3:

(i) Post(c, i, e) returns the set of configurations obtained by robot i executing event

e ∈ Events from a configuration c.

(ii) Post(C, i) returns the set of configurations obtained by robot i executing any event

from a configuration in C.

(iii) Post(C, ~p) returns all configurations visited, when robots execute their events in the

order ~p, where ~p is a sequence of pi ∈ ID.

(iv) Post(C) is the union of Post(C, ~p) over all orders ~p.

(v) End(C) is the set of configurations reached from C after a program transition.

46

Post(c, i, e) := {c′ | ∃c ∈ C, JCondKc.S,c.Li
∧ 〈c.S, c.Li,Body〉 →stmt

〈
c′.S, c′.Li, ·

〉
},

Post(C, i) :=
⋃

e∈Events

Post(c, i, e),

Post(C, ~p) :=

{
∅, if ~p = ()

Post(Post(C, p0), ~p′), if ~p = (p0, ~p
′)

Post(C) :=
⋃

~p∈perms(ID)

Post(C, ~p),

End(C) := {c | c ∈ Post(C) ∧ ∀i ∈ ID, c.Li.turn 6= prog} .

Figure 5.1: Intermediate definitions for defining reachable configurations.

All these definitions can be restricted naturally to individual configurations. Figure 5.1 shows

the exact definitions of these sets. In the above, a sequence ~p = (p0, ~p
′), is written as a

concatenation of the first element p0 and the suffix ~p′. Also, perms(ID) refers to the set of

permutations of ID.

Next, we identify configurations that the system reaches during and after an environment

transition. Recall that environment transitions capture the evolution of the sensor and

actuator ports over a time interval [0, δ]; all other parts of the configuration remain unchanged.

Recall from Chapter 3 that our Koord semantics defines the environment transitions with

an executable oobject which is possibly a blackbox function that captures the dynamics

of individual robots.1 Given such a function fi for each robot i, we define the function

traj : C× [0, δ] 7→ C to represent the evolution of the system over a [0, δ] time interval. The

function traj is constructed by updating all controller ports cp of each robot i using the

function fi that captures their respective dynamics. That is,

c′ = traj (c, t)⇔

∀i ∈ ID, c′.Li.cp = fi(c.Li.cp, t)

∧ c′.Li.M = c.Li.M

∧ c′.Li.turn = c.Li.turn

∧ c′.S = c.S ∧ c′.τ = c.τ

∧ c′.turn = c.turn

(5.1)

Notice that there are additional constraints denoting that all other fields of c and c′ stay the

same.

The set of all transient system configurations C[0,t] reached in an interval [0, t] from C is

1For different platforms, this function could be defined in closed form, as solutions of differential equations,
or in terms of a numerical simulator.

47

defined as follows:

C[0,t] := {c′ | ∃τ ∈ [0, t],∃c ∈ C, c′ = traj (c, τ)} . (5.2)

We denote the set of points reached precisely at the end of an environment transition from C
as Cenv.

Cenv := {c′ | ∃c ∈ C, c′ = traj (c, δ)}where δ is the time for a round. (5.3)

Now, to conform to our semantics, we carefully define the exact set of configurations

reached right at the end of each round without transient configurations. A frontier set of

configurations Cn represents those configurations that are reached from C exactly when n

rounds are completed. Formally,

Cn :=

C, if n = 0

(End(Cn−1))env otherwise
(5.4)

Finally, given a set of configurations C ⊆ C, we can inductively define the set of all

reachable configurations in n rounds:

Reach(C, n) :=

C, if n = 0

Reach(C, n− 1) ∪ Post(Cn−1) ∪ (End(Cn−1))[0,δ], otherwise
(5.5)

Notice that all Reach includes the transient configurations reached during both program and

environment transitions.

An invariant of a Koord program is a predicate that holds in all reachable configurations.

Invariants can express safety requirements for an application, for instance, that no two robots

are ever too close (Collision avoidance), or that robots always stay within a designated

area (Geofencing). Formally,

Definition 5.1. An invariant inv is a predicate (Boolean valued function) over a configuration

or set of configurations such that, given a set of initial configurations of the system C0,

∀n ∈ N, JinvKReach(C0,n) (5.6)

where JinvKC represents the evaluation of inv over each configuration in C. We use the

notation JinvKc for evaluating inv over a single configuration c as well.

We can also define a bounded invariant, or an n-invariant as follows:

48

Definition 5.2. An n-invariant inv is a predicate over a configuration or a set of configuration

such that given an n ∈ N, JinvKReach(C0,n).

Figure 5.2 shows the invariant specification syntax for Koord programs.

Term ::= Var | Val | CPorts
| Term + Term | Term × Term
| Term − Term | Term /Term

BExpr ::= Term ≥ Term | Term ≤ Term
| Term = Term | Term > Term | Term < Term
| BExpr ∧ BExpr | BExpr ∨ BExpr
| ¬ BExpr | BExpr ⇒ BExpr

inv ::= BExpr

Figure 5.2: Invariant specification syntax.

We define a function eval : C × (Var ∪ CPorts) × (ID ∪ {shared}) 7→ Val , which takes

as input a configuration, a variable from the set of all possible variables and sensor ports,

and an indicator determining whether the variable to be evaluated is shared or local to a

particular robot:

eval(c, x, shared) = c.S[x] (5.7)

eval(c, x, i) =

c.Li.M [x] if x ∈ Keys(c.Li.M)

c.Li.cp[x], otherwise
(5.8)

We formally define the property semantics of Koord using a function→sat : C×Prop → Bool

as shown in Figure 5.3. For properties involving only shared variables, the property semantics

ensures that only the evaluation of the property on the global memory needs to be considered.

Essentially, for properties with local variables or controller ports, the conjunction of the

evaluation of the property on all the individual robot configurations needs to be considered.

5.2 VERIFICATION THROUGH BOUNDED MODEL CHECKING

Koord BMC is a tool for checking n-invariants for Koord applications using explicit state

reachability analysis2. The input to Koord BMC is

(i) P : the program,

2The tool is available at https://github.com/ritwika314/koord.

49

(c, true)→sat true

./∈ {==,≥,≤}
v ∈ Val , x ∈ Keys(c.S)

(c, x ./ v)→sat (c, eval(c, x, shared) ./ v)

v ∈ Val , x /∈ Keys(c.S)

(c, x ./ v)→sat (c,∧i∈ID(eval(c, x, i) ./ v))

x1 ∈ Keys(c.S) ∧ x2 ∈ Keys(c.S)

(c, x1 ./ x2)→sat (c, eval(c, x1, shared) ./ eval(c, x2, shared))

x1 /∈ Keys(c.S) ∧ x2 ∈ Keys(c.S)

(c, x1 ./ x2)→sat (c,∧i∈ID(eval(c, x1, i) ./ eval(c, x2, shared)))

x1 ∈ Keys(c.S) ∧ x2 /∈ Keys(c.S)

(c, x1 ./ x2)→sat (c,∧i∈ID(eval(c, x1, shared) ./ eval(c, x2, i)))

x1 /∈ Keys(c.S) ∧ x2 /∈ Keys(c.S)

(c, x1 ./ x2)→sat (c,∧i∈ID(eval(c, x1, i) ./ eval(c, x2, i)))

Figure 5.3: Property semantics for Koord .

(ii) inv : a candidate invariant function,

(iii) ID: set of robots,

(iv) δ: duration of the round and

(v) n: number of rounds to perform reachability analysis on.

The tool outputs ‘safe’ if the inv is indeed an n-invariant, ‘unsafe’ if it finds a counterexample

execution of length n. In some cases, it can return ‘inconclusive’ as we will discuss presently.

The Koord BMC tool uses the Koord executable semantics to produce all configurations

that the system reaches during program transitions. It also uses the semantics along with

implementations of low-level controllers to generate traces of the sensor ports of the system

during the environment transitions of duration δ. These traces only include a sampling of

values at the sensor ports and not all the intermediate values that the system reaches.

Algorithm 5.1 shows how Koord BMC computes reachable configurations and checks

n-invariance. The set of permutations of the robots is denoted by perms. The subset of

50

perms(ID) that may result in unique behaviors of a program P is denoted by permsP (ID). We

can compute this set by manually analyzing the shared variables written to during enabled

events of each robot in a round of program transitions. The algorithm first checks that the

invariant is valid on the set of initial states .

Algorithm 5.1: Bounded invariant checking algorithm.

1 Input: P , inv , ID, δ, n
2 C0 ← Init(P,N) p← permsP (ID)
3 for c in C0 do
4 if Sat(c,¬inv) then return ‘unsafe’;
5 end
6 C ← C0

7 for i = 0 to n do
8 for j = 0 to len(p) do
9 C ′ ← Post(C, p[j])

10 for c in C ′ do
11 if Sat(c,¬inv) then return (‘unsafe’,c);
12 end
13 C ′ ← End(C ′)
14 for c in C ′ do
15 tr ← tr + BBTraces(c[0,δ])

16 end
17 C ← C ′env

18 end

19 end
20 if TraceVerify(tr,inv) == ‘unsafe’ then return (‘unsafe’, tr);
21 else if TraceVerify(tr,inv) == ‘inconclusive’ then return ‘inconclusive’;
22 return ‘safe’

Then the algorithm uses the Koord semantics to compute the set of all configurations

reached from a set of configurations C (initially set to C0) by the system during that round

of program transitions. It does so by iterating over every order of program transitions in

permsP (ID). The algorithm checks inv is valid, or that the negation of inv is unsatisfiable,

using the procedure Sat . If it finds an unsafe configuration c, then it returns ‘unsafe’ along

with c. Otherwise, the samples of the system’s trajectory from every configuration at the

end of a round of program transitions are collected using the method BBTraces . These are

then analyzed by an external verification tool (such as DryVR) in TraceVerify .

In the next iteration, the algorithm sets C to be the frontier set of configurations.

For TraceVerify , we used DryVR to compute over-approximations of the system’s continu-

ous trajectories. If it returns ‘unsafe’ along with a trace of the corresponding blackbox trace,

inv is not an invariant of the system. DryVR may also return ‘inconclusive’, which means

51

that the over-approximation computed is too coarse.

Lemma 5.1 summarizes the soundness of Koord BMC.

Lemma 5.1. If Algorithm 5.1 returns ‘unsafe’ then there exists a counterexample to inv

of length at most n. Assuming that the correctness of TraceVerify, if Algorithm 5.1 returns

‘safe’ then inv is an n-invariant.

Proof. (Sketch.) If algorithm 5.1 returns safe, then for the n loop iterations of the outer

loop, given a set of configurations C and the property inv, according to the algorithm

∀c ∈ Post(C), c |= inv. Therefore, if the algorithm returns safe, then the set of configurations

reached from C during a program transition is also safe. Finally, the algorithm invokes

TraceVerify on all traces of the system collected using BBTraces. Since TraceVerify is

assumed to be correct if it returns safe, then the reachable configurations are safe. QED.

5.3 BOUNDED MODEL CHECKING OF BENCHMARK APPLICATIONS

We briefly describe some benchmark applications implemented using Koord , their associated

requirements, and present results on the verification of these applications using Koord BMC.

SATS This is a simplified version of distributed landing protocol [40, 58] originally designed

for a small aircraft, but we apply it to drones. The protocol uses a shared list to sequence

the drones approaching the strip, and a separation check to ensure that drones do not collide.

The requirement is to ensure that a minimum separation between any two consecutive drones

is maintained.

Fischer’s Mutual Exclusion Protocol This is a well-known timing-based distributed

mutual exclusion protocol, and it uses a shared variable [42] to decide which process executes

its critical section. The desired invariant is that no two processes are in the critical section

simultaneously.

HVAC This application models a room with a heater, which is on or off, based on readings

from a thermostat. It is a popular benchmark in hybrid systems literature [29]. The thermal

dynamics with the effect of the heater are modeled as the environment of the Koord program.

The design should ensure that the temperature stays within a specified range.

Waypoints This application drives vehicles around obstacles to visit a sequence of way-

points in order. The property of interest is that no vehicles collide with any obstacles, or

with each other.

52

Traffic In this program, the system handles robots navigating a traffic intersection without

traffic lights, by communicating through shared variables. The 4-way intersection is divided

into four areas, and a robot looking to make a turn at the intersection needs at most three of

the said critical sections, and one going straight through needs at most two of them. We

verify that no two robots visit the four areas of the intersections simultaneously and that the

robots are contained in the areas during their navigation.

These applications cover a variety of real-world applications. For instance, Fischer’s

protocol is a standard timing-based mutual exclusion algorithm; Traffic uses shared variables

for physical coordination. The SATS protocol we implemented is a simplified version of a

real protocol developed by NASA.

All our results were obtained by executing Koord BMC on a machine with Intel Core i7-

4960X CPU 3.60GHz and DDR3 RAM 64GB. We summarize our experiments with bounded

model checking in Table 5.1.

Time to
Benchmark Robots δ (s) Rounds Verify (s) Safe
waypoint following 2 50 4 38.451 safe
waypoint following 3 50 4 59.934 safe
waypoint following 4 50 4 81.241 safe
HVAC 1 40 10 26.239 safe
lineform 3 10 4 20.183 safe
lineform 4 10 4 24.886 safe
lineform 5 10 4 28.113 safe
fischer’s protocol 2 1 2 479.931 safe
SATS landing protocol 2 50 4 32.496 safe
SATS landing protocol 3 50 4 38.382 safe
traffic 2 3 5 40.493 safe
traffic 3 3 5 131.423 safe

Table 5.1: Benchmark Summary

The Robots column in the table refers to the number of robots we performed the experiments

with, δ is the time increment during controller transitions, the rounds column is the number

of rounds. The time taken to verify these applications increases exponentially with the

number of robots, as well as the number of rounds.

5.3.1 Choosing δ

If δ is too large, then there are less updates to actuator ports which may result in unsafe

behaviors due the controller running unchecked for too long. For instance, if the in the HVAC

example, we do not check the temperature values with sufficient frequency, the heaters may

remain on even when temperature has been more than the desired maximum for a long

53

time. If δ is too small, the executable semantics potentially produces a huge number of

behaviors, and it is difficult to analyze the program for a non-trivial program execution time.

In essence, the choice of δ also depends on the environment physics, and it is usually chosen

experimentally. Table 5.2 shows the variation of verification results for different values of δ

for the HVAC benchmark. We notice that for large values of δ, the system doesn’t satisfy

the property that the temperature stays within an allowed range. This is expected as if the

switch is on for too long then the temperature may exceed the allowed range, and if it is off

for too long then the temperature may become too low. This set of experiments shows how

the choice of δ can be made for the HVAC benchmark.

Time to
δ (s) Rounds Verify (s) Safe

40 10 26.2 safe
50 10 21.9 safe
75 8 26.2 safe
100 6 23.2 unsafe
125 6 26.1 unsafe

Table 5.2: δ variation in HVAC

While our Lemma 5.1 shows that our bounded verification algorithm is sound, it is not

complete. Additionally, even though it can be used to verify applications with a larger number

of robots, the time taken is prohibitive for experiments due to the state-space explosion

caused by the distributed, nondeterministic nature of Koord applications. In the next section,

we show how we explore scalable verification of inductive invariants.

5.4 DECOMPOSING INDUCTIVE INVARIANCE VERIFICATION

We first define the notion of inductive invariants formally.

Definition 5.3. A predicate inv is an inductive invariant of a system if given a set of initial

configurations of the system C0, the following proof obligations (POs) hold:

JinvKC0 (5.9)

JinvKC ⇒ JinvKReach(C,1) (5.10)

That is, inv holds in the initial configuration(s) (PO (5.9)), and inv is preserved by both

platform-independent program transitions (distributed program logic) and the platform-

dependent environment transitions (controllers). according to PO (5.10). It is straightforward

to prove that an inductive invariant is an invariant of the system.

54

Our verification strategy for programmer-specified (inductive) invariants is to discharge the

proof obligations. PO (5.9) is usually trivial. Therefore, we focus on PO (5.10). The Koord

semantics enables us to decouple the environment and program transitions in Reach, and

analyze each separately. PO (5.10) can be restated as

JinvKC ⇒ JinvKPost(C) (5.11)

JinvKC ⇒ JinvKEnd(C)[0,δ] (5.12)

As in other concurrent systems, a major bottleneck in computing Post(C) for PO (5.11) is

the required enumeration of all ~p ∈ perms(ID) permutations for all robots with reads/writes

to the global memory. We, therefore, seek a stronger and easier to prove proof obligation.

Lemma 5.2. Given a predicate ϕ and a configuration c, if JϕKc ⇒
∧
i∈ID

∧
e∈EventsJϕKPost(c,i,e),

the following always holds:

JϕKc ⇒ JϕKPost(c) (5.13)

Proof. Consider an execution in which the robots execute their events in the order ~p =

p1, p2, . . . pN sys. We know that Post(c, ~p) = Post((Post(c, p1), (p2, . . . , pN sys)), since ~p is not

an empty sequence. From our assumption, we get that

∧
e∈Events

JϕKPost(c,p1,e) (5.14)

Using 5.14 and the definition of Post(c, p1), we get that JϕKPost(c,p1). A similar argument

can be used to derive that JϕKPost(c,pi) for any pi ∈ ~p. Since JϕKPost(c,p1), JϕKPost(c′,p2), where

c′ ∈ Post(c, p1). In fact, for robots with pids pi, pi+1 in ~p executing their events consecutively

from a configuration c,

JϕKPost(c,pi) ⇒ JϕKPost(Post(c,pi),pi+1) (5.15)

Given 5.15 and the definition of Post(c, ~p), we can conclude that:

JϕKc ⇒ JϕKPost(c,~p) (5.16)

Further, since we proved the 5.16 for an arbitrary permutation ~p, we can conclude that it

is true for every permutation, i.e ,
∧
~p∈perms(ID)JϕKPost(c,~p). Hence, JϕKc ⇒ JϕKPost(c QED.

Essentially this lemma states that as ϕ is preserved before and after every event transition

of every robot, the order of robot event execution does not impact the validity of ϕ.

55

With Lemma 5.2, we strengthen and rewrite PO (5.11) as

JinvKC ⇒
∧
i∈ID

∧
e∈Events

JinvKPost(C,i,e) (5.17)

which no longer requires enumeration of all permutations. We use this lemma for scalable

verification of Koord applications in our synchronous round-based model of execution.

We now discuss our approach to discharge PO (5.12). To further decouple program and

environment transitions, we rewrite PO (5.12) by expanding JinvKEnd(C)[0,δ] and derive:

JinvKC ⇒ (∀c′, c′′, ∀t ∈ [0, δ], c′ ∈ End(C)) ∧ c′′ = traj (c′, t)⇒ JinvKc′′). (5.18)

PO (5.18) requires reasoning about the dynamic behavior of traj during environment

transitions, and it is a challenging research problem by itself.

5.5 CAPTURING CONSTRAINTS ON CONTROLLER BEHAVIOR

We introduce controller assumption to abstract away the continuous dynamic behavior by

controllers (including sensor and actuator ports) during environment transitions.

Definition 5.4. A controller assumption is a pair of predicates 〈P,Q〉, where P is defined

over CPorts×Val×CPorts×Val and Q is over CPorts×Val. Given a controller assumption

〈P,Q〉, the traj function satisfies the assumption if starting from any c′ with port values

satisfying P then any reachable configuration c′′ within [0, δ] must satisfies Q. Formally,

∀c′, c′′, ∀t ∈ [0, δ], P (c′.Acts , c′.Sens) ∧ c′′ = traj (c′, t)⇒ Q(c′′.Sens) (5.19)

where c′.Acts refers to its actuator port values, c′.Sens refers to the sensor port values,

A controller assumption 〈P,Q〉 is similar to preconditions and postconditions for the traj

function with an additional guarantee that Q must hold at all time during the time horizon

[0, δ]. It allows programmers to over-approximate the set of all transient configurations

reached by traj and prove the invariant. We demonstrate in Chapter 6 and Chapter 7 how

controller assumption can be validated with specialized tools for continuous dynamics.

We know by definition End(C) ⊆ Post(C). With Lemma 5.2, we can merge PO (5.17) and

PO (5.18), add program and controller assumptions, and simplified our proof obligation as:∧
i∈ID

∧
e∈Events

JinvKC ∧ c′ ∈ Cei ∧ (P (c′.Acts, c′.Sens)⇒ Q(c′′.Sens))⇒ JinvKc′′ (5.20)

Notice the continuous dynamics no longer appear in PO (5.20), and it allows us to reason in

56

per event fashion as well as per robot fashion. We then can use our K symbolic execution

semantics to construct the symbolic post configurations Cei for each event e, and prove the

validity with SMT solvers.

5.6 DEALING WITH FUNCTIONS AND LOOPS

Many programs can include both module related functions and loops. Proving invariants

over such loops is by itself a well studied and difficult research problem.

To mitigate this problem, we instruct our symbolic execution to treat module related

functions such as computing distance between two points, and paths generated by path plan-

ners as uninterpreted functions, and we introduce function summary for such uninterpreted

functions similar to controller assumptions.

Definition 5.5. A function summary F (x, y) for an uninterpreted function f(x) is a predicate

which we can prove the following proof obligation:

∀x, F (x, f(x)) (5.21)

where x can be extended according to the arity of f . Verification and generation of good

function summaries is extensively discussed and widely used in software verification. We

believe writing a good function summary requires strong domain knowledge in particular

robot devices and the problem to be solved.

Both controller assumptions and function summaries require proofs for end-to-end verifica-

tion of inductive invariants for Koord programs. The Koord Prover we have built only deals

with PO (5.20)

5.7 SYMBOLIC EXECUTION FOR PROVING INDUCTIVE INVARIANTS

We reason about the system in terms of symbolic configurations, which is the symbolic

representation of a system during a given program or environment transition. Koord Prover

first computes the initial symbolic configuration and checks that the invariant holds in that

configuration. Then our symbolic execution constructs the program transition constraints

and the environment transition constraints. It then generates such constraints for every robot

pid and checks their validity using the Z3Py file generated by the K-Z3 interface. It returns

‘safe’ if the negation of the conjunction of all the generated constraints is unsatisfiable. It

returns ‘unsafe’ along with a counterexample model otherwise.

57

We implemented the symbolic expression semantics in the K rewriting system (Symbolic

Post Generation) and used it to compute the (symbolic) reachable sets of configurations for

every event e in a given program in Koord Prover3.. We used bookkeeping to collect the

constraints generated by the candidate invariants as well as conditional statements along with

their relevant memory mappings, as part of the configuration in K. For instance, suppose

there is a statement : if (Cond) : Ss else : Ss2 where Ss and Ss2 are statement blocks.

Suppose further that when Cond is processed by robot i, the configuration of the system is

C1, the configuration after Ss is executed is C2, and the configuration after Ss2 is executed

is C3. The constraints generated for the candidate invariant I are (JCondKC1 ∧ JIKC2) ∨
not(JCondKC1) ∧ JIKC3 . C1, C2 and C3 possibly differ only in terms of the local memory

of robot i. K is specially useful for generating such context-sensitive constraints. These

constraints were then parsed using the K-Z3 interface: a parser we implemented using Python

lex-yacc (ply). We used it to generate a python file that contained a Z3 solver and added the

system constraints to it.

5.8 SUMMARY

In this chapter, we defined the notion of reachable configurations for Koord programs.

We then discussed our explicit bounded model checking approach by computing the set of

reachable configurations using the executable Koord semantics and presented a verification

summary for benchmark Koord applications.

We then introduced a decoupled analysis technique for inductive invariants, which separates

the discrete distributed coordination and the continuous control components of a Koord

program. We presented a lemma (Lemma 5.2), which enables this decoupled analysis to

scale. We will show in Chapters 6, 7 and 8 how this decoupled analysis is applied to three

benchmark applications.

3Koord Prover is available at https://github.com/ritwika314/koordprover

58

CHAPTER 6: CASE STUDY: DISTRIBUTED FORMATION CONTROL

In this chapter, we revisit the LineForm program of Chapter 2 and demonstrate the decom-

posed verification approach for inductive invariants we motivated in Chapter 5. Recall that

the application (Figure 2.2) forms an equispaced line of robots between two fixed endpoints.

The robots executing the application are required to satisfy a geofencing requirement, which

we will state as an invariant. We demonstrate how our decomposed verification enables plug-

ging in separate analyses of the distributed coordination logic that determines the formation

algorithm and the low-level control that needs to obey the geofencing requirement of the

LineForm application.

6.1 FORMAL MODELING AND ANALYSIS

As mentioned in Chapter 5, the symbolic post configuration generated by K is used to

represent a set of system configurations. For a variable x in c, x′ represents its corresponding

value in c′ ∈ Post(c); x′′ represents its corresponding value in c′′ ∈ (EndC)[0,δ].
Consider a candidate invariant:

Invariant 6.1. :

JGeofencing iKc := Motion.psni ∈ rect(pmin, pmax) ∧ x[i] ∈ rect(pmin, pmax) (6.1)

This invariant asserts that the position of each robot i is always within rect(pmin, pmax),

and that each agent updates its shared variable value to one within rect(pmin, pmax) as well.

We first try to prove Invariant 6.1 without any assumptions, only from the constraints

generated through the symbolic execution of LineForm. Koord Prover symbolically executes

the event TargetUpdate (for robot i) and automatically generates the post event configuration

constraint TargetUpdate i :

TargetUpdatei :=

¬(i = N sys− 1 ∨ i = 0)

∧ Motion.target′i = (x[i− 1] + x[i + 1])/2

∧x′[i] = Motion.psni ∧ u vars

∧Motion.psn′′i := traj (Motion.psn′i, Motion.targeti, t)

∧t ∈ [0, δ]

(6.2)

where traj is treated as an uninterpreted function over R×R. The function rect can both be

precisely defined as well as left uninterpreted. Recall that the primed copies of the variables

in c are their values in c′, and the double primed copies are their values in c′′. The rest of

59

the formula includes a subformula u vars that ensures the values of unmodified variables are

unchanged; for instance, Motion.psn′i = Motion.psni and x′[j] = x[j] for j 6= i.

Since there is only one event, the induction proof obligation, the Koord Prover generates

the following proof obligation PO (6.1) for LineForm:

Proof Obligation 6.1.∧
i∈ID

JGeofencing iKc ∧ TargetUpdate i ⇒ JGeofencing iKc′′ (6.3)

The Koord Prover returns that the negation of PO (6.1) is satisfiable, meaning that either

our proposed invariant cannot be proved without any additional constraints, or it doesn’t

hold. The satisfying assignment serves as a counterexample. Since automatically generated

proof obligations do not include any sensor or actuator assumptions, it is not surprising that

the Koord Prover could not prove the invariant. Specifically, PO (6.1) does not include any

restrictions on Motion.psn′′i , Motion.target
′′
i w.r.t any of the variables in the symbolic post

configuration after the TargetUpdate event.

Next, we introduce a controller assumption 〈Pi, Qi〉:

Pi := Motion.psn′i ∈ rect(a, b) ∧ Motion.target′i ∈ rect(a, b)

Qi := Motion.psn′′i ∈ rect(a, b), (6.4)

where a and b are constants in R3, c′ is the configuration Pi is evaluated on, and c′′ is the

configuration Qi is evaluated on. PO (6.1) is then refined to PO (6.2):

Proof Obligation 6.2.∧
i∈ID

JGeofencing iKc ∧ TargetUpdate i ∧ (Pi ⇒ Qi)⇒ JGeofencing iKc′′ (6.5)

Having added the controller assumption (6.4), the Koord Prover returns that the negation

of PO (6.2) is unsatisfiable, i.e., (6.4) is sufficient to prove Invariant 6.1 . Table 6.1 summarizes

the verification of PO (6.1) on instances of LineForm with different N sys.

6.2 VALIDATING DYNAMIC BEHAVIOR

We now turn towards validating the controller assumption (Controller Assumption 6.4).

Recall, from PO (5.19) defined in Chapter 5 and 〈Pi, Qi〉 defined above, we can derive the

following:

60

N sys dim TK (s) TV (s) Safe

3 1 4.90 9.09 safe
3 2 4.19 10.13 safe
4 1 4.79 12.21 safe
4 2 5.28 12.49 safe
4 3 5.06 12.77 safe
5 1 4.91 18.46 safe

N sys dim TK (s) TV (s) Safe

5 2 5.60 18.91 safe
5 3 4.33 20.30 safe
10 1 4.92 32.34 safe
10 2 5.16 32.42 safe
10 3 4.34 33.61 safe
15 1 5.23 53.89 safe

Table 6.1: Summary of semantics based verification for LineForm. TK is the symbolic post
computation time in K, TV is the time taken for construction of constraints and verification in Z3.
Robots moving along a line are represented by dim = 1, along a plane by dim = 2, and in a 3D
space by dim = 3.

Controller Proof Obligation 6.1.

∀t ∈ [0, δ], Motion.psni ∈ rect(a, b) ∧ Motion.targeti ∈ rect(a, b)

∧c′′ = traj (c′, t)⇒ Motion.psn′′i ∈ rect(a, b) (6.6)

It states that if the current position and the target of the robot are within the rectangle

rect(a, b), then it remains within the rectangle for the next δ interval.

To prove (6.4), one has to use the dynamics of the specific robot and the specifics of the

waypoint-tracking controller driving the vehicles running the Koord application. Several

approaches are available for checking this type of properties for control systems, such as,

barrier certificates [67], reachability analysis [5, 46], and Lyapunov analysis [16, 25]. For each

of these approaches, there are many available algorithms and tools. For our verification of

LineForm, we use the reachability analysis approach, and in the remainder of this section, we

give an overview of this analysis.

Reachability analysis computes the set of states of a control system that is reachable from

a set of initial states. Proving Controller Proof Obligation 6.1 boils down to computing

the set of reachable states from a set of initial positions bounded by rect(a, b) and with

the target also in the same rectagle, and checking that the result is contained in rect(a, b).

Typically, computing the exact set of reachable states is undecidable for nonlinear control

system models, and therefore, the available algorithms rely on over-approximations

In this case study, we use the DryVR [28] reachability analysis tool, which uses numerical

simulations to learn the sensitivity of the robot’s trajectories. It then uses this sensitivity and

additional simulations to either prove the required property (with a probabilistic guarantee),

or it finds a counterexample trace. DryVR has been used to analyze automotive and aerospace

control systems [27]. Here we use the Koord simulator to generate traces of a quadcopter

using the Hector quadrotor model [56], from which DryVR computes the reachsets.

61

Figure 6.1: Reachtube computations for lineform, for the quadcopter.

Figure 6.1 shows the outputs of the reachability analysis performed on quadcopters models.

Here we have computed reach sets from a smaller initial rectangle and with a target that is

also in a smaller rectangle than rect(a, b). In each of the plots, the green rectangle represents

rect(a, b). The blue rectangle at the bottom left corner of each plot represents starting points

in the simulated trajectories used to generate these reachtubes. The blue rectangle on the top

right corner is the bound on the targets reached in the trajectories.Figure 6.1 (Left) shows

that the reachtube of the quadcopter using a simple PID controller overshoots its target, and

violates the Controller Proof Obligation 6.1. Figure 6.1 (Right) shows that, for a quadcopter

with the same controller with different control gains with a lower settling time, the controller

assumption is satisfied.

However, we note that the model of the quadcopter is symmetric under translations, planar

reflections, and rotations. Therefore, using Theorem 10 from [71] and as shown in [72], the

computed reachsets can be translated and rotated to cover all initial and target choices in

rect(a, b).

6.3 SUMMARY

We demonstrated the decomposed verification approach for inductive invariants for Koord

programs on a formation control application, LineForm. We showed how the Koord Prover

automatically generates a basic proof obligation from the proposed inductive invariant, and

symbolic execution of the Koord program. We then showed how we use controller assumptions

on the robots executing the program to aid in verifying the inductive invariant. Finally,

we showed how the controller assumptions themselves are proof obligations that can be

62

validated through DryVR. While we didn’t have to use the notion of function summaries in

this chapter, we will show how they can become useful in the next chapter for the verification

of a distributed delivery application.

63

CHAPTER 7: CASE STUDY: DISTRIBUTED DELIVERY

Many distributed multi-robot applications can be seen as distributed task allocation

problems, with different points in a shared environment that robots collaboratively visit.

We view visiting points as an abstraction for location-based objectives like package delivery,

mapping, surveillance, or fire-fighting. In this chapter, we discuss a Koord application that

performs distributed delivery. We then show how our decomposed verification approach can

verify the safety requirements for this application.

7.1 PROBLEM SETUP

We first define the distributed delivery problem as follows: Given a set of (possibly

heterogeneous) robots, a safety distance ε > 0, and a fixed sequence of delivery points (or

tasks) list = x1, x2, . . . ∈ R3, there are following two requirements: (a) every unvisited xi in

the sequence is visited precisely by one robot and (b) no two robots ever get closer than ε.

The flowchart in Figure 7.1 shows a simple idea for solving this problem from the perspective

of a single robot: Robot A looks for an unassigned task τ from list ; if there is a clear path to

τ , then A assigns itself the task τ . Then A visits τ following the path; once done, it repeats.

task	
available?

exists	
clear
path?

reached	
current	
task?

share	and	
follow	path

start

stopno

yes
no

no yes

yes

Assign

Complete

Figure 7.1: The flowchart for a simple solution to Delivery application.

Converting this to a working solution for a distributed system is challenging as it involves

combining distributed mutual exclusion ([53, 33]) to assign a task τ exclusively to a robot

64

1 using Motion:
2 actuators:
3 List〈Point〉 path
4 sensors:
5 Point position

6 bool reached

7 PathPlanner planner

8 local:
9 bool on_task = s

10 List〈Point〉 curr_path
11 Task cur_task

12

13 allread:
14 List〈Point〉 shared_paths[N sys]
15 allwrite:
16 List〈Task〉 all_tasks
17

18 Complete:
19 pre: on_task and Motion.reached
20 eff: on_task=False

21 shared_paths[pid]=[Motion.position]

22

23 Assign:
24 pre: !on_task
25 eff:
26 if len(all_tasks) == 0:
27 stop
28 else: atomic:
29 for t in all_tasks:
30 curr_path=Motion.planner(t.target)
31 if pathIsClear(shared_paths, \
32 curr_path, pid):
33 on_task=True

34 cur_task=t

35 break
36 if on_task:
37 all_tasks.remove(cur_task)
38 shared_paths[pid]=curr_path

39 Motion.path=curr_path

40 else:
41 shared_paths[pid]=[Motion.position]

Figure 7.2: Koord code for distributed Delivery application.

A from the list (step 1), dynamic conflict-free path planning (step 2), and low-level motion

control (step 3).

Figure 7.2 shows our Koord language implementation of Delivery, which intuitively follows

this flowchart.

7.2 FORMAL MODELING AND ANALYSIS

In this case study, we only prove requirement (b) for Delivery. Delivery consists of two

events

(i) Assign, in which each robot looks for an unassigned task t from all tasks; if there is a

clear path to t then the robot assigns itself the task t, set the actuator port Motion.path,

and shares its path with all other robots through shared path. Otherwise, it shares its

position as the path. The atomic keyword provides mutual exclusion to ensure that no

two robots can pick the same task or pick conflicting paths to tasks.

(ii) Complete, which checks whether a robot has visited its assigned task.

65

A path here is a list of points that a robot visits in sequence. The Motion module drives the

robot along a path, as directed by the position value set at its actuator port Motion.path.

The sensor port Motion.planner returns a path to the target of an unassigned task, and

a (user-defined) function called pathIsClear is used to determine whether the currently

planned path is within ε distance of any path in shared path.

7.3 PROOF SETUP

Suppose there is a function parameterized by ε, taking two paths as input clear ε :

List〈Point〉 × List〈Point〉 7→ bool , it returns true only if the minimum distance between the

two paths is greater than ε. We restate requirement (b) as: no two robots ever get closer

than ε. This gives us the following invariant for the current configuration c:

Invariant 7.1.

JSafeDistanceKc = ∀j ∈ [N sys], (i 6= j ∧ clear ε(shared path[i],

shared path[j])) ∨ (i = j) (7.1)

Computing the clear function involves nested loops over the length of each path, then

computing the minimum distance between each path segment pathIsClear further has to

iterate over all shared paths and check whether they satisfy the requirements on clear . We

use the notion of function summary to capture the notion of correctness for for pathIsClear.

The function summary PIC is defined below as:

Function Summary 7.1.

PIC (sp, cp, i, y) := ∀j ∈ ID, j 6= i ∧ ¬clearρ(sp[j], cp)⇒ ¬y (7.2)

where 0 ≤ ρ < ε. The function summary simply says, if a robot’s current path cp is

not more than ε distance to any path sp[j] shared by other robots, the output of y =

pathIsClear(sp, cp, i) should be false,1 and PO (5.21) becomes:

Proof Obligation 7.1.

∀sp, cp, i,PIC (sp, cp, i, pathIsClear(sp, cp, i)) (7.3)

1The index i in the pathIsClear function indicates that the previously shared path of the robot i shouldn’t
be considered in the computation.

66

Validating PO (7.1) requires us to reason about the implementation of the pathIsClear

function, which is beyond the scope of this case study.

To construct the symbolic set of configurations, we use a list with four tasks signified

by {t1, t2, t3, t4} so that the symbolic execution terminates. The for-loop iterating through

the task list is unrolled into a sequence of (nested) if-else statements. The automatically

generated symbolic post event configuration of the Assign event for an execution when robot

i picks t1 is as follows:

Et1
i := ¬on taski ∧ on task′i

∧ curr path′i = Motion.planner(t1.target)

∧ PIC (shared path, curr path′i, i, True)

∧ shared path′[i] = curr pathi
′

∧ Motion.path′i = shared path′[i] ∧ u vars (7.4)

where u vars again, ensures the values of unmodified variables are unchanged. Notice how

we can use PIC to summarize pathIsClear. Similarly, we get Et2
i , Et3

i and Et4
i for other

execution paths choosing corresponding tasks. When none of the tasks is picked, the post

event configuration generated is

Enone
i := ¬on taski ∧ shared path′[i] = [Motion.posi] ∧ u vars (7.5)

For the event Assign, the post event configuration is:

Assigni :=

 ∀j ∈ [N sys], Et1i ∧ E
t2
i ∧ E

t3
i ∧ E

t4
i ∧ Enone

i

∧(Motion.pos′′, Motion.reached′′) =

traj (Motion.pos′, Motion.reached′, Motion.path′, t) ∧ t ∈ [0, δ]

 (7.6)

The Koord Prover then automatically generates the proof obligation :

Proof Obligation 7.2.∧
i∈ID

JSafeDistance iKc ∧ Assign i ⇒ JSafeDistance iKc′′ (7.7)

Without any assumptions on robot motion, our tool is unable to discharge this proof

automatically. For abstracting the movement of robots, a robot i should move closely (¬clearβ,

where 2β + ρ ≤ ε) along its Motion.path actuator whose value is denoted by Motion.path′′i

67

Benchmark N sys TK (s) TV (s) Safe

Task 3 9.90 10.6 safe
Task 4 9.79 11.78 safe
Task 5 9.91 14.92 safe
Task 10 12.92 18.34 safe

Table 7.1: Summary of semantics based verification for Delivery. TK is the symbolic post
computation time in K, TV is the time taken for generation of constraints and verification in Z3
and N sys is the number of robots in the systeMotion.

until it finishes traversing the path. We add 〈Pi, Qi〉 with

Pi := ¬Motion.reached′i
Qi := ¬clearβ(Motion.pos′′i , Motion.path

′′
i) (7.8)

PO (7.2) is then refined to PO (7.3):

Proof Obligation 7.3.∧
i∈ID

JSafeDistance iKc ∧ Assign i ∧ (Pi ⇒ Qi)⇒ JSafeDistance iKc′′ (7.9)

The proof obligation for the induction hypothesis for the event Complete is generated

similarly (omitted here), and the overall proof obligation is a conjunction of the two. Table

7.1 summarizes the verification of these constraints with different numbers of robots.

7.4 VALIDATING DYNAMIC BEHAVIOR

From PO (5.19) defined in Chapter 5 and 〈Pi, Qi〉 defined above, we can derive the

corresponding proof obligation for controller assumption (Controller Assumption 7.8):

Controller Proof Obligation 7.1.

∀t ∈ [0, δ],¬Motion.reached′i ∧ c′′ = traj (c′, t)

⇒ ¬clearβ(Motion.pos′′i , Motion.path
′′
i) (7.10)

We now turn towards DryVR based validation for Controller Proof Obligation 7.1. We

computed reachtubes for our vehicle models and checked whether they were contained within

β distance of the desired path. In both the plots shown in Figure 7.3, the grey shaded area

is unsafe and needs to be avoided. The blue path is the computed path, and the green

68

Figure 7.3: Reachtube computations for Delivery.

lines indicate the bounds at β distance from the path. Figure 7.3 (Left) shows the computed

reachtube for the quadcopter lies within β of the actual path. Thus the vehicle will not

violate Controller Proof Obligation 7.1. Figure 7.3 (Right) shows the computed reachtube for

our car model is not contained within β distance of the computed path. Therefore, the vehicle

may violate the assumption. The car-model [41] we used has non-holonomic constraints, and

making the turn formed by the two components of the path shown in Figure 7.3 requires the

car to perform a reverse maneuver that may violate the safety constraint.

7.5 SUMMARY

In this chapter, we demonstrated the decomposed verification approach for inductive

invariants for Koord programs on a distributed delivery application. We showed how we use

function summaries to express the correctness requirements on functions such as pathIsClear

in the applications. Since an application such as Delivery serves as a basic template for several

other multi-robotics applications, including warehouse management, emergency response,

natural resource monitoring, and on-site industrial fault diagnosis and repair. Consequently,

we believe this decomposed verification approach can be used to prove invariants for such

applications. In the next chapter, we present a distributed, collaborative mapping application

to demonstrate its efficacy further.

69

CHAPTER 8: CASE STUDY : COLLABORATIVE MAPPING

In this chapter, we present a case study of the distributed grid mapping problem. The

distributed grid mapping problem is a simplified version of the distributed Simultaneous

Localization and Mapping problem, a classical problem in robotics research. This problem

requires a set of robots to collaboratively mark the position of static obstacles within a given

area D quantized by a grid, which any robot should avoid while moving in D.

The difference between this problem and the classical distributed SLAM, comes with the

assumption that the robots know their global coordinates within the area of deployment, and

only attempt to map static obstacles within this area. Further, the only sensors available for

sensing obstacles are LIDAR based, and the robots are constrained to move in a 2D space.

We first formally state the problem, invariants that a Koord application program should

satisfy, and the assumptions that we make to verify such an invariant for this problem.

8.1 PROBLEM SETUP

Given a set of N sys participating robots, the mapping problem is defined in terms of the

following parameters:

1. A domain D which is a bounded rectangle [a1, a2]× [b1, b2] in R2 corresponding to the

physical arena.

2. A ground truth function world : D 7→ {0, 1} that gives the actual occupancy of obstacles

in this arena. That is, ∀~x ∈ D,

world(~x) =

{
1 if ~x is occupied

0 otherwise.
(8.1)

3. A set Q ⊆ D ∩Q2 which is a quantized representation of D.

4. A Koord program variable, let us call it mapi, for each robot i ∈ [N], that stores the

Q-quantized, shared map.

Specifically, we assume that Q is a (nx × ny)-grid representation of D for some resolution

constants nx, ny ∈ N. That is, Q = {qij ∈ Q2}i∈[1..nx],j∈[1..ny] such that every qij uniquely

represents a disjoint [xi, xi+1]×[yj, yj+1] in D. The quantization function quant : D 7→ Q maps

points in D to their quantized versions. That is quant(~x) = qij iff ~x ∈ [xi, xi+1]× [yj, yj+1].

70

The inverse is defined accordingly: quant−1(qij) = [xi, xi+1]× [yj, yj+1] for any qij ∈ Q. The

quantization defines a quantized version of the world worldQ : Q 7→ {0, 1}, where

worldQ(q) =

1 ⇔ ∃~x ∈ quant−1(q),world(~x) = 1,

0 otherwise.
(8.2)

Figure 8.1 shows an example of a quantized domain with two obstacles shown in black.

x

y

(0,0)〈0.5, 0.5〉 〈5.5, 0.5〉 〈9.5, 0.5〉

(0,10)
(10,10)

Figure 8.1: D = [0.0, 10.0]2 ⊂ R2, Q = {0.5, · · · , 9.5}2 ⊂ Q2, for example, worldQ(〈5.5, 0.5〉) = 0
and worldQ(〈6.5, 0.5〉) = 1.

For each robot i, the program variable mapi will ideally store a quantized restriction of

world . That is, the type of this variable will be mapi : Q′ → B, for some Q′ ⊆ Q. Finally, we

will assume that each robot i occupies space within the arena D, and its position is available

from a sensor port pos i, which takes values in D.

Now we can formally state the desirable requirements of the mapping application.

1. (Individually sound) Always, each robot’s map is a quantized restriction of the ground

truth. That is, mapi : Qi 7→ B, where Qi ⊆ Q and mapi(q) = worldQ(q) for every

q ∈ Qi.

2. (Consistent) Always, robot maps are consistent. That is, for any two robots i, j ∈ [N],

mapi(q) = mapj(q) for any q ∈ domain(mapi) ∩ domain(mapj).

3. (Safe location) Always, each robot is located in a part of the arena that is known to be

free. That is, for any i ∈ [N sys], quant(pos i) = mapi(q) for any q ∈ domain(mapi) ∩
domain(mapj).

4. (Eventual completeness) Eventually, the constructed maps cover world . That is, for

each robot i ∈ [N sys], domain(mapi) = Q.

71

1 using MotionScan

2 sensors:
3 Point position

4 List〈Point, Scan〉 pscan
5 bool reached

6 PathPlanner planner

7 actuators:
8 List〈Point〉 path
9

10 allwrite:
11 GridMap map

12

13 #omitting initialization
14 local:
15 GridMap localMap

16 Point target

17 bool on_path = True

18 List〈Grid〉 obstacles
19

20 GUpdate:
21 pre MotionScan.reached
22 eff: atomic:
23 map = merge(map, localMap)
24 on_path = False

26 NewTarget:
27 pre !on_path
28 eff:
29 target = pickFrontierPos(map, \
30 MotionScan.position)
31 obs = findObs(map)
32 MotionScan.path = MotionScan.planner(target, \
33 obs)
34 if MotionScan.path != []:
35 on_path = True

36 else:
37 on_path = False

38 localMap = map

39

40 LUpdate:
41 pre on_path and !MotionScan.reached
42 eff:
43 for p, s in MotionScan.pscan:
44 localMap = merge(localMap, scanToMap(p, s))

Figure 8.2: Koord code for Distributed Mapping Application Mapping.

The Mapping algorithm shown in Figure 8.2 works in the following manner. Each robot

constructs a local grid map over D using sensors, and updates it using information from

other robots shared via a global grid map. In Mapping, the MotionScan module provides

a pscan sensor used to read the LIDAR scan of the actual robot. The other sensors and

actuators position, reached, planner, path have the same functionality as that in the

Motion module. The shared allwrite variable map is used to construct a shared map of

obstacles within the domain D and has type GridMap, which is a 2-D array representing

a grid over D. The local variable localMap represents each robot’s local knowledge of the

domain D, and has the same type as D. There are three events: NewPoint, LUpdate, and

GUpdate. A robot executing the NewPoint event, finds an unoccupied point to move to using

a user-defined function pickFrontierPos and plans a path to it using MotionScan.planner.

It then updates its localMap from the shared variable map. The LUpdate event updates the

localMap with scanned sensor data while the robot is in motion, and the GUpdate event

updates the shared map with the updated localMap information corresponding to the scanned

72

data.

8.2 FORMAL MODELING AND ANALYSIS

We can define a function chk : GridMap 7→ B such that chk(g) := ∀q ∈ Q, (g(q) = 1)⇒
(worldQ(q) = 1) to make sure the detected occupied grids are consistent. We then can

formally define the invariant as:

Invariant 8.1.

JConsistent iKc := chk(localMapi) ∧ chk(map) (8.3)

For the NewPoint event, the Koord Prover generates the post event configuration for robot

i.

NewPoint i :=¬on path ∧ localMap′i = map ∧ map′ = map

∧ map′′ = map′ ∧ localMap′′i = localMap ∧ uvars (8.4)

As in the previous examples, uvars refers to unchanged variables after the event. The Koord

Prover automatically generates proof obligation PO (8.1),

Proof Obligation 8.1.∧
i∈ID

JConsistent iKc ∧ NewPoint i ⇒ JConsistent iKc′′ (8.5)

By itself, this is verified automatically by the Koord Prover.

For the event GUpdate, a function summary for the merge function is required. We simply

provide a summary MERGE stating that the merge function returns a map satisfying chk

when given two maps satisfying chk .

Function Summary 8.1.

MERGE (m1,m2,m
′) := chk(m1) ∧ chk(m2)⇒ chk(m′) (8.6)

The associated proof obligation with the above function summary is:

Proof Obligation 8.2.

∀m1,m2,MERGE(m1,m2,merge(m1,m2)) (8.7)

73

The Koord Prover generates the following post event configuration for robot i as

GUpdate i :=

Motion.reached

∧ MERGE (map, localMapi, map
′)

∧¬on path′ ∧ localMap′i = localMapi ∧ uvars

(8.8)

For proof obligation for this event is therefore:

Proof Obligation 8.3.∧
i∈ID

JConsistentKc ∧GUpdate i ⇒ JConsistentKc′′ (8.9)

We omit the presentation of LUpdate as the analysis of LUpdate follows along the lines of

the previous constraints.

Benchmark N sys TK (s) TV (s) Safe
DMap 3 9.23 14.53 safe
DMap 4 9.33 19.25 safe
DMap 5 9.19 24.30 safe
DMap 10 9.31 59.81 safe

Table 8.1: Summary of semantics based verification for DMap. TK is the symbolic post
computation time in K, TV is the time taken for generation of constraints and verification in Z3
and N sys is the number of robots in the system.

Table 8.1 summarizes the verification of soundness property of the DMap application on

systems of different N sys.

8.3 SUMMARY

In this chapter, we showed how we use the Koord Prover to verify inductive invariants,

which do not necessarily require controller assumptions. We also formalized assumptions

for this problem, to highlight how function summaries can be used to capture the notion

of ground truth as we did with the chk . The three case studies for inductive invariant

verification that we presented, including DMap in this chapter, show that our techniques are

applicable across various types of multi-robot applications. In Chapter 9, we turn towards

implementing Koord to enable simulation and deployment of Koord application programs.

74

CHAPTER 9: IMPLEMENTING KOORD : CYPHYHOUSE

This chapter discusses our CyPhyHouse toolchain [7], which includes an implementation of

the Koord language, a simulator, and deployment interfaces. While the executable semantics

reduces the gap between formal mathematical modeling and implementation, developing the

entire CyPhyHouse toolchain provided several engineering challenges in achieving the system

design.

In Section 9.5, we discuss how the language abstractions over platform-specific controllers

are realized through actuator ROS topics, and how the Koord system obtains (real or

simulated) information such as device positions through sensor ROS topics.

9.1 CYPHYHOUSE ARCHITECTURE: AN OVERVIEW

The CyPhyHouse runtime system refers to the collective management of hardware resources

and software needed for execution of Koord programs, whether it be in simulation or

deployment. Recall from Chapter 2 that a system running a Koord application has three

parts: an application program, a controller, and a plant.

agent

Koord	application

Controller

Plant

sensor
ports

actuator
ports

sensor
messages

actuator
messages

Figure 9.1: Overall System Architecture.

At runtime, the Koord program executes within the runtime system of a single robot.

In a distributed system of multiple robots, a collection of programs execute on different

robots that communicate using shared variables. Each compiled Koord program interacts

with CyPhyHouse middleware via variables. In Section 9.4, we show how the middleware

implements distributed shared memory(DSM) across robots.

The plant consists of the hardware platforms of the participating robots. The controller

receives inputs from the program (through actuator ports), sends outputs back to the program

75

(through sensor ports), and interfaces with the plant.

We developed a software-hardware interface (middleware) in Python 3.5 to support the

three-plane architecture comprising the Koord runtime system.

As discussed in Chapter 3, our main insight in developing reliable robotics applications

was that separation of distributed coordination logic, and low-level control would enable

plugging in various verification techniques for the various components of a Koord application.

Chapter 6 and Chapter 7 demonstrated a verification approach that exploits this separation

of concerns. We had to ensure that the CyPhyHouse toolchain indeed maintained this

separation in implementation.

The Koord toolchain has three main components:

• The Koord compiler, which accepts a Koord program as input and generates an

executable python application,

• The CyPhyHouse middleware which interfaces with the compiled application includes

the shared memory and provides the interfaces to the CyPhyHouse simulator and

hardware platforms (robots),

• The Koord simulator, which provides a simulation environment with robot models in

Gazebo.

The middleware includes distributed coordination logic, and the robot models in Gazebo and

controllers used to drive actual robots include the control logic. We designed our middleware

to be modular, to enable several replaceable implementations of the main language features,

such as shared memory, mutual exclusion, and round synchronization. We designed general

interfaces between the control logic and distributed coordination in the middleware to

support robots with a variety of controller port abstractions. This modular design enables

the portability of Koord applications across heterogeneous robots.

9.2 CYPHYHOUSE MIDDLEWARE HARNESS

Each Koord program compiles to Python application code, which is essentially a per-robot

application thread, containing the declarations, and the distributed coordination logic in the

form of conditional blocks controlled through the events’ preconditions. We also added a

termination feature to the application threads, to enable programmers to run their Koord

applications for a limited number of rounds in simulation or deployment. We store each

robot’s worldview in an object called global variable holder, or GVH, which contains pointers

76

to its corresponding robot’s distributed shared memory, communication interfaces, its pid,

and shared information from other robots in the Koord system.

9.3 THE KOORD COMPILER

The Koord compiler included with CyPhyHouse generates Python code for the application

using all the supported libraries, such as the implementation of distributed shared variables

using message passing over WiFi, motion automata of the robots, high-level collision, and

obstacle avoidance strategies. The application then runs with the Python middleware for

CyPhyHouse.

In our implementation of Koord in the CyPhyHouse toolchain, we enforce a Python-like

indentation style, where every nested block is at a higher indent level. Note that the BNF

grammar provided in the Koord syntax shown in Figure 3.1 does not include any indentation

notions. We implemented the Koord compiler using Antlr (Antlr 4.7.2) in Java [62].

We added two terminals indent and dedent to the Koord syntax to facilitate indentation

based parsing. We also added a logging feature to our implementation of Koord in CyPhyHouse

for debugging purposes. One of the reasons for not including logging in the Koord formal

semantics was that we did not want to include possible side effects due to I/O in the formal

analysis, which is the primary objective of developing the executable semantics of Koord in

K.

Koord is statically typed. The parser creates a symbol table for all declared variables, and

performs a table lookup on encountering a declared variable, and declares a parsing error if a

variable does not match the type correctly. Type-inferencing and automatic casting may be

implemented in the future, but as a side effect of Python code generation, we allow operations

between permitted operations in Python. Strictly speaking, our formal semantics of Koord

would not admit some of the programs permitted by our compiler. However, undeclared

variables generate a parsing error in our implementation. The parser generates an abstract

syntax tree consisting of basic control flow blocks, including variable declarations, variable

initialization, event blocks, loops, and conditionals. For code generation, the AST is traversed

using DFS after performing a topological sort on the nodes, and it directly generates the

application python code. We do not perform any program analyses or optimizations on

programs during compilation as we did not implement an intermediate representation.

We use ROS to handle the low-level interfaces with hardware. To communicate between

the high-level programs and low-level controllers, we use Rospy, a Python client library for

ROS, which enables the (Python) middleware to interface with ROS Topics and Services

used for deployment or simulation.

77

Figure 9.2: Different planners can work with the same code.

9.4 CYPHYHOUSE SHARED MEMORY AND COMMUNICATION

At a high level, the CyPhyHouse middleware propagates updates to a shared variable by

one robot. These shared variable updates become visible to other robots in the next round.

The correctness of a program relies on robots having consistent values of shared variables.

When a robot updates a shared variable, the middleware uses message-passing to inform the

other robots of the variable update. These changes should occur before the next round of

computations.

CyPhyHouse implements the shared memory between robots through UDP messaging over

WiFi. Any shared memory update translates to an update message which the robot broadcasts

over WiFi. We assume the robots running a single distributed Koord application are running

on a single network node, with little to no packet loss. However, the communication component

of the middleware can be easily extended to support multi-hop networks as well.

The communication is handled by a separate thread, which has a pointer to the agent’s

global variable holder object.

9.5 CYPHYHOUSE INTERFACES FOR CONTROLLERS

The low-level control of a robot interfaces with the distributed coordination logic in

the Koord program through the sensor and actuator ports. Given a robot with specific sensing

and actuation capabilities, executing a Koord program on it requires an implementation of

the interface in the CyPhyHouse toolchain.

For instance, if an application requires the robots to move, each robot uses an abstract

class, Motion automaton, which must be implemented for each hardware model (either in

deployment or simulation). This automaton subscribes to the required ROS Topics for

positioning information of a robot, updates the reached flag of the motion module, and

publishes to ROS topics for motion-related commands such as waypoint or path following.

It also provides the programmer the ability to use different path planning modules as long

78

as they support the interface functions. Figure 9.2 shows two robots executing the same

application using different path planners. Figure 9.2 (Left) shows the xy plots of concurrently

available paths during a round of the Delivery application using an RRT planner for two

quadcopters. Figure 9.2 (Middle) shows the same configuration, where paths computed are

not viable to be traversed concurrently. The green markers are current quadcopter positions,

The black path is a fixed path, and the red points are unassigned task locations. Figure 9.2

(Right) shows the same scenarios under which paths cannot be traversed concurrently, except

that a different RRT-based planner (with path smoothing) is used.

Motion automata mentioned earlier are simply an interface that can serve as a template for

any interfaces between sensor and actuator ports. In practice, as a robot is added to the fleet,

our design of the Koord semantics in K ensures that it is extensible (albeit with a blackbox

implementation of the robot’s dynamic behavior), and we can add the corresponding dynamic

automata as an interface to the CyPhyHouse middleware.

9.6 PORTABILITY ACROSS EXECUTION PLATFORMS

Apart from the control components, all other components of the CyPhyHouse middleware

are platform-agnostic. Our implementation allows any robot or system simulating or deploying

a Koord program to use a configuration file (as shown in Figure 9.3) to specify the system

configuration, and the runtime modules for each robot, including the dynamics-related

modules, while using the same application code. It includes platform-agnostic settings for

the robot, e.g., robot id (pid), device to run on (on device), and the number of robots

(num robots), as well as platform-specific settings, e.g., path planners (planner) and position

systems (positioning topic). One of the main reasons for the high degree of portability

is due to the Python implementation of the middleware, which enables execution without

recompilation for every different platform.

9.7 CYPHYHOUSE MULTI-ROBOT SIMULATOR

CyPhyHouse includes a high-fidelity simulator for testing distributed Koord applications

with a large number of heterogeneous robots in different scenarios. 1 Our modular middleware

design allows us to separate the simulation of Koord applications and communications from

the physical models for different platforms. Consequently, the compiled Koord applications,

together with the communication modules, can run directly in the simulator—one instance

1a team led by Chiao Hsieh built the CyPhyHouse simulator.

79

robot:

pid: 0

on_device: hotdec_car

motion_automaton: MoatTestCar

...

device:

bot_name: hotdec_car

bot_type: CAR

planner: RRT_CAR

positioning_topic:

topic: vrpn_client_node/

type: PoseStamped

reached_topic:

topic: reached

type: String

waypoint_topic:

topic: waypoint

type: String

default_leader_pid = 0

...

num_robots: 3

Figure 9.3: A snippet of a sample configuration.

for each participating robot, and their simulated counterparts replace only the physical

dynamics and the robot sensors. This flexibility allows programmers to test their Koord

applications under different scenarios and with different robot hardware platforms. For

example, one can use simpler physical models for early debugging of algorithms, and later

simulate the same code with more accurate physics and heterogeneous platforms. Once

the testing is satisfactory, the same code can be deployed on the actual platforms. The

simulator can test different scenarios, with different numbers of (possibly heterogeneous)

robots, with no modifications to the application code itself, instead directly modifying a

configuration file as shown in Figure 9.4. A programmer with knowledge of distributed

algorithms can develop simple protocols to write the computation logic for a coordination-

based application for a multi-robot system. For instance, an application where each of the

robots has some information about the positions of its neighbors and can set its targets to

collectively form a shape with all the other robots (as shown in Figure 9.4). Figure 9.4(Left)

shows the simulation of 9 drones running ShapeForm application, and Figure 9.4(Middle)

shows the ShapeForm application on 16 drones. We specify different scenarios by changing

80

the configuration file. Figure 9.4 (Right) shows a simulation of Delivery on heterogeneous

robots. To our knowledge, this is the only simulator for distributed robotics providing such

fidelity and flexibility.

Figure 9.4: CyPhyHouse simulator running different scenarios with the same Koord application.

Figure 9.5: Four cars in a U-shaped world in simulator (Left). Visualization of the global map at
three different time stamps (Right)

Figure 9.5 shows the stages of the collaborative map created by four robots of the U-shaped

obstacle in the simulation environment using Mapping, described in Chapter 8.

Simulating Koord and Communication Our simulator spawns a process corresponding

to each robot that encompasses all middleware threads to simulate the communication between

robots faithfully. The communication handling threads in the individual processes can then

send messages to each other through broadcasts within the local network. We support

specifying distinct network ports for robots in the configuration file for simulating robots

as multiple processes on a single machine. Since communication is through actual network

interfaces, our work can be extended to simulate under different network conditions with

existing tools.

Physical Models and Simulated World Our simulated physical world is developed

based on Gazebo [44]. Furthermore, a simulated positioning system is provided to relay

positions of simulated devices from Gazebo to middleware. For simulated devices, we integrate

two Gazebo models from the Gazebo and ROS community, the car from MIT RACECAR

81

project [41] and the quadcopter from the hector quadrotor project [56]. Further, we implement

a simplified version of the position controller by modifying the provided default model. Users

can choose between simplified models for faster simulation or original models for accuracy.

In addition to simulation, we also develop Gazebo plugins for visualization to help pro-

grammers replay logs recorded on real devices. The visualization can be either real-time or

post-experiment: users may plot the movements or traces of models for real-time monitoring

the progress; alternatively, programmers may visualize and analyze traces with Gazebo after

experiments.

9.8 SIMULATOR PERFORMANCE ANALYSIS EXPERIMENTS AND RESULTS

Large scale simulations play an essential role in testing robotic applications and also in

training machine learning modules for perception and control. Therefore, we performed

experiments to measure the performance and scalability of the CyPhyHouse simulator. To

study the performance of our simulator, we experiment with various scenarios consisting of

different application Koord programs, increasing numbers of devices, or mixed device types.

We then collect the usages of different resources and the number of messages in each scenario.

Finally, we compare the statistics in resource usages and communications to study how our

simulator can scale across different scenarios.

In our experiments, we use three Koord programs, including the example Delivery in Fig-

ure 7.2, a line formation program LineForm, and a program forming a square ShapeForm.

For Delivery, we simulate with both cars and quadcopters to showcase the coordination

between heterogeneous devices. For LineForm and ShapeForm, we use only quadcopters for

simplicity to evaluate the growth of different statistics under increasing numbers of robots.

For each experiment scenario with a timeout of 120 seconds, we collect the total message

packets and packet length received by all robots, and sample the following resource usages

periodically: Real-Time Factor (RT Factor, the ratio between simulated clock vs. wall clock),

CPU percentage, Memory percentage, numbers of threads. All experiments are run on a

workstation with 32 Intel Xeon Silver 4110 2.10GHz CPU cores and 32 GB main memory.

In Figure 9.6, we only show the average of each collected metric. Observe that for LineForm

and ShapeForm. RT factor drops while all resource usages scale linearly with respect to the

number of robots. Average number and size of packets received per second for each robot

also grows linearly; hence, the sum of packets of all robots is quadratic in the number of

robots. This quadratic message complexity is because both the size of each message for

shared memory and the required number of messages are linear in the number of robots.

One can further improve the communication complexity with a different distributed shared

82

memory design.

0

50

100

150

200

250

Lineform 6 Lineform 8 Lineform 10 Lineform 12 Shapeform 9 Shapeform 16

Avg RT Factor Packets/agent/sec Avg packet (10kb) size/agent/sec

Avg %CPU Avg #threads div 10

Figure 9.6: Resource usages and communications for ShapeForm and LineForm.

Figure 9.7 shows the results of using Delivery application on varying configurations of

robots, to determine performance tradeoffs.

Figure 9.7: Performance evaluation of Delivery with CyPhyHouse Simulator for a 40 task sequence:
the x axis refers to the number of robots, with (cars, quadrotors). (Left) shows the total
completion time in blue and and the time taken for conflict resolution in seconds in orange. Right
shows the maximum distance (cm) travelled by a robot in blue and the minimum distance(cm) in
orange.

Conflict resolution took more time with more robots. The completion time remained

relatively stable. The maximum and minimum distances traveled were relatively similar, even

with more robots. These results were affected by the non-determinism in the choice of paths

and tasks by the robots and their previous relative positions when choosing the next task.

9.9 DEPLOYMENT SETUP

So far, we discussed the hardware-independent components of the CyPhyHouse toolchain;

we now describe the experimental testbed we used to deploy our applications and the

83

interaction of the different robots with the middleware2.

9.10 VEHICLES

As previously mentioned, the CyPhyHouse framework targets heterogeneous robotics

platforms. In order to demonstrate such capabilities, we have built both a car and a

quadcopter. Note that the car has nonholonomic constraints, while the quadcopter has

uncertain dynamics. In other standard settings, a roboticist would have to develop a separate

application for each platform.

Quadcopter The quadcopter was assembled from off-the-shelf hardware, with a 40cm×
40cm footprint. The main computing unit consists of a Raspberry Pi 3 B+ along with a

Navio2 deck for sensing and motor control. Ardupilot [4] handles stabilization and reference

tracking. Between the CyPhyHouse middleware and Ardupilot, we include a hardware

abstraction layer to convert setpoint messages from the Koord application into MAVLINK

using the mavROS library ([78]), so Ardupilot can parse them. Since the autopilot was

originally meant to use a GPS module, we also convert the current quadcopter position into

the Geographic Coordinate System before sending it to the controller.

Car Similarly, the car platform uses off-the-shelf hardware based on the open-source MIT

RACECAR project [41]. The computing unit consists of an NVIDIA TX2 board. In the car

platform, instead of using Ardupilot to handle the waypoint following, we wrote a custom

ROS node that uses the current position and desired waypoints to compute the input speed

and steering angle using a Model Predictive Controller (MPC). The car has an electronic

speed controller that handles low-level hardware control.

9.11 TEST ARENA AND LOCALIZATION

We performed our experiments in a 7m× 8m× 3m arena equipped with 8 Vicon cameras.

The Vicon system allows us to track the position of multiple robots with sub-millimeter

accuracy. However, we note that the position data can come from any source (for example,

GPS, ultrawide-band, LIDAR), as long as all robots share the same coordinate system. While

the motion capture system transmits all the data from a central computer, each vehicle only

subscribes to its own position information.

2A team led by Joao Porto performed the hardware platform assembly and controller implementation.

84

All coordination and de-conflicting across robots is performed based on position information

shared explicitly through shared variables in the Koord application. Aside from the Vicon

localization system, the Koord middleware supports an interface with any localization system

that generates the appropriate positioning ROS topics.

9.12 DEPLOYMENT INTERFACE WITH MIDDLEWARE

As mentioned earlier, the same application can be deployed using different path planners,

which are associated with the platform-specific motion automaton through interfaces defined

by the CyPhyHouse middleware. Both vehicles use RRT-based path planners [50] to compute

a path to the next task. The car planner uses a bicycle model to compute the feasible paths,

while the quadcopter planner assumes it can move in a straight line between points. The

path generated is then forwarded to the robot via a ROS topic. The ROS topics required for

positioning and setting waypoints of the vehicles were specified in the configuration. Each

vehicle updates the reached topic when they reach a predefined ball around the destination.

The car has nonholonomic constraints, while the quadcopter has uncertain dynamics, so in

other standard settings, a roboticist would have to develop a separate application for each

platform.

Real-Time Monitoring and Running Applications When an application executes on

the platforms, the CyPhyHouse runtime framework records detailed timed logs, including

program states, events, positions, sensor data, and message queues. These logs can be

visualized and annotated to debug Koord application programs. We have also developed

a simple 3D visualization in the Gazebo environment for real-time monitoring and for

programmers to provide inputs to the applications.

Figure 9.8 shows a snapshot of Delivery deployment in the Intelligent Robotics Laboratory

at the University of Illinois at Urbana Champaign, its visualization in Gazebo, and a closeup

of the car and quadcopter we used to deploy this application.

9.13 AUTOMATICALLY LAUNCHING ON HETEROGENEOUS PLATFORMS

Without automation, the mundane task of compiling and running programs can become

arduous when many devices are involved. It does become unmanageable and error-prone when

different types of robot platforms have to get different versions of the executable, linked with

correct libraries and IP addresses. Our Launcher program makes this a one-step automatic

85

Figure 9.8: Right: Annotated snapshot of a distributed task allocation application deployed on four
cars and drones using CyPhyHouse in our test arena. The red tasks are incomplete, and the green
tasks are completed. Left bottom: different robotic platforms: F1/10 Car and quadcopter. Left top:
Visualization of the same application running in CyPhyHouse simulator which interfaces with
Gazebo.

process. It registers all the participating robots, compiles their application codes (using

the above compiler and the correct platform-dependent libraries), loads the executables,

sets up the indoor positioning system, and starts the application execution. In general,

computing the membership of agents in a group of asynchronous processes is a well-studied

hard problem [10]. Launching also involves the practical issue of discovering the IP addresses

of the agents in the group.

9.14 EXPERIMENTS WITH DELIVERY ON UP TO FOUR VEHICLES

We performed several experiments involving the deployment of the Delivery application

on cars and quadcopters. The measurement units and the coordinate system used by the

indoor positioning system, the low-level controllers, and the Koord application program are

all provided in meters. Our implementation of the quadcopter’s waypoint follower stipulates

that it reaches a location (task) provided it enters a r = 30cm ball around the location, and

the indoor positioning system observes and transmits that fact. The car is considered to have

reached a location if it enters a circle with radius r = 25cm around the specified location.

The platform developer decides this parameter r, and it is not available to the programmer.

In our experiments with up to four vehicles, we found that there are fewer blocked paths

with fewer robots, so each robot spends less time idling. However, this non-blocking effect

is superseded by the parallelism gains obtained from having multiple robots. For example,

86

three robots (two quadcopters and one car, or one quadcopter and two cars) show an average

runtime of about 110 seconds for 20 tasks.

The average runtime for the same with four robots across 70 runs was about 90 seconds.

We experience zero failures, provided the wireless network conditions satisfy the assumptions

stated in Chapter 9. We discuss some of the specific experiments we performed with the

Delivery application below.

Task Distribution Figure 9.9 (Left) shows the trajectories of a car and a quadcopter

executing the Delivery app. The car visits the locations of all the ground level tasks (z = 0),

and the quadcopter visits the locations of all the other (z > 0). The quadcopter takes off when

the application starts and lands after all the tasks have been completed to avoid collisions.

We added another car to the set of robots executing this app, requiring more coordination

between the robots (as shown in in Figure 9.9 (Right)) that is handled automatically by the

language. The programmer only needs to change the configuration file to reflect this change

from 2 robots to 3.

0

4

0.5

2

1

y [m]

z
 [
m

]

0

1.5

-2 32

x [m]

10

2

-1-2-4 -3-4

car

quad

0

4

0.5

2

1

z
 [
m

]

y [m]

0
4

1.5

2

x [m]

-2
0

2

-2
-4 -4

car 1

car 2

quad

Figure 9.9: Left: trajectories for 1 car and 1 drone performing Delivery; Right: trajectories for 2 cars
1 drone. Circles represent the tasks given, while the crosses show the starting location of each robot.

Blocking Behavior Figure 9.11 demonstrates the efficacy of the task application itself in

performing collision avoidance. For these experiments, we deployed the Delivery app shown

in in Figure 7.2 on two cars, where the robots go to the first available task to which they can

compute a path.

Figure 9.10 shows the computed (and eventually completed) paths. From Figure 9.11, we

see that car 1 acquires the point at ~x = (2,−2) first and starts moving towards it at t = 0.38

s and car 2 only starts moving once car 1 has reached and released its path from the blocked

routes.

87

-3 -2 -1 0 1 2 3

x [m]

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

y
 [
m

]

car 1

car 2

Figure 9.10: Trajectories for 2 cars in the Blocking behavior experiment.

0 2 4 6 8 10 12 14 16 18

-2

0

2

4

x
 [

m
]

0 2 4 6 8 10 12 14 16 18

t [s]

-2

-1

0

1

2

3

y
 [

m
]

car 1

car 2

Figure 9.11: Top: x vs t for blocking paths for two cars. Bottom: y vs t for blocking paths for two
cars. The dashed lines represent the starting and stopping times for the cars moving on their paths.

Repeated Tasks Here, we want to demonstrate that the system will robustly scale up

with a longer list of waypoints while demonstrating the behavior exemplified in the previous

two experiments. Since we have a limited test space, we gave the robots a list of repeating

waypoints.

To see the blocking behavior for this experiment, we show a snippet of the positions of the

two cars in Figure 9.12.

The resulting paths for two cars can be seen in Figure 9.13. We observed that the task

distribution between the cars was roughly even during this experiment.

Robustness of Execution The Delivery application of Chapter 7 was run in over 100

experiments with different combinations of cars and quadcopters.

Figure 9.14 shows the (x, y)-trajectories of the vehicles in one specific trial run, in which

two quadcopters and two cars were deployed. We can see concurrent movement when it is

88

0 5 10 15 20

-2

0

2

x
 [

m
]

0 5 10 15 20

t [s]

-2

-1

0

1

2

y
 [

m
]

car 1

car 2

Figure 9.12: Top: x vs t for Repeated tasks for two cars. Bottom: y vs t for Repeated tasks for two
cars.

-3 -2 -1 0 1 2 3

x [m]

-3

-2

-1

0

1

2

3

y
 [
m

]

car 1

car 2

Figure 9.13: Trajectory for 2 cars in the Repeated tasks experiment.

safe (for example, at 13, 36, and 52 seconds), and only one robot moving or no robot moving

when trying to compute a safe and collision-free path to a task.

Careful examination of the figure shows that all the performance requirements of Delivery

are achieved, with concurrent movement when different robots have clear paths to tasks, safe

separation, and robots getting blocked when there is no safe path found.

9.15 SUMMARY

In this chapter, we presented the CyPhyHouse software development and deployment

toolchain for distributed robotic applications. We discussed our implementation of the Koord

compiler, which uses the same BNF grammar that we presented in Chapter 3. We also

presented details of the implementations of the shared memory and port abstractions and

showed how our modular design of the CyPhyHouse toolchain allows plug-and-play features

89

0 10 20 30 40 50 60 70 80

-0.5

0

0.5

y
no

rm
al

iz
ed

0 10 20 30 40 50 60 70 80

time [s]

0

1

2

3
M

in
im

iu
m

D
is

ta
nc

e
[m

]

Figure 9.14: Top shows the y vs t trajectories of the vehicles during an execution of the task, and
bottom shows the minimum distance between all robots. The vehicle positions in the top graph
were normalized to improve visualization.

for different library functions, including path planners. We presented and profiled the

high fidelity, scalable CyPhyHouse simulator that can execute and test instances of Koord

applications with dozens of vehicles. We also showed how the same code could be simulated,

and directly deployed on cars and drones with supporting platform-specific controllers. Finally,

we performed a set of experiments using the Delivery application to gain insight into the

performance of various configurations of robots and tasks in the Delivery application.

90

CHAPTER 10: CONCLUSIONS

In this thesis, we presented the Koord language and the CyPhyHouse software develop-

ment and deployment toolchain for distributed robotic applications. It interfaces with and

complements existing tools commonly used by roboticists, such as ROS, providing easy

integration with popular platforms by almost any programmer. Koord and the CyPhyHouse

toolchain enable programmers to develop and run distributed robotics applications in a

hardware-independent fashion. Koord programs can be ported across platforms automatically

with minimal effort from the application developer, and our high fidelity simulation can

provide a valuable testing and debugging environment. Our goal in developing Koord was

to provide a programming methodology for reliable distributed robotics that can exploit

different analysis techniques while not requiring complete domain expertise.

While still in the development stages, CyPhyHouse has been used by more than 25

individuals for programming, simulating, and testing other applications like formation flight,

and surveillance. Our experiences suggest the toolchain can indeed lower the barrier for entry

into the distributed robotics. Our case studies with Koord demonstrate that DRAs with

sensing, actuation, path planning, collision avoidance, and multi-robot coordination, can be

succinct and amenable to formal analysis.

The Koord programmer only needs to understand Koord ’s shared memory semantics, and

the sensor and actuator port abstractions. On the other hand, the hardware engineer will

need to validate that the target hardware platform indeed meets the port abstractions through

testing. The symbolic execution of Koord programs can effectively automate the analysis of

inductive invariants of the distributed coordination logic. Distributed robotics applications

may have nondeterministic behaviors. We found that inductive invariants preserved during

program transitions across every event execution by any agent can be completely verified

by our approach. Further, the framework allows one to plug-in reachability analysis to

validate/falsify controller assumptions for platform-dependent controllers.

10.1 CONTRIBUTION SUMMARY

Programming Language Abstractions for DRAs We explored the trade-off between

the level of abstraction of the minutiae of multi-robot systems and achieved a simple yet

expressive language design enabling a versatile set of multi-robot applications.

We introduced an abstract interface of sensor and actuator ports through which a Koord

program interacts with its environment. The program can read from sensor ports to receive

91

updates about its environment; furthermore, it can write to actuator ports to direct the

low-level controllers and actuators. Beyond the names and types of these ports, the abstract

interface may specify additional controller assumptions that these ports should satisfy.

Application developers get to use these assumptions to reason about the Koord application,

while platform engineers ensure that these assumptions are met when implementing the

interface for each platform. These interfaces allow deploying and simulating the same Koord

program on heterogeneous devices without any alteration, thus shortening the test-debug-

deployment cycle.

We provided a distributed shared memory (DSM) construct for Koord applications on

different robots to communicate with each other. This shared memory construct makes Koord

applications very succinct. Moreover, it raises the level of abstraction for the programmers

beyond sockets, message queues, and ROS topics and services [68].

A Formal Semantics of the Koord Language We developed the executable K seman-

tics [70] of Koord . To our knowledge, this is the first formalization of a programming language

for distributed cyber-physical systems, which has also been deployed on actual platforms.

Our executable semantics of Koord in K assumes a synchronous round-by-round computation

model for the distributed system. Each round lasts for a fixed period, and all robots synchro-

nize at the beginning of each round. This synchronous model is a restrictive but standard

model for distributed systems [52, 6]. While it does not eliminate concurrency control, it

significantly simplifies programming and verification. Koord also provides constructs for

mutual exclusion as additional mechanisms for concurrency control with shared memory

mentioned above. We showed how this model can be implemented under typical synchrony

assumptions for multi-robot networks.1

Verification approaches for inductive invariants for DRAs We presented a K
symbolic execution-based formal verification methodology, which does not require explicit

dynamical models of the platform. In practice, a detailed model of the platform (e.g., dynamic

models for cars, wheel friction, engine torque.) may not be available. The Koord semantics is

parameterized so that any available model or an actual blackbox executable for the platform

can be plugged in. Our formal analyses facilitate both inductive invariant checking and

state-space exploration with blackbox dynamics.

Using our formal analysis of Koord semantics, we identified and separated platform-

independent and platform-dependent proof obligations for three benchmark applications.

We proposed an approach to discharge the former obligations with existing SMT solvers

1Bounded message delays and clocks with bounded drifts.

92

automatically. On the one hand, platform-dependent proof obligations can suggest the

infeasibility of implementing such systems, when they are difficult to discharge or quickly

violated in simulation or testing. On the other hand, these proof obligations can serve

as contracts for sensors, drivers, and operating system modules outside the purview of

application developers. A useful outcome of this methodology is a list of formal assumptions

for the platform or implementation-specific components.

We implemented a suite of benchmarks and used both our formal analysis tools of inductive

invariant verification and bounded model checking to verify them or find counterexamples.

As expected, the state space expands exponentially with the number of agents due to the

inherent non-determinism of distributed CPS captured by our system, which is a factor for

the running time of both our approaches. However, inductive invariant checking scales much

better than explicit state bounded model checking.

The CyPhyHouse Toolchain for Koord Application Simulation and Deployment

Aside from the theoretical and formal analysis, we performed hardware experiments to

confirm the assumptions we made while developing the language semantics for Koord . Our

compiler translates Koord programs to Python application code, and device-independent

middleware implements the memory model and module interfaces. We achieved distributed

shared memory through round-based synchronous message passing. We created a simulation

environment in Gazebo for testing Koord applications and validating assumptions, specifically

on robot-environment behavior. The simulation environment only differs from a hardware

deployment environment in the dynamic models of the physical platforms, but all software

components are identical.

The simulator enables the user to test their discrete-event loop with simple motion models

to test and debug the application program logic without incurring the cost of hardware

deployment in case of buggy programs. The simulator also serves as a visualization tool as it

can be used to plot the behavior of any program variables or controller variables.

10.2 FUTURE DIRECTIONS OF RESEARCH

Structured, Extensible Design It is difficult to expect that any language, including

controller assumptions, can cover vastly different types of robots (which are constantly

evolving). To that end, our design of Koord on top of the K semantic framework gives a

flexible way to extend our language and tailor it to specific types of robots on demand.

We can explore further whether our port abstractions indeed support applications for

robots with diverse sensing and actuation capabilities such as LIDAR, RADAR, and cameras

93

for (possibly mobile) object detection. Another type of robotic applications that we can

potentially use Koord for involves robots with arms for object manipulation.

Fault Tolerance We assumed a lack of failures in our formal model of Koord applica-

tions. While the CyPhyHouse implementation of Koord supports infrastructure for detecting

dynamic leaves and joins, our formal semantics and analysis framework does not. Implemen-

tations of existing algorithms [36, 37] for fault tolerance for dynamic leaves and joins can be

expressed in the system semantics in the future. For general-purpose distributed systems,

even without crash failures, robots can suffer from delays and network failures, which may

result in inconsistent shared memory. Our model includes a strong consistency assumption,

where the robots receive all updates to the shared memory from the previous round. We can

include weaker requirements of consistency in the Koord semantics and investigate how our

decomposed verification approach can be adapted to these new semantics.

Verification of Liveness and Self-Stabilization We only explored the verification of

invariants in this thesis. However, the correctness of distributed robotics applications can also

rely on liveness properties, which indicate progress and self-stabilization. Typically, verifying

such properties requires computing an appropriate ranking function [76]. Identifying whether

a separation of distributed coordination and control can help verify such properties as well

as a natural future direction of work.

Dynamic Neighborhoods One of the simplifying assumptions we made was that all

robots are aware of the set of participating robots, which remains constant. The Actor

model [3] is a formalism for concurrent computing, which treats actors as computational

entities. Actors respond to message passing by making local decisions, sending more messages,

and potentially even creating more actors. Actors can also only communicate with actors

they know addresses for, thus motivating an idea of neighborhoods. A neighborhood of

an actor A can be defined as a set of actors whose addresses are known to A. Taking

inspiration from this model, we can adopt the idea of neighborhoods for robots, where a

robot can only communicate with other robots in its neighborhood and does not know the

identities of all the robots in the system. Neighborhoods can be determined by factors such as

geographical proximity and connections to WiFi nodes. In the future, we can extend Koord

with the communication semantics of actor models for distributed systems to support more

realistic assumptions for the set of robots which can communicate with each other to support

communication across wide geographical regions and multi-hop networks.

94

User Studies Our formal semantics and verification framework aside, the main objective

of this thesis has been to make robotics programming easier and more accessible to a general

programmer without specific robotics experience. In the future, user studies with programmers

of varied experiences can allow us to determine whether we are indeed progressing towards

this objective.
.

95

CHAPTER 11: REFERENCES

[1] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat
Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay
Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from tensorflow.org.

[2] Sarita V. Adve and Kourosh Gharachorloo. Shared memory consistency models: A
tutorial. IEEE Computer, 29:66–76, 1996.

[3] Gul A Agha. Actors: A model of concurrent computation in distributed systems.
Technical report, Massachusetts Inst of Tech Cambridge Artificial Intelligence Lab, 1985.

[4] ArduPilot Development Team. Ardupilot.

[5] E. Asarin, O. Bournez, T. Dang, and O. Maler. Approximate reachability analysis
of piecewise-linear dynamical systems. In B. Krogh and N. Lynch, editors, Hybrid
Systems: Computation and Control, volume 1790 of LNCS, pages 20–31. Hybrid Systems:
Computation and Control, 2000.

[6] Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Simulations
and Advanced Topics. John Wiley & Sons, Inc., USA, 2004.

[7] Anonymous Author. Anonymous paper. In to appear in ICRA 2020, page 6 pages,
Paris,France, 2019. IEEE.

[8] Stanley Bak and Parasara Sridhar Duggirala. Hylaa: A tool for computing simulation-
equivalent reachability for linear systems. In Proceedings of the 20th International
Conference on Hybrid Systems: Computation and Control, pages 173–178. ACM, 2017.

[9] Rahul Balani, Lucas F. Wanner, Jonathan Friedman, Mani B. Srivastava, Kaisen Lin,
and Rajesh K. Gupta. Programming support for distributed optimization and control in
cyber-physical systems. In Proceedings of the 2011 IEEE/ACM Second International
Conference on Cyber-Physical Systems, ICCPS ’11, pages 109–118, Washington, DC,
USA, 2011. IEEE Computer Society.

[10] Kenneth P Birman. The process group approach to reliable distributed computing.
Communications of the ACM, 36(12):37–53, 1993.

[11] José-Luis Blanco. Contributions to Localization, Mapping and Navigation in Mobile
Robotics. PhD thesis, PhD. in Electrical Engineering, University of Malaga, nov 2009.

96

[12] Timo Blender, Thiemo Buchner, Benjamin Fernandez, Benno Pichlmaier, and Christian
Schlegel. Managing a mobile agricultural robot swarm for a seeding task. In IECON 2016-
42nd Annual Conference of the IEEE Industrial Electronics Society, pages 6879–6886.
IEEE, 2016.

[13] V.D. Blondel, J.M. Hendrickx, A. Olshevsky, and J.N. Tsitsiklis. Convergence in
multiagent coordination consensus and flocking. In Proceedings of the Joint forty-fourth
IEEE Conference on Decision and Control and European Control Conference, pages
2996–3000, 2005.

[14] Brandon Bohrer, Vincent Rahli, Ivana Vukotic, Marcus Völp, and André Platzer.
Formally verified differential dynamic logic. In Proceedings of the 6th ACM SIGPLAN
Conference on Certified Programs and Proofs, CPP 2017, pages 208–221, New York, NY,
USA, 2017. ACM.

[15] Brandon Bohrer, Yong Kiam Tan, Stefan Mitsch, Magnus O. Myreen, and André Platzer.
Veriphy: Verified controller executables from verified cyber-physical system models. In
Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2018, pages 617–630, New York, NY, USA, 2018. ACM.

[16] M. Branicky. Multiple lyapunov functions and other analysis tools for switched and
hybrid systems. IEEE Transactions on Automatic Control, 43:475–482, 1998.

[17] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild Skjolsvold, Sam
McKelvie, Yikang Xu, Shashwat Srivastav, Jiesheng Wu, Huseyin Simitci, Jaidev Haridas,
Chakravarthy Uddaraju, Hemal Khatri, Andrew Edwards, Vaman Bedekar, Shane
Mainali, Rafay Abbasi, Arpit Agarwal, Mian Fahim ul Haq, Muhammad Ikram ul Haq,
Deepali Bhardwaj, Sowmya Dayanand, Anitha Adusumilli, Marvin McNett, Sriram
Sankaran, Kavitha Manivannan, and Leonidas Rigas. Windows azure storage: A highly
available cloud storage service with strong consistency. In Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles, SOSP ’11, pages 143–157, New
York, NY, USA, 2011. ACM.

[18] Miguel Campusano and Johan Fabry. Live robot programming: The language, its
implementation, and robot API independence. Science of Computer Programming, 133:1
– 19, 2017.

[19] Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan. Flow*: An analyzer for
non-linear hybrid systems. In Computer Aided Verification, pages 258–263. Springer,
2013.

[20] Alexander Cunningham, Manohar Paluri, and Frank Dellaert. Ddf-sam: Fully distributed
slam using constrained factor graphs. In 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 3025–3030. IEEE, 2010.

[21] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and

97

Werner Vogels. Dynamo: Amazon’s highly available key-value store. In Proceedings
of Twenty-first ACM SIGOPS Symposium on Operating Systems Principles, SOSP ’07,
pages 205–220, New York, NY, USA, 2007. ACM.

[22] Ankush Desai, Vivek Gupta, Ethan Jackson, Shaz Qadeer, Sriram Rajamani, and
Damien Zufferey. P: Safe asynchronous event-driven programming. SIGPLAN Not.,
48(6):321–332, June 2013.

[23] Ankush Desai, Indranil Saha, Jianqiao Yang, Shaz Qadeer, and Sanjit A Seshia. Drona:
A framework for safe distributed mobile robotics. In 2017 ACM/IEEE 8th International
Conference on Cyber-Physical Systems (ICCPS), pages 239–248. IEEE, 2017.

[24] Cezara Drăgoi, Thomas A. Henzinger, and Damien Zufferey. Psync: A partially syn-
chronous language for fault-tolerant distributed algorithms. In Proceedings of the 43rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’16, pages 400–415, New York, NY, USA, 2016. ACM.

[25] Parasara Sridhar Duggirala and Sayan Mitra. Lyapunov abstractions for inevitability of
hybrid systems. In The 15th International Conference on Hybrid Systems: Computation
and Control (HSCC 2012), Beijing, China., 2012.

[26] Parasara Sridhar Duggirala, Sayan Mitra, and Mahesh Viswanathan. Verification of
annotated models from executions. In EMSOFT, 2013.

[27] Chuchu Fan, Bolun Qi, and Sayan Mitra. Data-driven formal reasoning and their
applications in safety analysis of vehicle autonomy features. IEEE Design & Test,
35(3):31–38, 2018.

[28] Chuchu Fan, Bolun Qi, Sayan Mitra, and Mahesh Viswanathan. DryVR: Data-driven
verification and compositional reasoning for automotive systems. In Computer Aided
Verification (CAV), July 2017.

[29] Ansgar Fehnker and Franjo Ivancic. Benchmarks for hybrid systems verification. In
Rajeev Alur and George J. Pappas, editors, HSCC, volume 2993 of Lecture Notes in
Computer Science, pages 326–341. Springer, 2004.

[30] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi Ray, Olivier
Lebeltel, Rodolfo Ripado, Antoine Girard, Thao Dang, and Oded Maler. Spaceex:
Scalable verification of hybrid systems. In Ganesh Gopalakrishnan and Shaz Qadeer,
editors, CAV, volume 6806 of Lecture Notes in Computer Science, pages 379–395.
Springer, 2011.

[31] David Gauthier, Paul Freedman, Gregory Carayannis, and Alfred Malowany. Interprocess
communication for distributed robotics. IEEE Journal on Robotics and Automation,
3(6):493–504, 1987.

[32] Mario Gerla, Eun-Kyu Lee, Giovanni Pau, and Uichin Lee. Internet of vehicles: From
intelligent grid to autonomous cars and vehicular clouds. In 2014 IEEE world forum on
internet of things (WF-IoT), pages 241–246. IEEE, 2014.

98

[33] Sukumar Ghosh. Distributed systems: an algorithmic approach. Chapman and Hall/CRC,
2014.

[34] Seth Gilbert, NancyA. Lynch, and AlexanderA. Shvartsman. Rambo: a robust, reconfig-
urable atomic memory service for dynamic networks. Distributed Computing, 23:225–272,
2010.

[35] Lars Grüne and Jürgen Pannek. Nonlinear model predictive control. In Nonlinear Model
Predictive Control, pages 45–69. Springer, 2017.

[36] Rachid Guerraoui and André Schiper. Fault-tolerance by replication in distributed
systems. In International conference on reliable software technologies, pages 38–57.
Springer, 1996.

[37] Rachid Guerraoui and André Schiper. Software-based replication for fault tolerance.
Computer, 30(4):68–74, 1997.

[38] Ge Guo and Wei Yue. Autonomous platoon control allowing range-limited sensors. IEEE
Transactions on vehicular technology, 61(7):2901–2912, 2012.

[39] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross
Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for
fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.

[40] Taylor Johnson and Sayan Mitra. A small model theorem for rectangular hybrid automata
networks. In International Conference on Formal Techniques for Distributed Objects,
Components, and Systems, 2012.

[41] S. Karaman, A. Anders, M. Boulet, J. Connor, K. Gregson, W. Guerra, O. Guldner,
M. Mohamoud, B. Plancher, R. Shin, and J. Vivilecchia. Project-based, collaborative,
algorithmic robotics for high school students: Programming self-driving race cars at mit.
In 2017 IEEE Integrated STEM Education Conference (ISEC), pages 195–203, March
2017.

[42] Dilsun K. Kaynar, Nancy Lynch, Roberto Segala, and Frits Vaandrager. The Theory
of Timed I/O Automata. Synthesis Lectures on Computer Science. Morgan Claypool,
November 2005. Also available as Technical Report MIT-LCS-TR-917.

[43] Marius Kloetzer and Calin Belta. A fully automated framework for control of linear
systems from temporal logic specifications. IEEE Transactions on Automatic Control,
53(1):287–297, 2008.

[44] N. Koenig and A. Howard. Design and use paradigms for gazebo, an open-source multi-
robot simulator. In 2004 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) (IEEE Cat. No.04CH37566), volume 3, pages 2149–2154 vol.3, Sep.
2004.

99

[45] Hadas Kress-Gazit, Georgios E Fainekos, and George J Pappas. Temporal-logic-based
reactive mission and motion planning. IEEE transactions on robotics, 25(6):1370–1381,
2009.

[46] Alexander B. Kurzhanski and Pravin Varaiya. Ellipsoidal techniques for reachability
analysis. In HSCC, pages 202–214, 2000.

[47] Michal Kvasnica, Pascal Grieder, Mato Baotić, and Manfred Morari. Multi-parametric
toolbox (mpt). In Hybrid systems: computation and control, pages 448–462. Springer,
2004.

[48] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured storage
system. ACM SIGOPS Operating Systems Review, 44(2):35–40, 2010.

[49] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program
analysis & transformation. In Proceedings of the International Symposium on Code
Generation and Optimization: Feedback-directed and Runtime Optimization, CGO ’04,
pages 75–, Washington, DC, USA, 2004. IEEE Computer Society.

[50] Steven M LaValle. Rapidly-exploring random trees: A new tool for path planning, 1998.

[51] Nancy Lynch, Roberto Segala, Frits Vaandrager, and H. B. Weinberg. Hybrid I/O
automata. In T. Henzinger R. Alur and E. Sontag, editors, Hybrid Systems III, volume
1066 of LNCS, New Brunswick, New Jersey, October 1995. Springer-Verlag.

[52] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., Cambridge,
1996.

[53] Nancy A Lynch. Distributed algorithms. Elsevier, 1996.

[54] Nancy A. Lynch, Roberto Segala, and Frits W. Vaandrager. Hybrid I/O automata
revisited. In M.D. Di Benedetto and A.L. Sangiovanni-Vincentelli, editors, Proceed-
ings Fourth International Workshop on Hybrid Systems: Computation and Control
(HSCC’01), Rome, Italy, volume 2034 of LNCS, pages 403–417. Springer, March 2001.

[55] M. Mesbahi and Magnus Egerstedt. Graph-theoretic Methods in Multiagent Networks.
Princeton University Press, 2010.

[56] Johannes Meyer, Alexander Sendobry, Stefan Kohlbrecher, Uwe Klingauf, and Oskar von
Stryk. Comprehensive simulation of quadrotor uavs using ros and gazebo. In Itsuki Noda,
Noriaki Ando, Davide Brugali, and James J. Kuffner, editors, Simulation, Modeling, and
Programming for Autonomous Robots, pages 400–411, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg.

[57] Pieter J Mosterman, David Escobar Sanabria, Enes Bilgin, Kun Zhang, and Justyna Zan-
der. A heterogeneous fleet of vehicles for automated humanitarian missions. Computing
in Science & Engineering, 16(3):90, 2014.

100

[58] César Muñoz, Vı́ctor Carreño, and Gilles Dowek. Formal Analysis of the Operational
Concept for the Small Aircraft Transportation System, pages 306–325. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2006.

[59] Adithyavairavan Murali, Tao Chen, Kalyan Vasudev Alwala, Dhiraj Gandhi, Lerrel Pinto,
Saurabh Gupta, and Abhinav Gupta. Pyrobot: An open-source robotics framework for
research and benchmarking. arXiv preprint arXiv:1906.08236, 2019.

[60] B. Nitzberg and V. Lo. Distributed shared memory: a survey of issues and algorithms.
Computer, 24(8):52 –60, aug. 1991.

[61] Arne Nordmann, Nico Hochgeschwender, and Sebastian Wrede. A Survey on Domain-
Specific Languages in Robotics, pages 195–206. Springer International Publishing, Cham,
2014.

[62] Terence Parr. The Definitive ANTLR 4 Reference. Pragmatic Bookshelf, 2nd edition,
2013.

[63] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in PyTorch. In NIPS Autodiff Workshop, 2017.

[64] D. Pickem, P. Glotfelter, L. Wang, M. Mote, A. Ames, E. Feron, and M. Egerstedt.
The robotarium: A remotely accessible swarm robotics research testbed. In 2017 IEEE
International Conference on Robotics and Automation (ICRA), pages 1699–1706, May
2017.

[65] Carlo Pinciroli, Adam Lee-Brown, and Giovanni Beltrame. Buzz: An extensible program-
ming language for self-organizing heterogeneous robot swarms. CoRR, abs/1507.05946,
2015.

[66] J Norberto Pires and JMG Sá Da Costa. Object-oriented and distributed approach for
programming robotic manufacturing cells. Robotics and computer-integrated manufac-
turing, 16(1):29–42, 2000.

[67] Stephen Prajna and Ali Jadbabaie. Safety verification of hybrid systems using barrier
certificates. In In Hybrid Systems: Computation and Control, pages 477–492. Springer,
2004.

[68] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, and Andrew Y. Ng. Ros: an open-source robot operating system. In
ICRA Workshop on Open Source Software. IEEE, 2009.

[69] Redmond R Shamshiri, Cornelia Weltzien, Ibrahim A Hameed, Ian J Yule, Tony E Grift,
Siva K Balasundram, Lenka Pitonakova, Desa Ahmad, and Girish Chowdhary. Research
and development in agricultural robotics: A perspective of digital farming, 2018.

101

[70] Grigore Rosu and Traian Florin Serbanuta. K overview and simple case study. In
Proceedings of International K Workshop (K’11), volume 304 of ENTCS, pages 3–56,
Illinois, June 2014. Elsevier.

[71] Giovanni Russo and Jean-Jacques E Slotine. Symmetries, stability, and control in
nonlinear systems and networks. Physical Review E, 84(4):041929, 2011.

[72] Hussein Sibai, Navid Mokhlesi, Chuchu Fan, and Sayan Mitra. Multi-agent safety
verification using symmetry transformations. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, pages 173–190. Springer, 2020.

[73] David St-Onge, Vivek Shankar Varadharajan, Guannan Li, Ivan Svogor, and Giovanni
Beltrame. ROS and buzz: consensus-based behaviors for heterogeneous teams. CoRR,
abs/1710.08843, 2017.

[74] Mia N Stevens and Ella M Atkins. Multi-mode guidance for an independent multicopter
geofencing system. In 16th AIAA Aviation Technology, Integration, and Operations
Conference, page 3150, 2016.

[75] Sebastian Thrun et al. Robotic mapping: A survey. Exploring artificial intelligence in
the new millennium, 1(1-35):1, 2002.

[76] John N. Tsitsiklis. On the stability of asynchronous iterative processes. Theory of
Computing Systems, 20(1):137–153, December 1987.

[77] Alphan Ulusoy, Stephen L Smith, Xu Chu Ding, Calin Belta, and Daniela Rus. Optimality
and robustness in multi-robot path planning with temporal logic constraints. The
International Journal of Robotics Research, 32(8):889–911, 2013.

[78] Vladimir Ermakov. mavros.

[79] Brian C Williams, Michel D Ingham, Seung H Chung, and Paul H Elliott. Model-based
programming of intelligent embedded systems and robotic space explorers. Proceedings
of the IEEE, 91(1):212–237, 2003.

[80] Tichakorn Wongpiromsarn, Ufuk Topcu, and Richard M Murray. Receding horizon
control for temporal logic specifications. In Proceedings of the 13th ACM international
conference on Hybrid systems: computation and control, pages 101–110. ACM, 2010.

[81] Tichakorn Wongpiromsarn, Ufuk Topcu, Necmiye Ozay, Huan Xu, and Richard M
Murray. Tulip: a software toolbox for receding horizon temporal logic planning. In
Proceedings of the 14th international conference on Hybrid systems: computation and
control, pages 313–314. ACM, 2011.

[82] Damien Zufferey. The REACT language for robotics, 2017.

102

